Temporal Flexibility Revisited: Maximizing Flexibility by Computing Bipartite Matchings

Simon Mountakis and Tomas Klos and Cees Witteveen
Algorithmics group, Department of Computer and Software Technology,
Delft University of Technology, NL-2628 CD, Delft, The Netherlands

Abstract

We discuss two flexibility metrics for Simple Temporal Networks (STNs): the so-called naive flexibility metric based on the difference between earliest and latest starting times of temporal variables, and a recently proposed concurrent flexibility metric. We establish an interesting connection between the computation of these flexibility metrics and properties of the minimal distance matrix D_{S} of an STN S : the concurrent flexibility metric can be computed by finding a minimum weight matching of a weighted bipartite graph completely specified by D_{S}, while the naive flexibility metric corresponds to computing a maximum weight matching in the same graph. From a practical point of view this correspondence offers an advantage: instead of using an $O\left(n^{5}\right)$ LP-based approach, reducing the problem to a matching problem we derive an $O\left(n^{3}\right)$ algorithm for computing the concurrent flexibility metric.

Introduction

Simple Temporal Networks (STNs) (Dechter, Meiri, and Pearl 1991; Dechter 2003), offer a convenient framework for modelling temporal aspects of scheduling problems, distinguishing between a set T of temporal variables and a set C of linear difference constraints between them. STNs have been used quite extensively in a number of different domains where automated planning and scheduling are key issues, such as manufacturing, maintenance, unmanned spacecraft and robotics. One of the attractive properties of STNs is that various important search and decision problems can be solved quite efficiently. For example, deciding whether an STN admits a schedule, finding such a schedule, as well as finding a complete schedule extending a partial one are all problems that can be solved in low-polynomial time.

Constructing one single schedule, however, for an STN is often not sufficient. In quite some applications one has to react immediately to possible disturbances without having the time to recompute a new schedule. In such a case, instead of one single schedule, we would like to have a set of schedules available from which we can select in constant time a suitable alternative. The availability of such a set of alternative schedules implies that the scheduler could offer some

[^0]amount of flexibility in scheduling: instead of determining a fixed value for a temporal variable, a flexible schedule offers for each temporal variable a set of values to choose from. Clearly, such a flexibility is determined by properties of the set C of constraints of an STN. Therefore, one would like to specify a flexibility metric for STNs based on the properties of this set C. One of the first proposals (Policella et al. 2004; Pollack and Tsamardinos 2005) for such a flexibility metric has been based on considering a (non-empty) interval [est $(t), l s t(t)$] for each temporal variable $t \in T$ and defining the flexibility of an STN S as flex $(S)=\Sigma_{t \in T}(l s t(t)-$ $e s t(t))$. Here, est (t) refers to the earliest time t can be executed in any feasible schedule for S and $l s t(t)$ to its latest time. We will discuss this idea in more detail below.

As has been pointed out recently, this so-called naive flexibility metric flex has some serious shortcomings. Its main disadvantage is that, in general, it is far too optimistic with respect to the available flexibility in an STN. The reason is that the flexibility intervals $[\operatorname{est}(t), l s t(t)]$ assigned to temporal variables t, in general, are not independent: The flexibility of two temporal variables together might be substantially smaller than the sum of their individual flexibilities (Wilson et al. 2013; 2014). As an alternative, these authors proposed to assign flexibility intervals to temporal variables such that these intervals are independent: for every $t \in T$, its flexibility interval $\left[t^{-}, t^{+}\right]$enables one to make a choice for a time point in the interval without any consequence for the validity of the choices for other temporal variables. In their paper they use a Linear Programming (LP) based approach to compute this so-called concurrent flexibility metric flex ${ }^{*}$ to show that it can be computed in polynomial time. They do not, however, mention exact upper bounds for the time complexity of computing this metric.

In this paper, we start by presenting a geometric interpretation of the concurrent and the naive flexibility metric. Then, by using duality theory, we show that there exists a nice correspondence between (a slightly modified) minimal distance matrix D_{S} associated with an STN S and both flexibility metrics. If this matrix D_{S} is conceived as the specification of weights on the edges of a (complete) weighted bipartite graph G_{S}, then the value of the concurrent flexibility metric equals the costs of a minimum matching in G_{S}, while the naive flexibility metric corresponds to the costs of a maximum matching in G_{S}. Using this correspondence, we
are able to deduce an efficient $O\left(n^{3}\right)$ algorithm for determining both the concurrent and naive flexibility of an STN.

