
Admissible Landmark Heuristic for Multi-Agent Planning

Michal Štolba and Daniel Fišer and Antonı́n Komenda
{stolba,fiser,komenda}@agents.fel.cvut.cz

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Abstract
Heuristics are a crucial component in modern planning sys-
tems. In optimal multiagent planning the state of the art is
to compute the heuristic locally using only information avail-
able to a single agent. This approach has a major deficiency
as the local shortest path can arbitrarily underestimate the
true shortest path cost in the global problem. As a solution,
we propose a distributed version of a state-of-the-art LM-
Cut heuristic. We show that our distributed algorithm pro-
vides estimates provably equal to estimates of the centralized
version computed on the global problem. We also evaluate
the algorithm experimentally and show that on a number of
domains, the distributed algorithm can significantly improve
performance of a multiagent planner.

Introduction
One of the most commonly used models for deterministic
multiagent planning with cooperative agents is MA-STRIPS
(Brafman and Domshlak 2008), which introduces the notion
of privacy to the classical STRIPS model. We assume, that
while the agents can comunicate during the planning pro-
cess, the private knowledge should not be exchanged.

Since the introduction of the MA-STRIPS formalism for
multi-agent planning and the publication of the Multi-Agent
Distributed A* (MAD-A*) (Nissim and Brafman 2012),
there has not been as much progress in the cost-optimal mul-
tiagent planning as in the satisficing variant. Apart from a
theoretical work on weighted automata (Fabre and Jezequel
2009), cost-optimal factored planning (Fabre et al. 2010)
and A# (Jezequel and Fabre 2012), most published work fo-
cused on satisficing multiagent planning.

One of the prerequisites for cost-optimal planning is the
existence of an admissible heuristic. In MAD-A*, the search
is guided by well known LM-Cut (Helmert and Domshlak
2009) or Merge&Shrink (Helmert, Haslum, and Hoffmann
2007) heuristics, computed on a factor of the problem visible
to a single agent (a projected problem). The projected prob-
lem consists of all actions of the agent and publicly known
parts of actions of other agents as defined in MA-STRIPS
(will be formalized later).

A fundamental flaw of computing the heuristic on a pro-
jected problem is that the shortest path in the projected prob-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lem may be arbitrarily shorter than is the global one, which
may result in an arbitrarily bad heuristic estimate. Consider
an example, where each agent can achieve the (global) goal
g by a sequence of n internal (or private) actions followed
by a single public action (Figure 1a).

a)
p1 pn-1 pn

an

g

ag

q1 qn-1 qn
a'n

a'gi
a1
a'1

b)

p1
pn-1 pn

an

g
ag

i
a1

a'g

Figure 1: The full (a) and projected (b) problem.

In Figure 1a, a1, ..., an and a′1, ..., a
′
n are internal to re-

spective agents and ag, a′g are visible to all agents (public).
If we consider unit cost actions, the cost of an optimal solu-
tion is n+ 1.

The projected problem looks quite different (Figure 1b).
The agent knows only about the action a′g of the other agent.
Moreover it does not know about its precondition and con-
siders a′g applicable in the initial state i. In the projected
problem, the cost of an optimal solution is 1. Therefore no
admissible heuristic computed on the projected problem can
give estimate higher than 1. This example can be scaled to
any number of agents and enlarged to bound the estimate of
the projected heuristic arbitrarily far from the real optimal
solution cost.

In this paper we solve this problem by providing dis-
tributed versions of the admissible hmax (Bonet and Geffner
1999) and LM-Cut heuristics (based on the hmax heuris-
tic). Similar treatment was applied on heuristics for sat-
isficing planning, e.g., (Štolba and Komenda 2013; 2014;
Torreño, Onaindia, and Sapena 2014; Maliah, Shani, and
Stern 2014). We first describe the algorithms for a dis-
tributed hmax and LM-Cut and show that they give the same
estimates as the centralized versions (which also implies ad-
missibility). We conclude with experimental evaluation of
the distributed LM-Cut heuristic.

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

211



Multi-Agent Planning
Now, we formally define the MA-STRIPS problem and sev-
eral other notions necessary for the rest of the paper.

Definition 1. A MA-STRIPS problem for a system of
N = {1, ..., n} agents A = {αi}i∈N is a quadruple Π =
〈P, {Ai}i∈N , I, G〉, where:

• P is a set of atoms (facts), where s ⊆ P is a state
• I ⊆ P is the initial state
• G ⊆ P is the goal condition
• For i ∈ N , Ai is the set of actions agent αi can per-

form and is planning with. The set of actions are pairwise
disjoint, that is ∀i 6= j : Ai ∩ Aj = ∅. Each action
a ∈ A =

⋃
Ai has the standard STRIPS syntax and se-

mantics, i.e. a = 〈pre(a), add(a), del(a)〉 is given by its
preconditions, add effects and delete effects. We will de-
note facts(a) = pre(a) ∪ add(a) ∪ del(a).

For all agents other than αi, that is all αj ∈ A\{αi}, we
will use a abbreviated notation αj 6=i (in general j 6= i will
be a shorthand notation for j ∈ N\{i}).

