Temporal Landmarks: What Must Happen, and When

Erez Karpas, David Wang, Brian C. Williams
Massachusetts Institute of Technology

Patrik Haslum
Australian National University & NICTA

Abstract

Current temporal planners have a hard time solving large, real-world problems which involve dealing with metric time and concurrent actions. While landmarks have enabled classical planners to scale up to significantly larger problems, they have not yet brought as much benefit to temporal planning. We argue that the reason for this is that for landmarks to make an effective addition to planning with complex temporal interactions (such as required concurrency), they must incorporate information about the timing of conditions and events. We define temporal landmarks, which associate time intervals and time points, respectively, with state and action landmarks, thereby capturing both what must happen and when it must happen. We show how to derive temporal landmarks and constraints on their associated time points from planning problems, and how exploiting them, in a planner-independent way, can improve planner performance. Notably, the greatest gain is on problems which require concurrency, showing that the temporal information we add to landmarks complements the reasoning used by current temporal planners.

Introduction

Many real-world problems require handling complex temporal interactions which involve concurrently executing actions. However, current temporal planners have a hard time scaling up to large problems which require concurrency (Cushing, Kambhampati, and Weld 2007). One method which has enabled classical planners to scale up to significantly larger problems is the use of landmarks. In classical planning, a landmark is a fact which must be achieved at some point along every solution (Hoffmann, Porteous, and Sebastia 2004).

In temporal planning, one line of work has also used the notion of landmarks (Sebastia, Marzial, and Onaïndia 2007; Marzial, Sebastia, and Onaïndia 2008; 2014). This work starts by discovering the causal (non-temporal) landmarks of the problem, and then exploits deadlines to tighten temporal constraints on when each landmark must be achieved, and infer further landmarks. However, when there are no deadlines in the problem, this approach does not yield any benefit over the causal landmarks.

Notation

We use the non-numeric subset of PDDL 2.1 for expressing temporal planning problems (Fox and Long 2003). In this section we review the relevant definitions and notations for describing such problems. A propositional temporal planning problem is a tuple $\Pi = \langle F, A, I, G \rangle$ where F is a set of propositions, $I \subseteq F$ is the initial state, $G \subseteq F$ is the goal, and A is a set of actions. An event e is described by a tuple $\langle \text{cnd}, \text{eff} \rangle$, where $\text{cnd} \subseteq F$ is a precondition, which must hold in the state right before the event is executed, and eff is an effect on F, which occurs right after the event is executed. An instantaneous action consists of a single event $\langle \text{cnd}(a), \text{eff}(a) \rangle$. A durative action consists of a start event, $\text{start}(a) = \langle \text{cnd}(a), \text{eff}(a) \rangle$, an end event $\text{end}(a) = \langle \text{cnd}(a), \text{eff}(a) \rangle$, an invariant condition $\text{cnd}(a)$ which must hold throughout the execution of the action, and a minimum and maximum duration, $d_{\min}(a)$ and $d_{\max}(a)$.

A schedule for Π is a list of triples, where each such triple $\langle t, d, a \rangle$ denotes that action a starts at time t and lasts for a duration of d. A solution for Π is a schedule such that
the goal \(G \) holds after all actions have completed execution, starting from the initial state \(I \). We furthermore require that pairs of events which are mutually exclusive, or where one achieves some proposition that the other requires, are scheduled at least at some \(\epsilon > 0 \) time units apart.

Given an event \(e \) which is the start/end of a durative action \(a \), we refer to the event at the opposite end (that is, the end/start of the same action) by \(\text{oe}(e) \). If \(e \) is the single event of an instantaneous action \(a \), then \(\text{oe}(e) = e \).

We will also use a few symbolic time points:

- \(t_{\text{START}} \) is the time when execution starts, and we assume that \(t_{\text{START}} = 0 \)
- \(t_{\text{END}} \) is the time when the last action ends, and thus the state stops changing after \(t_{\text{END}} \)

Temporal Landmarks

Although in classical planning, fact landmarks and action landmarks are often used interchangeably, this is not so easy in temporal planning. The main reason for this difference is that in temporal planning, states hold for some length of time, while actions start and end instantaneously. Therefore, temporal fact landmarks and temporal action landmarks differ more than they do in classical planning.