Preliminaries

An STN is a pair $S=(T, C)$, where $T=\left\{t_{0}, t_{1}, \ldots, t_{n-1}\right\}$ is a set of temporal variables and C is a finite set of binary constraints on T, each constraint having the form ${ }^{1}$ $t_{j}-t_{i} \leq c_{i j}$, for some real number $c_{i j}$. A solution to S is a schedule for S, that is, a function $\sigma: T \rightarrow \mathbb{R}$, assigning a real value (time-point) to each temporal variable in T such that all constraints in C are satisfied. If such a schedule exists, we say that the STN is consistent. ${ }^{2}$ The time-point $t_{0} \in T$, also denoted by z, is used to be able to express absolute time constraints. It represents a fixed reference point on the timeline, and is assigned the value 0 .
Example 1. We consider two STNs $S_{1}=\left(T_{1}, C_{1}\right)$ and $S_{2}=$ $\left(T_{2}, C_{2}\right)$ where $T_{1}=T_{2}=\left\{z, t_{1}, t_{2}, t_{3}\right\}$ and

$$
\begin{aligned}
& C_{1}=\left\{0 \leq t_{i}-z \leq 50 \mid i=1,2,3\right\} \\
& C_{2}=C_{1} \cup\left\{0 \leq t_{i}-t_{j} \leq \infty \mid 1 \leq j<i \leq 3\right\}
\end{aligned}
$$

Every assignment $\sigma_{1}\left(t_{i}\right)=v_{i} \in[0,50]$ is a schedule for S_{1}. On the other hand, a schedule σ_{2} for S_{2} has to satisfy $0 \leq \sigma_{2}\left(t_{1}\right) \leq \sigma_{2}\left(t_{2}\right) \leq \sigma_{2}\left(t_{3}\right) \leq 50$.

Using a shortest path interpretation of an STN $S=(T, C)$ (Dechter 2003), there is an efficient method to find all tightest constraints implied by C, by searching for all shortest paths between the time points in T using e.g. Floyd and Warshall's all-pairs shortest paths algorithm (Floyd 1962). The $n \times n$ minimum distance matrix D_{S} contains for every pair of time-point variables t_{i} and t_{j} the length $D_{S}[i, j]$ of the shortest path from t_{i} to t_{j} in the distance graph. In particular, the latest starting time $l s t\left(t_{i}\right)$ and earliest starting time est $\left(t_{i}\right)$ can be obtained directly from the first row and first column of $D_{S}: l s t\left(t_{i}\right)=D[0, i]$ and $\operatorname{est}\left(t_{i}\right)=-D[i, 0]$. Given an STN S, this matrix D_{S} can be computed in loworder polynomial $\left(O\left(n^{3}\right)\right.$) time (Dechter 2003). Here, n denotes the number of temporal variables.

The following proposition is a restatement of Theorem 3.3 in (Dechter, Meiri, and Pearl 1991) and essentially states that every STN is decomposable via its distance graph D_{S} :
Proposition 1. Let $S=(T, C)$ be an $S T N$ and D_{S} its distance matrix. For $i=1, \ldots, n-1$, let est $\left(t_{i}\right)=-D_{S}[i, 0]$ and $\operatorname{lst}\left(t_{i}\right)=D_{S}[0, i]$. Then, for every schedule σ for S, and every $t \in T$, it holds that $\sigma(t) \in[\operatorname{est}(t), \operatorname{lst}(t)]$. Moreover, given any $t \in T$ and $v \in[\operatorname{est}(t), \operatorname{lst}(t)]$, there exists a schedule σ for S such that $\sigma(t)=v .^{3}$

Finally, we assume that for each $t \in T$ there is a finite interval for scheduling it. In particular this means that for each STN $S=(T, C)$ we assume that for all $t \in T, t \geq z$

[^1]holds and there exists a finite constant (horizon) h_{S} such that for all $t \in T$ it holds that $t \leq h_{S}$. This avoids the use of unbounded time intervals such as $-\infty \leq t_{i}-t_{j} \leq \infty$.