For an agent αi, we define the following:

Pi
⋃
a∈Ai facts(a) set of facts

P priv
i

Pi\
⋃
j 6=i Pj set of private facts

P pub
i Pi\P priv

i
set of public facts

Apriv
i {a ∈ Ai|facts(a) ⊆ P priv

i } set of priv. actions

Apub
i Ai\Apriv

i
set of pub. actions

sαi s ∩ Pi
αi-projection of
state s

aαi
pre(aαi) = pre(a) ∩ Pi
add(aαi) = add(a) ∩ Pi
del(aαi) = del(a) ∩ Pi

αi-projection of
action a ∈ A

aLαi
pre(aαi) = pre(a) ∩ P priv

i

add(aαi) = add(a)∩P priv
i

del(aαi) = del(a) ∩ P priv
i

αi-local action
corresponding to
a ∈ Ai

AL
i {aLαi |a ∈ Ai}

set of αi-local
actions

P all
i Pi ∪

⋃
j 6=i{p|p ∈ P

pub
j }

set of all known
facts

Aall
i Ai ∪

⋃
j 6=i{aαi |a ∈ A

pub
j }

set of all known
actions

Additionally, we assume, that all goals are public, that is
G ⊆

⋃
i∈N P

pub
i .

STRIPS problems derived from the MA-STRIPS problem
Π are a global problem ΠG =

〈
P,
⋃
i∈N Ai, I, G

〉
, an αi-

projected problem Παi =
〈
P all
i , A

all
i , I ∩ P all

i , G
〉

and an

αi-local problem ΠLαi =
〈
P priv
i , AL

i , I ∩ P
priv
i , ∅

〉
. All the

defined problems can be extended with a cost function c :
A → N0+ (restricted to the used subset of actions). The
costs of an action and of its projection are equal.

An αi-projected heuristic is a heuristic computed on the
αi-projected problem Παi . Any admissible heuristic com-

puted on an α-projected problem Παi is admissible also for
the global problem ΠG.

For a proof sketch observe that a path in Παi can be con-
structed from a path in ΠG by removing private actions and
replacing public actions with respective projections. The
constructed path has lower or equal cost (actions were only
removed). For contradiction, let us assume there is a state
s for which the αi-projected heuristic gives higher estimate
than the global heuristic. The least-cost path παi from s to
goal in Παi has to have higher cost than the least-cost path
$ from s to goal in ΠG (follows from admissibility of both
heuristics in their respective problems). But that is not pos-
sible, because the cost of path $αi in Παi constructed from
$ is less or equal to the cost of $. The least-cost path in
Παi cannot have higher cost than $αi .

Distributed hmax Heuristic
Both hmax and LM-Cut heuristics fall into the class of relax-
ation heuristics. Relaxation heuristics base the estimate on a
solution of a relaxed problem Π+, in which all delete effects
are ignored (for all actions, a+ = 〈pre(a), add(a), ∅〉). Al-
though the cost of optimal solution to Π+ is an admissible
estimate, it is NP-hard to compute. Thus various approxima-
tions are used, one of the best is the LM-Cut heuristic which
computes the estimate by iteratively searching for landmark
actions and updating the cost function. To do so the hmax
heuristic is computed in each iteration. In the following, we
introduce the hmax heuristic and provide a method for its
distributed computation. A distributed hmax was already de-
scribed in (Štolba and Komenda 2014) but without provable
equality with the centralized version, as is required here.

Let O(p) be a set of actions achieving p in ΠG, formally
O(p) = {a ∈ A|p ∈ add(a)}. Similarly Oαi(p) = {a ∈
Aall
i |p ∈ add(a)} in Παi and OLα(p) = {a ∈ AL

i |p ∈
add(a)} in ΠLα.

The hmax heuristic is defined by a set of recursive equa-
tions:

hmax(P, s) = maxp∈P (hmax(p, s)) (1)

hmax(p, s) =


0 p ∈ s

hmax(argmin
a∈O(p)

(hmax(a, s)), s)

p /∈ s

(2)

hmax(a, s) = cost(a) + hmax(pre(a), s), (3)

where P is a set of facts (goal or action preconditions).
Throughout the text, projected hαimax is hmax computed on
Παi , local hLαimax is hmax computed on ΠLαi and distributed
hDαimax is hmax computed on Π, but estimating ΠG.

Initiator agent is the agent αi which starts the computation
of distributed heuristic (e.g., hDαimax) for a given state s. All
other agents αj 6=i participating on the computation will be
called participant agents.

212



Distributed hmax Algorithm
The distributed hDαimax algorithm is shown in Algorithm 5.
The computation is initiated by agent αi. The values
of hDαimax are first initialized to the values of αi-projected
hαimax(line 2). The algorithm then steps into a loop. In each
iteration, the initiator sends requests to all other agents αj 6=i
containing current heuristic values for αi-projections of all
a ∈ Apub

j (and for the facts in I).
The participant αj receives the request and computes

heuristic values for all a ∈ AL
j from the received values.

Afterwards, αj sends reply to αi containing hLαjmax(aLαj , s)

for all a ∈ Apub
j (in fact only values which changed must be

sent).
When received (line 6), the hDαimax values are updated

based on the received reply (line 7). If no actions are up-
dated, the loop exits, the algorithm terminates and returns
heuristic value for the goal.

Algorithm 1: Distributed hDαimax heuristic
1 Algorithm computeDistHmax(αi, s,G)
2 initialize hDαimax to hαimax for all p ∈ Pi
3 while hDαimax(a, s) changed for some a ∈ Aall

i do
4 for each agent αj ∈ A\{αi} do
5 send hDαimax(aαi , s) for all a ∈ Apub

j to αj
6 receive h

Lαj
max(aαi , s) for all a ∈ Apub

j

7 update hDαimax

8 return hDαimax(G, s)

Equality of hmax and hDαi
max

In this section we show that the distributed hDαimax algorithm
returns the same value as the centralized hmax for any fact
or action in any state. In summary, the proof proceeds
as follows. First, a relation between the αi-projected and
distributed hmax is established, stating that hαimax(p, s) ≤
hmax(p, s) for all p ∈ Pi (see Lemma 2). This is necessary
because in the algorithm, all facts are initialized to the αi-
projected hmax values and iteratively refined until the global
hmax values are reached.