Instead of action landmarks consisting of sets of actions, a temporal action landmark consists of a set of events (start/end of actions). Additionally, we associate with each temporal action landmark the time point in which one of these events must occur. We denote such a landmark by \(\text{ocur}_{t}(E) \), meaning that one of the events \(e \in E \) must occur at time point \(t \).

Definition 1 A temporal action landmark \(\text{ocur}_{t}(E) \) consists of a set of events \(E \), and a time point \(t \), denoting that one of the events in \(E \) must occur at time point \(t \).

Note that since a temporal action landmark refers to a single time point, using a conjunction, meaning that two events occur at this time point, would require perfect synchronization. As the execution semantics discourage such solutions, using conjunctive temporal action landmarks would require us to associate a different time point with each event, which would complicate the management of temporal constraints.

On the other hand, states hold over a duration, and therefore, for temporal fact landmarks, we consider an arbitrary formula over the propositions of the planning task, which must hold for some duration. Informally, \(\text{hold}_{t_{1},t_{2}}(\Phi) \) means that formula \(\Phi \) must hold for a duration of time, starting exactly at time point \(t_{1} \), and holding at least until time point \(t_{2} \).

Definition 2 A temporal fact landmark \(\text{hold}_{t_{1},t_{2}}(\Phi) \) consists of a boolean formula \(\Phi \) over the propositions of \(\Pi \), and two time points \(t_{1} \) and \(t_{2} \), denoting the time when \(\Phi \) becomes true, and a time when \(\Phi \) is no longer required to hold, respectively.

We also maintain a set of simple temporal constraints between the time points associated with the landmarks, which thus constitute a Simple Temporal Network (Dechter, Meiri, and Pearl 1991). Simple temporal constraints are of the form \(l \leq t - t_{1} \leq u \), where \(t_{1} \) and \(t_{2} \) are time points, and \(l, u \in \mathbb{R} \cup \{-\infty, \infty\} \) are used to bound the separation between them. Note that by using \(t_{\text{START}} \) in a simple temporal constraint, we can specify an absolute range for when a time point occurs.

Using this more expressive language to describe landmarks allows us to express constraints about solutions which are impossible to express using “regular” landmarks. For example, it is possible to specify that some proposition \(p \) must be achieved twice, by stating that \(\text{hold}_{t_{2},t_{3}}(p) \) and \(\text{hold}_{t_{3},t_{4}}(p) \) are landmarks, with \(t_{2} < t_{3} \). Note that had we defined the starting point of a temporal fact landmark to denote a time when the formula holds, rather than a time when the formula becomes true, this would not have been the case. Additionally, this more expressive language allows us to revisit the notion of orderings between landmarks, and instead of just specifying that some landmark must occur before another, we can also specify some range on the duration between these events.

We conclude this section by giving a formal definition for when a set of landmarks and constraints is valid with regards to a planning task — that is, the landmarks and constraints hold in all possible solutions.

Definition 3 A set of temporal landmarks \(L \) and constraints \(C \) involving time points \(TV \) is valid with regards to planning task \(\Pi \), iff for every schedule \(\tau \) for \(\Pi \), there exists a mapping \(m : TV \rightarrow \mathbb{R}^{0+} \), such that:

- Mapping \(m \) respects the constraints \(C \), and
- For any temporal action landmark \(\text{ocur}_{t}(E) \in L \), there exists some event \(e \in E \) such that \(\tau \) schedules \(e \) at time \(m(t) \), and
- For any temporal fact landmark \(\text{hold}_{t_{1},t_{2}}(\Phi) \), formula \(\Phi \) holds during the execution of \(\tau \) in the interval \([m(t_{s}),m(t_{e})]\), and if \(m(t_{s}) > 0 \) then \(\Phi \) becomes true at time \(m(t_{e}) \), i.e. there exists some \(\delta > 0 \) such that for all \(\epsilon \in (0, \delta) \), \(\Phi \) does not hold at time \(m(t_{e}) - \epsilon \).

The set of fact landmarks and constraints can be viewed as a qualitative state plan (QSP) (Hoffmann and Williams 2006), where the fact landmarks and temporal constraints specify the desired evolution of state over time. Action landmarks provide extra information about how this desired state trajectory can be achieved.