The naive and the concurrent flexibility metric

Intuitively, a flexibility metric should indicate our freedom of choice in choosing values for temporal variables such that the constraints are satisfied. In the naive flexibility metric one has chosen, for each variable $t \in T$, the interval $[e s t(t), l s t(t)]$ to indicate this freedom of choice. ${ }^{4}$ The naive flexibility of an STN S then is defined as flex $(S)=$ $\sum_{t \in T}(l s t(t)-e s t(t))$. Obviously, since D_{S} is computable in $O\left(n^{3}\right)$ time, flex (S) can be computed in $O\left(n^{3}\right)$ time.

As we already mentioned, using flex (S) has a serious disadvantage, due to dependencies that might exist between temporal variables. We give a simple example to illustrate these dependencies and their consequences.
Example 2. Consider the STNs presented in Example 1. For both STNs it holds that est $\left(t_{i}\right)=0$ and $l s t\left(t_{i}\right)=50$, for $i=$ $1,2,3$. Hence, flex $\left(S_{1}\right)=$ flex $\left(S_{2}\right)=150$. Intuitively, however, due to the ordering constraints between t_{1}, t_{2} and t_{3}, the flexibility of S_{2} should be much lower: giving a flexibility of f_{1} to t_{1} results in a flexibility of $f_{2}=v_{2}-f_{1}$ for t_{2}, where $50 \geq v_{2} \geq f_{1}$, and a flexibility of $50-v_{2}$ for f_{3}. The sum of these flexibilities equals $f_{1}+\left(v_{2}-f_{1}\right)+\left(50-v_{2}\right)=50$, one-third of the value of the naive flexibility for S_{2}.

One way to see how these dependencies are neglected in computing the naive flexibility flex (S) is to give a geometric interpretation of this metric.

The solution space of a set of linear constraints is a polytope. In (our) case of a consistent STN it is a bounded polytope. The set of intervals $\left\{\left[\operatorname{est}\left(t_{i}\right), l s t\left(t_{i}\right)\right]\right\}_{i=1}^{n}$ can be thought of as determining the smallest (hyper)cube containing this polytope. Clearly, if the polytope itself is not a hypercube, there are points in the hypercube that do not belong to the solution space of the STN. Exactly in these cases flex (S) will overestimate the amount of flexibility of S.
Example 3. Consider again the STNs S_{1} and S_{2} as presented in Example 1. The polytope generated by C_{1} is the large (hyper)cube depicted in Figure 1. This hypercube equals the smallest hypercube containing the polytope, hence flex $\left(S_{1}\right)=50+50+50$ is the real flexibility of S_{1}. The polytope generated by C_{2} is the shaded subspace depicted in Figure 1. The smallest hypercube containing $i t$, however, equals the hypercube specified for S_{1}. Hence, flex $\left(S_{2}\right)=$ flex $\left(S_{1}\right)=150$: an overestimation of the flexibility.

A new flexibility metric for STNs (Wilson et al. 2013) has been introduced to overcome the disadvantages of flex (S). Instead of determining the smallest outer bounding box (hypercube) containing the polyhedron generated by a set of constraints C, they determine the largest inner bounding box contained in this polyhedron (see below for a computation).

[^2]

Figure 1: The polytope P_{1} generated by S_{1} is a cube with edges of size 50 ; the polytope P_{2} generated by S_{2} is the shaded subspace of P_{1}. The inner bounding box of P_{2} is the small green cube in the shaded area. The inner bounding box of S_{1} and also the outer bounding box of S_{1} and S_{2} equal P_{1}.

An obvious advantage of such an inner bounding box is that every point in the box belongs to the polyhedron (i.e. solution space) containing it.
Example 4. Consider again the STN S_{2}. A largest inner bounding box contained in the polytope determined by C_{2} is the small box contained in the shaded area in Figure 1. All its points are contained in the solution space of S_{2}.