Computing the hLαjmax updates based on the public action
and the initial state is shown to be sufficient (see Lemma
3). As a consequence, each p ∈ Pi such that hDαimax(p, s) <
hmax(p, s) is updated to hDαimax(p, s) = hmax(p, s) after
finitely many steps (see Lemma 4).

From this fact and from the relation of αi-projected and
distributed hmax follows that eventually all facts are updated
to the desired value of centralized hmax (see Theorems 5 and
6).
Lemma 2. For each state s and fact p ∈ Pi, hαimax(p, s) ≤
hmax(p, s).

The proof of the lemma follows from the observations that
Oαi(p) and O(p) contains the same actions (or their projec-
tions) for any p ∈ P all

i and that a projected action aαi has

lower or equal number of preconditions compared to the ac-
tion a. Therefore hαimax(aαi , s) ≤ hmax(a, s).

To correctly update a fact or action value in the αj-local
hmax it is enough to provide correct hmax values for all pre-
ceding public actions of agent αj . An action a is preceded
by action a′ iff add(a′) ∩ pre(a) 6= 0 or a′′ exists such that
a is preceded by a′′ and a′′ is preceded by a′. We say that a
is succeeding a′.
Lemma 3. If hLαimax(aLαi , s) = hmax(a, s) for all a ∈ Apub

i

preceding a′, then hLαimax(a′Lαi , s) = hmax(a′, s).
The proof of the lemma is based on the following facts.

If aLαi is preceded only by actions in Apriv
i the lemma holds

trivially. Similarly if the precondition p maximizing hmax
is an effect of such aLαi . If the maximizing precondition p
is an effect of some a′ ∈ Apub

i the lemma holds because of
its assumption and because a′ is preceding a.

To conclude the proof of equality of hDαimax and hmax we
show that each fact with incorrect value is eventually up-
dated and that the algorithm terminates with the desired val-
ues for all facts (and all actions).
Lemma 4. Each p ∈ Pi such that hDαimax(p, s) < h(p, s) is
updated to hDαimax(p, s) = h(p, s) after finitely many steps.

Proof. Distributed hDαimax is initialized to hαimax for all facts
and actions. As already shown in the proof of Lemma 2, if
hαimax(a, s) ≤ hmax(a, s) holds for some action a ∈ Ai , it
is caused by some projected action preceding a and missing
the (private) precondition maximizing hmax. Let aαi0 (where
a0 ∈ Aj 6=i) be such a projected action preceding a for which
hDαimax(aαi0 , s) ≤ hmax(a0, s). Let for all p ∈ pre(aαi0 ) hold
hDαimax(p, s) = hmax(p, s), which means that all actions pre-
ceding aαi0 already have hDαimax equal to hmax. Such action
a0 always exists, because as hDαimax is initialized to hαimax, all
actions applicable in I or preceded only by actions in Ai
have already hDαimax equal to hmax.

The inequality hDαimax(aαi0 , s) ≤ hmax(a0, s) is caused by
a fact pm ∈ pre(a0)\Pi maximizing hmax(a0, s). The ac-
tion a0 is sent alongside all other actions in Apub

j to agent
αj in order to obtain an update. Agent αj computes the up-
dated heuristic for all actions from the local problem ΠLαi

and sends the information back.
From Lemma 3 and because we assumed that, for all ac-

tions a′ ∈ Apub
j preceding a0, the equality hDαimax(a′αi , s) =

hmax(a′, s) holds, it holds also for the returned value of
a0. Subsequently, hDαimax is updated so that hDαimax(aαi0 , s) =
hmax(a0, s). In the next iteration, for some other action a1
preceding a holds hDαimax(aαi1 , s) ≤ hmax(a1, s) while for all
actions preceding a1 the equality holds. The same reasoning
can be applied to a1. Because there is only a finite number
of actions and in each iteration one of the actions is updated
to the correct value, action a is also updated after a finitely
many steps.

Theorem 5. Algorithm 1 terminates with hDαimax(p, s) =
hmax(p, s) for any given state s and all p ∈ Pi.

Proof. For each a ∈ Aαi , when hDαimax(p, s) = hmax(p, s),
the heuristic value for fact p is never changed again. Due

213



to the finite number of facts in a problem and Lemma 4,
all facts are updated to hDαimax(p, s) = h(p, s) after a finite
number of iterations. After that, no fact and therefore no
action is updated and the algorithm terminates.

In the next sections, the heuristic values computed by par-
ticipant agents αj 6=i, that is the hLαjmax(p, s) for the given state
s and all facts p ∈ P priv

j , will be preserved throughout the
computation. For hLαimax, the equality holds as well.

Theorem 6. Algorithm 1 terminates with h
Lαj
max(p, s) =

hmax(p, s) for all j 6= i, p ∈ Pj and any given state s.

Proof. From Theorem 5 the equality of hDαimax and hmax
holds for all fact and thus for all actions. It holds also for
all projections of public actions a ∈ Apub

j . From Lemma

3, hLαjmax(aLαj , s) = hmax(a, s) for all a ∈ Aj (and for all
p ∈ Pj).