To construct a flexibility metric based on the largest inner bounding box we have to make sure that for every constraint $t_{j}-t_{i} \leq c_{i, j}$ the flexibility intervals $\left[t_{i}^{-}, t_{i}^{+}\right]$and $\left[t_{j}^{-}, t_{j}^{+}\right]$ associated with t_{i} and t_{j} are independent, i.e., every value v_{i} and v_{j} for t_{i} and t_{j}, respectively, chosen in these intervals has to satisfy the constraint $v_{j}-v_{i} \leq c_{i, j}$. This is exactly the case if t_{j} assumes the maximum value and t_{i} assumes the minimum value in its interval, i.e., we have to ensure that $t_{j}^{+}-t_{i}^{-} \leq c_{i, j}$. Therefore, the value flex ${ }^{*}(S)$ for the concurrent flexibility for S can be found by solving the following LP (see (Wilson et al. 2014)):

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{t_{i} \in T}\left(t_{i}^{+}-t_{i}^{-}\right) \tag{LP1}\\
\text {subject to } & t_{i}^{-} \leq t_{i}^{+} \quad, \quad \forall t_{i} \in T \\
& t_{j}^{+}-t_{i}^{-} \leq c_{i, j}, \quad \forall\left(t_{j}-t_{i} \leq c_{i, j}\right) \in C
\end{array}
$$

Here, flex $^{*}(S)$ indicates the maximum flexibility that can be obtained when all flexibility intervals of temporal variables are independent from each other and values in these intervals can be chosen concurrently.
Example 5. LP1 will return flex ${ }^{*}\left(S_{1}\right)=150$, but flex ${ }^{*}\left(S_{2}\right)=50$, showing that here the concurrent flexibility metric corresponds to our intuition.

Concurrent flexibility by minimum matching

In this section we show that computing the maximum concurrent flexibility is identical to computing a perfect minimum weight matching of a weighted bipartite graph G_{S}
completely specified by D_{S}. On the other hand, computing the naive flexibility corresponds to computing a maximum matching in this graph G_{S}.

To establish these results, first, we specify an LP equivalent to LP1 using the minimum distance matrix D_{S} instead of the original set C of constraints. Then we show that the entries of D_{S} can be used to compute a least upper bound on flex $^{*}(S)$. Finally, by using duality theory in Linear Programming and some adaptations, we show that this least upper bound is a maximum matching in a bipartite graph specified by D_{S} and in fact equals flex ${ }^{*}(S)$.

Remember that the entries $d(i, j)$ of the minimum distance matrix D_{S} of an STN S specify the upper bound of the strongest difference constraint between the temporal variables t_{j} and $t_{i}: t_{j}-t_{i} \leq d(i, j)$. Hence, we can replace the specification LP1 by the following equivalent LP, since both LP's specify the same solution space:

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{t_{i} \in T}\left(t_{i}^{+}-t_{i}^{-}\right) & \tag{LP2}\\
\text {subject to } & t_{i}^{-} \leq t_{i}^{+} & , \quad \forall t_{i} \in T \\
& t_{j}^{+}-t_{i}^{-} \leq d(i, j) & , \quad \forall t_{i} \neq t_{j} \in T
\end{array}
$$

To remove the condition $\forall t_{i} \neq t_{j} \in T$, it is sufficient to realize that $t_{i}^{+}-t_{i}^{-}=\left(t_{i}^{+}-t_{0}^{-}\right)+\left(t_{0}^{+}-t_{i}^{-}\right) \leq d(0, i)+$ $d(i, 0)=\operatorname{lst}\left(t_{i}\right)-\operatorname{est}\left(t_{i}\right)$, since $t_{0}^{-}=t_{0}^{+}=0$. Hence, setting $d(i, i)=d(0, i)+d(i, 0)$ for all $t_{i} \in T$, we change LP2 to the following equivalent LP:

$$
\begin{array}{cl}
\operatorname{maximize} \sum_{t_{i} \in T}\left(t_{i}^{+}-t_{i}^{-}\right) & \tag{LP3}\\
\text {subject to } t_{i}^{-} \leq t_{i}^{+} & , \quad \forall t_{i} \in T \\
t_{j}^{+}-t_{i}^{-} \leq d(i, j) & , \quad \forall t_{i}, t_{j} \in T
\end{array}
$$

We will denote this modified distance matrix D_{S}, where $d(i, i)=l s t\left(t_{i}\right)-e s t\left(t_{i}\right)$, by D_{S}^{*}.