Distributed Landmark Heuristic
The LM-Cut heuristic (will be denoted as hlmc) provides an
admissible estimate of the optimal plan for a relaxed prob-
lem Π+ by utilizing the idea of disjunctive landmarks. Here,
we present a distributed version hDlmc for which we show
hDlmc(s) = hlmc(s) for any state s.

The LM-Cut Heuristic
Definition 7. Disjunctive landmark (or landmark) is a set
of actions L ⊆ A s.t. each plan must contain at least one
a ∈ L. Cost of landmark L is clm(L) = mina∈Lc(a),
where c(a) is the cost of action a.

The hlmc heuristic is obtained from a sequence
{(Lk, ck)}mk=0 of landmarks and cost functions, hlmc =
clm0 (L0) + clm1 (L1) + ... + clmm (Lm). Initially, c0 = c and
in each iteration k, landmark Lk is computed using ck and a
new cost function ck+1 is determined (Algorithm 2, Step 4.).

We assume that there is a single fact i representing the
initial state and a single fact g representing the goal. If it
is not the case, the problem can be transformed by adding
zero-cost action ap for each p ∈ I s.t. pre(ap) = {i}
and add(ap) = {p}. The goal G can be treated analo-
gously. Moreover, we assume that each action has at least
one precondition and one effect, again, general problem can
be transformed by setting i as precondition of actions for
which pre(a) = ∅ and adding a dummy effect ⊥ for actions
for which add(a) = ∅.

The algorithm will be illustrated on a STRIPS example
with a set of 5 actions {a1, ..., a5} (later, in a MA-STRIPS
formulation, the actions will be divided among two agents
α1, α2):

A1 : a1 : i→ p1, p2 a2 : p1, p4 → g
A2 : a3 : i→ p3, p4 a4 : p3 → p5

a5 : p2, p5 → g
The facts are {i, g, p1, ..., p5}, where i is the initial fact

and g is the goal fact. The initial cost function c0 = c is
defined as c(a1) = 3, c(a2) = 1, c(a3) = 1, c(a4) = 1 and
c(a5) = 1.

In Step 1 the hmax heuristic is computed for all facts
based on c0, that is h0max = {p1 : 3, p2 : 3, p3 : 1, p4 :
1, p5 : 2, g : 3}.

In Step 2 a justification graph J0 is constructed. A Justi-
fication graph J is a directed graph with a vertex for each
p ∈ P and an edge (p, q) labeled a if there exists an action
a s.t. p = pcf (a) and q ∈ add(a). Function pcf (a pre-
condition choice function) assigns to a given action a one
of its preconditions. In hlmc, the pcf assigns a precondition
maximizing hmax, ties broken arbitrarily. In the example,
pcf = {a1 7→ i, a2 7→ p1, a3 7→ i, a4 7→ p3, a5 7→ p2},
resulting in J0:

i

p1
a1

p2a1

p3
a3

p4

a3

g

a2

a5

p5
a4

In Step 3 the landmark Lk is constructed. (a) All facts p
from which the goal g is reachable through a path on which
each edge has a label a s.t. ck(a) = 0 (g is 0-reachable from
p) are added to V ∗k . In the iteration k = 0 of the example it is
V ∗0 = {g}. (b) Find all fact reachable from i without visiting
any fact from V ∗k . In the example it is all facts except for g.
If an edge crossing to V ∗k (that is e = (p, q) and q ∈ V ∗k ) is
reached, label of the edge is added to Lk. In the example this
includes all edges leading to g, resulting in L0 = {a2, a5}.

In Step 4 new cost function ck+1 is defined. The costs of
all actions in Lk is reduced by the cost of Lk, that is the cost
of the least-cost action in Lk. In the example, c1(a2) = 0
and c2(a5) = 0, for all other actions it is the same as c0.

The computation continues by Step 1. of iteration k + 1,
until hmax(g) = 0.

Algorithm 2: LM-Cut Heuristic

1. Compute hkmax based on ck for every p ∈ P . If
hkmax(g) = 0 terminate and return hlmc.

2. Construct a justification graph Jk
3. Construct a disjunctive landmark Lk

(a) Find all facts p s.t. g is 0-reachable from p,
add p to V ∗k

(b) Find all facts reachable from i without visiting
a fact in V ∗k

i. If an edge cross to V ∗k , add its label to Lk

4. Let ck+1(a) =

{
ck(a)

ck(a)− clmk (Lk)

a /∈ Lk
a ∈ Lk

5. Continue with Step 1. for k = k + 1

Distributed LM-Cut Heuristic
In the following, we assume that the participant agents αj 6=i
keep the result of computation (context) of hDαimax, that is the

214



heuristic values for all p ∈ P priv
j and a ∈ ALα

j . Moreover,
we will modify the tie-breaking behavior of the pcf function
so that if the tie is between a public and private fact, the
public fact will be preferred. We assume that the pcf always
chooses the same precondition in both hlmc and hDlmc.

To compute distributed version of the heuristic we intro-
duce a projected version of landmarks:

Definition 8. An αi-projected disjunctive landmark (or
αi-projected landmark) Lαi corresponding to disjunctive
landmark L is Lαi = (L ∩ Aαi ) ∪ {ā}, where ā is a place-
holder action.

The placeholder action represents the cost of private ac-
tions of other agents in L, so when the landmark is com-
pleted, c(ā) = clm(L).

Using the hmax values computed by the distributed al-
gorithm for each fact, the justification graph for the global
problem can be reconstructed. The resulting distributed
justification graph JDαi = (Jαi , {JLαj}j 6=i) consists of
an αi-projected justification graph Jαi and a set of αj-local
justification graphs {JLαj}j 6=i.

An αi-projected justification graph Jαi is a justification
graph over Pi ∪ {⊥} with labels from Aall

i . The pcf is mod-
ified so that for each projected action aαi , pcf (aαi) = p if
p ∈ P all

i maximizes hDαimax and hDαimax(aαi , s) = hDαimax(p, s),
otherwise pcf (aαi) = ⊥ if hDαimax(aαi , s) > hDαimax(p, s).
This means that the maximizing fact is private to some other
agent. If add(aαi) ∩ P pub

i = ∅, we treat the action as if
add(aαi) = {⊥}. Edges are not connected via ⊥. An
αi-local justification graph JLαi is similarly defined over
P priv
i ∪ {⊥} with labels from AL

i .
The distributed justification graph is a distributed graph

where the partitions have pairwise disjunctive sets of ver-
tices. Each edge in Jαi with label containing a projected
action aαi s.t. a ∈ Aj 6=i can be seen as an edge shared with
JLαj , where the corresponding edge has a label containing
the respective aLαj .

The distributed version of hlmc, denoted as hDlmc, follows
the same major steps as the centralized version - it differs
in that the computation is distributed in some of the steps.
To illustrate we will use the previous example in a MA-
STRIPS formulation in which {p2, p4, g} are public facts
and {a1, a2, a3, a5} public actions.

In Step 1 of the k-th iteration, distributed version of hmax
is computed based on the cost function ck. The initiator
agent αi computes hDαi,kmax for all facts in Pi while all other
agents αj 6=i compute hLαj ,kmax for all facts in P priv

j . The com-
puted values are identical to the values of centralized hmax
(Theorems 5 and 6).

In Step 2 the initiator agent αi builds an αi-projected jus-
tification graph Jαik based on the values of hDαi,kmax whereas
all other agents build αj-local justification graph JLαj

k based
on the values of hLαj ,kmax , together forming a distributed justi-
fication graph JDαi

k . In our example, the justification graphs
are the following:
Jα1
0 :

i

p1a1

a1

p4
a3 αj

g

a5 αj

a2

p2

JLα2
0 :

i p3
a3

p5
a4

┴ g
a5

Notice, that a5 has ⊥ as its precondition. This is be-
cause p5 maximizes hLα2,0

max and hLα2,0
max (a5, s) = 3 >

hLα2,0
max (p5, s)=2 (the globally maximizing fact is p2 /∈ P priv

2 ).
In Step 3 the αi-projected landmark Lαik must be deter-

mined in a distributed manner. To obtain the same heuris-
tic estimate as in the centralized version, the cost of Lαik
must be equal to the centralized landmark Lk. This will be
achieved by the place-holder action ā. But first, all facts
from which is g 0-reachable must be found.

Step 3.1 Find all facts p such that g is 0-reachable from
p. The algorithm starts as in hlmc and puts all facts from
which g is 0-reachable into V ∗k,i. As g is public, all actions
achieving g are also public and the initiator αi knows about
them (they or their projections are in Aαi ), therefore the al-
gorithm can be initiated by αi. When the algorithm reaches
some projected aαi a request is sent to αj to determine all
facts from which a is 0-reachable. Agent αj finds all such
facts, places them in V ∗k,j and sends all such public facts
V ak = V ∗k,j ∩ P

pub
j back to αi. When received, αi finds all

facts p′ s.t some q ∈ V ak is 0-reachable from p′ and adds
p′ to V ∗k,i. This ensures that all facts p from which g is 0-
reachable are found and added either to V ∗k,i if p ∈ Pi or to
V ∗k,j if p ∈ P priv

j .

We illustrate this step on the iteration k = 2 of the ex-
ample, where the cost of actions has already been mod-
ified so that c2(a1) = 0, c2(a2) = 0, c2(a5) = 0 and
hDα1,2
max = {p1 : 0, p2 : 0, p3 : 1, p4 : 1, g : 1} and
hLα2,2
max = {p3 : 1, p5 : 2, g : 1}. In this situation the justifi-

cation graphs are:
Jα1
2 :

i

p1

p2
a1

p4
a3 αj

g
┴

a5 αj
a2

a1

JLα2
2 :

i p3
a3

p5
a4

g
a5

Since the cost of a2 and aα1
5 is 0, p4 is added to V ∗2,1 and a

request for a5 is sent to α2. Agent α2 starts the reachability
analysis from a5 and finds that a5 is 0-reachable only from
p5. Because p5 is internal, the reply V a52 is empty, but p5 is
added to V ∗2,2 and will be used in the next step.

215



The distributed 0-reachability algorithm ensures, that g is
0-reachable from a fact p in J if and only if it is 0-reachable
in JDαi

2 . When all such facts are stored in respective V ∗k,i or
V ∗k,j , the next step of the hDαilmc algorithm can be performed.