Now consider the sum $\sum_{i=1}^{n}\left(t_{i}^{+}-t_{i}^{-}\right)$we want to maximize. This sum can be rewritten as $\sum_{i=1}^{n}\left(t_{i}^{+}-\right.$ $\left.t_{i}^{-}\right)=\sum_{i=1}^{n}\left(t_{i}^{+}-t_{\pi(i)}^{-}\right)$for an arbitrary permutation π of $(1,2, \ldots, n)$. Since $t_{i}^{+}-t_{\pi(i)}^{-} \leq d(\pi(i), i)$, we can derive an upper bound on this sum for every permutation π : $\sum_{i=1}^{n}\left(t_{i}^{+}-t_{\pi(i)}^{-}\right) \leq \sum_{i=1}^{n} d(\pi(i), i)$. In particular, there are permutations π^{*} such that for all permutations π it holds that $\sum_{i=1}^{n} d\left(\pi^{*}(i), i\right) \leq \sum_{i=1}^{n} d(\pi(i), i)$. Such a (smallest) permutation π^{*} specifies a least upper bound on flex $^{*}(S)=$ $\max \sum_{i=1}^{n}\left(t_{i}^{+}-t_{i}^{-}\right)$.

There is an efficient way to compute such a smallest permutation π^{*} by obtaining a minimum weighted matching between $T^{+}=\left\{t_{1}^{+}, t_{2}^{+}, \ldots, t_{n}^{+}\right\}$and $T^{-}=\left\{t_{1}^{-}, t_{2}^{-}, \ldots, t_{n}^{-}\right\}$: Consider the weighted complete graph $G_{S}=(V, E, w)$ where $V=T^{+} \cup T^{-}$, the edges $\left\{t_{i}^{+}, t_{j}^{-}\right\} \in E$ for $i, j=$ $1, \ldots n$, and for every edge $\left\{t_{i}^{+}, t_{j}^{-}\right\}$its weight $w_{i, j}=d_{j, i}$. Note that G_{S} is completely specified by D_{S}^{*}. By Hall's theorem, this graph has a minimum weighted perfect matching, that is a set $M \subseteq E$ of n edges covering T^{+}and T^{-} such that the sum of these edges is minimum. Clearly, such a minimum weighted matching determines a permutation π^{*}
such that $\sum_{i=1}^{n} d\left(\pi^{*}(i), i\right)$ is minimum. Since it holds that $\sum_{t_{i} \in T}\left(t_{i}^{+}-t_{i}^{-}\right) \leq \sum_{i=1}^{n} d\left(\pi^{*}(i), i\right)$, the cost $c(M)$ of such a minimum matching provides an upper bound for flex $^{*}(S)$.

Actually, by applying simple LP-duality theory, we can do better and show that there exists an exact correspondence between a minimum matching in D_{S}^{*} and the maximum concurrent flexibility flex ${ }^{*}(S)$:
Proposition 2. Let $S=(T, C)$ be a consistent STN having a minimum distance matrix D_{S}. Then the concurrent flexibility flex ${ }^{*}(S)$ of S equals the cost $c(M)$ of a minimum matching M of the complete weighted graph G_{S} specified by D_{S}^{*}.

Proof. The most elegant way to prove this result is making use of duality in linear programming. The dual of LP3 is the following LP:

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{1 \leq i, j \leq n} d(i, j) y_{j, i} & \tag{LP4}\\
\text { subject to } & \sum_{j=1}^{n} y_{i, j}=1+y_{0, i} & , i \in\{1,2, \ldots n\} \\
& \sum_{i=1}^{n} y_{i, j}=1+y_{0, j} & , j \in\{1,2, \ldots n\} \\
& y_{i, j} \geq 0 & , i, j \in\{0,1, \ldots, n\}
\end{array}
$$