Step 3.2 Find all facts reachable from i without visiting a
fact in V ∗k,i or any V ∗k,j . Again, the algorithm starts as in
hlmc. Similarly to the previous case, a fact p may be reach-
able from i via some agent αj 6=i. To find all such facts, it is
enough, to find all edges which contain a projected actions
aαj in the label reachable from i and for each such action
send a request to αj . Agent αj then finds all facts reachable
from all q ∈ add(a) without visiting any fact in V ∗k,j . All
public actions in labels of edges visited in the process are
added to A0

k and sent back in reply. When received, agent
αi finds all facts p′ reachable from all i′ ∈ add(a′) for all
a′ ∈ A0

k without visiting any fact in V ∗k,i.
Unlike the previous case, i is not public and therefore ad-

ditional request has to be sent for the initial fact i. The re-
quest and respective reply are handled the same way as in
the case of a projected action.

Recall, that in the example, iteration k = 2, V ∗2,1 = {p4}
and V ∗2,2 = {p5}. The facts reachable in Jα1

2 without visit-
ing p4 are {i, p1, p2}. Requests are sent for aα1

3 and for i. In
JLα2
2 , the facts reachable without visiting p5 are {i, p3}.
The distributed reachability algorithm ensures, that a fact

p is reachable from i in Jk if and only if it is reachable in
JDαi
k .

Step 3.3 Find landmarks. In hlmc, the purpose of the
reachability analysis is to find actions forming the disjunc-
tive landmark Lk. Those are all actions in labels of edges in
Jk, starting from a fact reachable from i and ending in fact
in V ∗k . The distributed algorithm aims for the same.

In Step 3.2 performed by αi on Jαik , action a is added
to Lαik if a is in a label of edge reachable from i ending in
some p ∈ V ∗k,i, as in hlmc. When the reply in Step 3.2 is
computed by agent αj for some requested projected action,
landmark actions are added to Lαjk private to αj , again as
in hlmc. To capture the cost of private actions (which may
possibly be the lowest cost actions), a place-holder action ā
is created and its cost set to ck(ā) = clmk (L

αj
k ). The pub-

lic part of the landmark L
pubj
k ← (L

αj
k ∩ A

pub
j ) ∪ {ā} is

sent in reply alongside the set of reached public actions A0
k.

When received, it is merged with Lαik while keeping only
the lowest-cost place-holder action ā.

In the k = 0 iteration of the example, the found landmarks
are the following Lα1

0 = {a2, aα1
5 , ā} and L

αj
0 = {a5}

where c0(ā) = c0(a5) = 1. In this case ā has no influ-
ence in the cost of Lα1

0 which is 1. In the k = 2 iteration,
Lα1
2 = {aα1

3 , ā} and Lαj2 = {a4} where c2(ā) = c2(a4) =
1, whereas c(aα1

3 ) = 2 and the information encoded in ā is
crucial.

In Step 4 of the distributed algorithm the cost function for
the next iteration k + 1 is constructed. Thanks to the use of
place-holder action āwhich stores the cost of the lowest-cost
action over all αj-local landmarks, the same update formula

as in hlmc can be used also in the distributed version. The
only difference is that when the clmk (Lαik ) value is computed
it is sent to all participating agents αj so that the cost of
actions in Lαjk can be locally updated as well.

Notice, that in the example iteration k = 2 the αj-
projected landmark Lαj2 = {a4} is missing the action a3.
It is not a problem for the computation of the cost of Lα1

2 ,
because it contains aα1

3 , but the cost of a3 will not be up-
dated. This issue can be handled in various ways, in hDlmc it
is handled in the computation of hDα1,3

max where the updated
cost of projected actions is sent from the initiator to the par-
ticipants.

Equality of hlmc and hDαi
lmc

To show the equality of the centralized hlmc and distributed
hDlmc heuristic, it is crucial to have the distributed hDmax
equal to the centralized hmax. This has been shown in The-
orems 5 and 6. Then, a distributed justification graph has to
be constructed, such that a reachability relation is preserved.
From the definition of JDαi and the presented algorithms
directly follows:

Lemma 9. Fact q is reachable (0-reachable) from fact p in
a justification graph J iff q is reachable (0-reachable) from
p in a distributed justification graph JDαi .

We proceed by showing that in each iteration, the union of
the set of projected landmarks constructed by the distributed
algorithm is equal to the landmark constructed by the cen-
tralized algorithm (see Lemma 10) and its cost is equal to the
cost of the projected landmark constructed by the initiator
agent (see Lemma 11). We conclude the proof by showing
that the heuristic estimate obtained by the distributed version
is equal to the centralized estimate (see Theorem 12).

Lemma 10. For each step k, landmark Lk constructed by
the centralized algorithm on Jk and landmarks Lα0

k , ..., Lαnk
constructed by the distributed algorithm on JDαik holds
Lk =

⋃n
j=1 L

αj
k \{ā}.

Proof. In each step k, V ∗k =
⋃n
j=1 V

∗
k,i holds (from Lemma

9). In the centralized search for landmarks, an action a is
added to Lk if and only if p ∈ add(a) exists s.t. p ∈ V ∗k
and p is reachable from i. From the previously stated, for
such p must hold p ∈ V ∗k,,j for some j and from Lemma 9,
p is reachable from i in JDαi . If p ∈ Pαi , a is in Aαi and
is added to Lαik , otherwise, p is in some P priv

j and a ∈ ALαj
and a is added toLαik . Therefore the lemma holds (the place-
holder action ā, introduced by the distributed algorithm, is
ignored).

The constructed αi-projected landmark represents the
cost of the centralized landmark, formally:

Lemma 11. For each step k, landmark Lk constructed by
the centralized algorithm on J and αi-projected landmark
Lαik constructed by the distributed algorithm initiated by
agent αi on JDαi holds clm(Lαik ) = clm(Lk).

216



Proof. From proof of Lemma 10, for each αj 6=i, L
αj
k =

Lk ∩ Aj . When L
αj
k is finished, the public part Lpub

k =

(L
αj
k ∩ A

pub
j ) ∪ {ā} of Lαjk is sent from αj to αi. For the

place-holder action ā holds ck(ā) = clmk (L
αj
k ). This en-

sures, that clmk (Lpub
k ) = clmk (L

αj
k ) even if the least-cost ac-

tion is not public. WhenLpub
k is received,Lαik ← Lαik ∪L

pub
k ,

retaining the least-cost ā. From the definition of clmk follows
clmk (Lαik ) = min(clmk (Lαik ), clmk (Lpub

k )). Therefore, when
Lpub
k is received from all agents αj 6=i and Lαik is completed,

clmk (Lαik ) = min0<j≤n(L
αj
k ) = clmk (Lk).

Finally we conclude that:

Theorem 12. For any state s and any agent αi,
hlmc(G, s) = hDαilmc (G, s).

Proof. From Theorems 5 and 6 the result of distributed
computation of hDαimax(G, s) is equal to the centralized
hmax(G, s) for any state s, any agent αi and for all facts
p ∈ P and therefore also for all actions a ∈ A. For
each step k of the algorithm, a distributed justification graph
JDαi = (Jαi , {JLαj}j 6=i) can be constructed such that
Lemma 9 holds for reachability and 0-reachability. Also,
from Lemma 11 the cost of the projected landmark Lαik con-
structed by the distributed algorithm initiated by αi equals
the cost of the landmark Lk constructed in step k by the
centralized algorithm. The cost is then shared with all agents
αj 6=i and all actions in Lαik and all Lαjk , which are all actions
in Lk (from Lemma 10), have their costs updated. There-
fore, the updated cost function in the k + 1 step of the cen-
tralized algorithm equals the cost function in the k+1 step of
the distributed algorithm for all agents and all actions.

Experimental Evaluation
We have evaluated the presented heuristics using a planner
based on the MAD-A* (Nissim and Brafman 2012) search
algorithm on a set of benchmarks commonly used in the MA
planning literature, derived from the classical IPC bench-
marks. Each run (per problem) of the planner was limited to
60 min. and 4GB of memory (total for all agents) on a 16
core machine.

The used benchmarks are blocksworld (multiple hands
treated as agents), depot (trucks, depots and distributors
are agents), driverlog (drivers are agents), ma-sokoban1

(sokoban with multiple robots as agents), woodworking
(the instruments are agents) and elvators, logistics, rovers,
satellites and zenotravel (elevators, planes and trucks,
rovers, satellites and planes are the respective agents).

The results of the experiments are summarized in Table
1. The coverage results (the number of problems solved for
each domain) show that except for three domains, the dis-
tributed hDαilmc solves more (or the same) problems and solves
also a more of problems in total. The depot, driverlog and
ma-sokoban domains are tightly coupled (as in (Brafman
and Domshlak 2008)) and most of the information is public,

1We have created problems specifically for multiple robots.

domain h
αi
lmc h

Dαi
lmc ĥlmc êlmc t̂lmc t̂slmc

elevators08 (20) 2 2 0.18 39.9 0.15 0.01
logistics00 (20) 6 12 0.26 2521.7 4.78 0.01
zenotravel (18) 6 10 0.41 142.4 0.74 0.03
rovers (18) 6 6 0.52 33.7 0.45 0.15
blocksworld (30) 17 20 0.54 45.5 0.56 0.09
satellites (18) 5 10 0.55 63.9 0.52 0.03
driverlog (20) 13 12 0.8 4.4 0.22 0.12
depot (20) 7 4 0.88 1.4 0.13 0.11
woodwork.08 (20) 6 8 0.88 12 1.11 0.35
ma-sokoban (10) 8 5 1 1 0.15 0.14
total (194) 76 89 - - - -

Table 1: Coverage and average of hαilmc/h
Dαi
lmc ratios for ini-

tial state heuristic (ĥlmc), expanded states (êlmc), total plan-
ning time (t̂lmc) and time per expanded state (t̂slmc).

Figure 2: Per-problem ĥlmc = hαilmc/h
Dαi
lmc ratios for initial

state.

which means that the projected hαilmc has the same informa-
tion as hDαilmc moreover, hDαilmc has to handle a lot of projected
actions.

As expected, both variants of the hmax heuristic perform
significantly worse (total coverage of 59 for the projected
and 53 for the distributed version) and are not presented in
the table. Except for the ma-sokoban domain (coverage 7
for hαimax and 0 for hDαimax) and elevators domain (coverage
0 for hαimax and 2 for hDαimax), the difference between hαimax
and hDαimax is not significant.

To understand the cause of the behavior of hαilmc and hDαilmc
better, we have extracted the heuristic values computed for
the initial state by both heuristics (for hαilmc taking average
for all agents), computed a ratio hαilmc/h

Dαi
lmc for each prob-

lem and averaged the ratios per domain. The results are
in Table 1 in the column labeled ĥlmc (computed from all
problems for which the init. state heuristic values were ob-
tained). The results for coverage show that, in the tightly
coupled domains, the distributed evaluation does not im-
prove the heuristic estimate enough to justify the communi-
cation overhead. On the other hand, as the ratio drops below
approx. 0.8, the improved heuristic accuracy overweight the
communication overhead.