Since the original LP (LP3) has an optimal solution, by strong duality, the objective values of optimal solutions of both LP's coincide. The constraint matrix associated with both LP's is total unimodular, hence, LP4 has integral optimal solutions. This dual LP4 can be interpreted as follows: Let G_{S} be a complete bipartite graph having two sets of nodes $A=\{1, \ldots, n\}$ and $B=\{1, \ldots n\}$, representing the rows and columns of D_{S}^{*}. Let D_{S}^{*} specify the weights $d(j, i)$ of the edges $e=(i, j)$ of G_{S}. Then, in case $y_{0, i}=0$ for all $i=1,2, \ldots n$), it is not difficult to see that a minimizer for LP4 specifies a minimum weight matching M in G_{S}. By strong duality, the cost $c(M)$ of M corresponds to flex ${ }^{*}(S)$.

Therefore, the only part left to prove is to show that the assumption $y_{0, i}=0$ for all $i=1,2, \ldots n$ does not affect the value of the solutions to LP4:

Claim Whenever LP4 has an optimal integral solution, there also exists an integral solution of LP4 with at most the same cost such that $y_{0, i}=0$, for all $i=1,2, \ldots, n$.
Proof of the Claim Suppose there exists an integral solution $\underline{\mathrm{y}}^{*}=\left(y_{i, j}^{*}\right)$ for LP4 where $y_{0, i}^{*}>0$ for some $1 \leq i \leq$ n. Then there exist $j, k \in\{1, \ldots, n\}, j \neq i$ and $k \neq i$, such that $y_{i, j}^{*}=1$ and $y_{k, i}^{*}=1 .{ }^{5}$ This condition violates the matching conditions. But then, since $d(j, k) \leq d(j, i)+$ $d(i, k)$, there exists a solution $\mathbf{y}=\left(y_{i, j}\right)$ such that $c(\mathbf{y}) \leq$ $c\left(\mathbf{y}^{*}\right)$ where $y_{i, j}=y_{k, i}=0$ and $y_{k, j}=1$, and $y_{0, i}=$ $y_{0, i}^{*}-2+y_{k, j}^{*}$. Hence, there exists a solution \mathbf{y} with at most the same cost as \mathbf{y}^{*} such that $0 \leq y_{0, i}<y_{0, i}^{*}$. Iterating

[^3]this procedure, we conclude that there exists a solution such that $y_{0, i}=0$ as well, with cost not exceeding the cost of the original solution. This procedure can be repeated until we have obtained an optimal solution where it holds that $y_{0, i}=0$ for all i, i.e., a perfect minimum weight matching, thereby proving the claim.

A maximum matching M for D_{S}^{*} can be determined immediately: Note that the value of any matching M^{\prime} realised by a permutation π^{\prime} satisfies $\sum_{i=1}^{n} d\left(i, \pi^{\prime}(i)\right) \leq$ $\sum_{i=1}^{n} d(i, 0)+d\left(0, \pi^{\prime}(i)\right)=\sum_{i=1}^{n} d(i, 0)+d(0, i)=$ $\sum_{i=1}^{n} l s t\left(t_{i}\right)-\operatorname{est}\left(t_{i}\right)=$ flex (S). Since $d(i, i)=l s t\left(t_{i}\right)-$ est $\left(t_{i}\right)$, the matching $M=\{(i, i): i=1,2, \ldots, n\}$ realized by $\pi(i)=i$, is a maximum matching for D_{S}^{*} :
Proposition 3. Let $S=(T, C)$ be a consistent STN having a minimum distance matrix D_{S}. Then the naive flexibility flex (S) of S equals the cost $c(M)$ of a maximum matching M of the weighted graph specified by D_{S}^{*}.

From $O\left(n^{5}\right)$ to $O\left(n^{3}\right)$ to compute flexibility

The complexity of computing the concurrent flexibility of an $S T N$ by an LP method depends on the exact method used for the LP solver. Currently, the best (interior-point based) LP-solvers have a complexity of $O\left(n^{3} L\right)$ (Potra and Wright 2000) where n is the number of unknowns to solve for (the dimension of the vector x) and L is the input complexity, i.e., the bit length of the input description. This means that given an STN $S=(T, C)$, the currently best LP-solvers could need $O\left(n^{3} m\right)$-time to find the concurrent flexibility flex $^{*}(S)$, where $n=|T|$ and $m=|C|$. Since $m=O\left(n^{2}\right)$, we could expect a worst-case running time $O\left(n^{5}\right)$ to compute flex* (S).