For more detailed view, the heuristic ratios aggregated in

217



the column labeled ĥlmc are plotted per-problem in Figure
2. The plot raises a question whether the distributed heuris-
tic should not dominate the projected one as was shown for
hmax in Lemma 2. Against intuition, the answer is no. The
reason lies in the inherent variance of the hlmc heuristic
depending on the tie-breaking behavior of the precondition
choice function (pcf ). Although in the proofs of equality of
hlmc and hDαilmc it was possible to fix the tie-breaking behav-
ior (thanks to use of distributed hmax), it is not the case with
hαilmc. The fact p which maximizes hmax in hαilmc may not
maximize it in hDαilmc (or vice versa) therefore the same fact
p could not be chosen in both. If most of the actions in the
problem are public, this may lead to situation that for some
state hαilmc > hDαilmc , as can be seen in Figure 2 for some of
the depot problems.

The quality of heuristic estimates can be assessed by the
number of expanded states. In Table 1, the column êlmc
shows the average ratio of expanded states, restricted to
problems solved by both heuristics. The most significant im-
provement is in the logistics domain, where hαilmc expands
over 2500× more states than hDαilmc , followed by zenotravel
and satellites with approx. 140× and 60× increase of ex-
panded states over the distributed heuristic respectively. The
limiting factor is 30× in rovers domain where the quality of
the distributed heuristic just eliminates the overhead of the
distributed heuristic, below this factor the projected heuristic
exhibits better performance.

The total planning time (t̂lmc in Table 1) and time per ex-
panded state (t̂slmc in Table 1) were treated similarly, com-
puted only from problems solved by both heuristics. The re-
sults show that, except for the logistics and woodworking
domains, the projected heuristic leads to approx. 2×–10×
faster solution, which was not unexpected. The average time
spent on an expanded state shows that the projected heuristic
is 10×–100× faster. Even though, the added value of better
heuristic estimates is crucial in many domains, most notably
logistics. Notice that in domains with the largest difference
in the number of expanded states, the projected heuristic is
significantly faster. This suggests that the projected problem
is much simpler, but ignores a lot of important information
thus makes the resulting heuristic estimate much less accu-
rate.

A specific case is the woodworking domain. Even though
the distributed heuristic estimates are only slightly better
than the projected ones, the distributed heuristic solves more
problems as the projected heuristic is only 3× faster and ig-
nores important information.

The structural properties causing success of the hDαilmc
heuristic are closely related to the motivation example in the
introduction. An example is the logistics domain, where
trucks and planes are moving packages from starting to goal
locations. In the MA-STRIPS formulation, the location of a
package is public only when it is at an intermediate (or goal)
location, it is not known when loaded onto some vehicle.
The unload action of a vehicle is seen by other agents with a
precondition only on the location of the vehicle, having the
package actually loaded is not required. The cost of getting
the package to a location where it can be loaded and load-

ing it is lost in the projected problem, enabling the agents
to have a package cheaply unloaded at their loading site by
a projected unload action of some other agent. This is ex-
actly the principle demonstrated in the motivation example.
Similar situation occurs in the elevators domain and other
loosely coupled domains.

Conclusions & Future Work
We have presented an algorithm to distributively compute a
global LM-Cut heuristic estimate in a MA-STRIPS problem.
We have shown both its theoretical properties and practical
applicability. It is clear that the pilot implementation is com-
petitive with the state-of-the-art projected version, and out-
performs it on the class of loosely coupled problems. It is
imaginable that further optimizations of the algorithm may
decrease the communication overhead so that the improved
heuristic estimate pays off in more domains, but there are
limits which can hardly be overcome - problems in which the
projected heuristic estimate is the same (or even better) than
is the global estimate (such as depot or ma-sokoban). Fur-
ther improvements may include the use of incremental LM-
Cut computation (so the distributed version can be used only
sparingly) or some other way of combining the projected and
distributed estimates, such as multi-heuristic search.

Acknowledgments This research was supported by the
Czech Science Foundation (grant no. 13-22125S) and
by the Grant Agency of the CTU in Prague (grant no.
SGS14/202/OHK3/3T/13). Access to computing and stor-
age facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided un-
der the program “Projects of Large Infrastructure for Re-
search, Development, and Innovations” (LM2010005), is
greatly appreciated.

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP, 360–372.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of ICAPS’08, 28–35.
Fabre, E., and Jezequel, L. 2009. Distributed optimal plan-
ning: an approach by weighted automata calculus. In Pro-
ceedings of the 48th IEEE Conference on Decision and Con-
trol, CDC 2009, combined withe the 28th Chinese Control
Conference, December 16-18, 2009, Shanghai, China, 211–
216.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Proceedings of the 20th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2010, Toronto, On-
tario, Canada, May 12-16, 2010, 65–72.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of ICAPS’09.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of ICAPS’07, 176–183.

218



Jezequel, L., and Fabre, E. 2012. A#: A distributed version
of a* for factored planning. In Proceedings of the 51th IEEE
Conference on Decision and Control, CDC 2012, December
10-13, 2012, Maui, HI, USA, 7377–7382.
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy preserv-
ing landmark detection. In Proceedings of ECAI’14.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for par-
allel and distributed systems. In Proceedings of AAMAS’12,
1265–1266.
Štolba, M., and Komenda, A. 2013. Fast-forward heuristic
for multiagent planning. In Proc. of DMAP Workshop of
ICAPS’13, 75–83.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics for
multiagent planning. In Twenty-Fourth International Con-
ference on Automated Planning and Scheduling.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
Distributed cooperative multi-agent planning. Applied Intel-
ligence.

219