The correspondence (flexibility \equiv matching) obtained in the previous section allows us to present a better upper bound of the running time needed to compute the maximum concurrent flexibility. For, we know that given an STN S its minimal distance matrix D_{S} can be computed in $O\left(n^{3}\right)$ time. A minimum matching algorithm based on the specification of D_{S} also requires $O\left(n^{2} \log n+n \times n^{2}\right)=O\left(n^{3}\right)$ time (Fredman and Tarjan 1987). Hence, the total computation time for determining a minimum matching is $O\left(n^{3}\right)$ time. Note that computing the naive flexibility also requires an $O\left(n^{3}\right)$ computation of earliest and latest times for the temporal variables, both of which can be obtained via D_{S}.

Hence, in conclusion, we obtain the following result:
Proposition 4. The concurrent flexibility as well as the naive flexibility of an STN S can be computed in $O\left(n^{3}\right)$ time.

Conclusion

We established a connection between the computation of two flexibility metrics and properties of the minimal distance matrix D_{S} of an STN S : computing the concurrent flexibility metric is identical to computing a minimum weight matching of a weighted bipartite graph completely specified by the minimum distance matrix D_{S}. On the other hand, computing the naive flexibility metric corresponds to computing a maximum matching in this graph.

References

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint networks. Artificial Intelligence 49.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Floyd, R. 1962. Algorithm 97: Shortest path. Communications of the ACM 5(6).
Fredman, M. L., and Tarjan, R. E. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3):596-615.

Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004. Generating robust schedules through temporal flexibility. In Proceedings ICAPS.
Pollack, M. E., and Tsamardinos, I. 2005. Efficiently dispatching plans encoded as simple temporal problems. In Vlahavas, I., and Vrakas, D., eds., Intelligent Techniques for Planning. Idea Group Publishing. 296-319.
Potra, F. A., and Wright, S. J. 2000. Interior-point methods. Journal of Computational and Applied Mathematics 124(1-2):281-302. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2013. Flexibility and decoupling in the simple temporal problem. In Rossi, F., ed., Proceedings International Joint Conference on Artificial Intelligence (IJCAI), 2422 - 2428. AAAI Press, Menlo Park, CA.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2014. Flexibility and decoupling in Simple Temporal Networks. Artificial Intelligence 214:26-44.

[^0]: Copyright © \mathfrak{C} 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

[^1]: ${ }^{1}$ If both $t_{j}-t_{i} \leq c_{i j}$ and $t_{i}-t_{j} \leq c_{j i}$ are specified, we will also use the more compact notation $-c_{j i} \leq t_{j}-t_{i} \leq c_{i j}$.
 ${ }^{2}$ Without loss of generality, in the remainder of the paper, we assume that an STN to be consistent. Note that consistency of an STN can be determined in low-order polynomial time (Dechter, Meiri, and Pearl 1991).
 ${ }^{3}$ In fact it can be shown that there exists a simple backtrack-free polynomial-time algorithm to construct such a schedule σ for S.

[^2]: ${ }^{4}$ One of the reasons for this choice is that taking any value $v \in$ [est $(t), l s t(t)$] for t allows us, by decomposability (Proposition 1), to extend the partial schedule $\sigma(t)=v$ to a total schedule σ for an STN S.

[^3]: ${ }^{5}$ Wlog. we may assume $y_{i, j}^{*} \in\{0,1\}, 1 \leq i, j \leq n$: If $y_{i, j}^{*}>1$ then there exists a solution \mathbf{y}^{\prime} with $c\left(\mathbf{y}^{\prime}\right) \leq \bar{c}\left(\mathbf{y}^{*}\right)$ s.t. $y_{i, j}^{\prime}=1$ and $y_{0, i}^{\prime}=y_{0, i}^{*}-\left(y_{i, j}^{*}-1\right)$.