Temporal Landmarks Example

In the previous section, we described temporal landmarks, which allow us to assert claims about both what must happen and when it must happen. In the next section, we will describe a set of rules for deriving temporal landmarks. However, we will first demonstrate how temporal landmarks can be used to reason over a modified matchcellar problem, so that the landmarks completely characterize the solution. Throughout this example we also include pointers to the derivation rules in the next section, which formally characterize the reasoning process we use here.
The goal of our planning problem is to fix a fuse, an action which takes 10 time units and requires light throughout. We can light a match, which provides light for only 5 time units. However, there is also a flashlight somewhere, which can provide light indefinitely, after it is found. The flashlight can only be found if there is light, which takes 2 time units. This problem is described precisely in Figure 1.

If we do not take into account the durations of actions, and discover only the causal landmarks of this problem, we would get fixed, light, and hM. This does not allow us to deduce that we must find the flashlight, as the match will not give light for enough time.

However, using our temporal landmarks, we could start with a landmark describing that the goal holds from some time point tG, until the end of execution, that is holds[tG, tEND] (fixed). The only achiever of fixed is end(fix-fuse), and thus occurs[tG](end(fix-fuse)) is also a temporal landmark, with constraint tEFF = tG (this is derivation rule I in the next section).

Every action that ends must start, and therefore occurs[tG](start(fix-fuse)) is also a temporal landmark, with the constraint tEFF = tEFF + 10. The invariant condition of the action must also hold throughout the execution, and therefore holds[tEFF,tEND](light) is a temporal landmark, with the constraints tSL ≤ tEFF and tSL = tEFF − ε (these are both described in rule V in the next section).

There are two possible achievers for light: end(turn-on-flashlight), and start(light-match). However, we can easily show that tSL = tSL ≥ 10 − ε. As the duration of light-match is 5, and it deletes light at the end, light-match can not be used to achieve light for 10 − ε time units, and thus we can eliminate it as an achiever and deduce that occurs[tEFF](end(turn-on-flashlight)) is a temporal landmark, with tEFF = tSL (rule I). This also entails that occurs[tEFF](start(turn-on-flashlight)) is a temporal landmark, with tEFF = tEFF − 1 (rule V). The start condition of turn-on-flashlight gives us holds[tEFF,tEND](hF), with tSLF < tEFF and tSLF ≥ tEFF (rule III).

The only possible achiever of hF is find-flashlight, and thus occurs[tEFF](end(find-flashlight)), with tEFF = tSLF (rule I), and occurs[tEFF](start(find-flashlight)), with tEFF = tEFF − 2 (rule V) are temporal landmarks. This also gives us the invariant condition landmark holds[tEFF,tEND](light), with tEFF ≤ tEFF and tEFF = tEFF − ε (also rule V).

From holds[tEFF,tEND](light) we can then derive the temporal landmark consisting of the first time possible achievers of light. As the flashlight can not provide light before we find it, which requires light, occurs[tSLF](start(light-match)) is also a temporal landmark, with tSLF ≤ tEFF (rule II).

Thus, we have accounted for all of the actions in the solution, using only reasoning about temporal landmarks. Figure 2 shows these time points and the constraints connecting them graphically.

Temporal Landmark Extraction

Having defined a language for describing temporal landmarks and demonstrating that it can be useful on an example problem, we must still provide a general method for discovering temporal landmarks in any given planning problem. This is a computationally hard problem even in classical planning (Hoffmann, Porteous, and Sebastia 2004), and therefore we focus on a tractable algorithm which might not discover all temporal landmarks. Our landmark extraction technique is similar to backchaining approaches used in landmark extraction for classical planning (Hoffmann, Porteous, and Sebastia 2004; Richter and Westphal 2010), but also reasons over the temporal information associated with each landmark.

Initial Landmark

In order to use backchaining, we must start with some set of trivial landmarks. One such trivial landmark is the goal, which must obviously hold in every solution. We will define the time point tG as the last time in which the goal was achieved (that is, the value of the goal formula transitions from false to true). By definition of tG, once the goal is achieved at tG it stays true forever.

Using tG and the previously defined tEND (the last time point in which any event can occur), we can formulate the landmark holds[tG,tEND](G) — the goal must hold from tG until the end of execution. We can also derive the temporal constraint tL ≤ tEND. Furthermore, if the goal has a deadline t, we can add the constraint tG − tSTART ≤ t.

Another option is to start backchaining from a set of non-temporal landmarks, as done by Marzal, Sebastia, and Onaindia. We can take the classical relaxation of our temporal problem (Haslum 2009), and apply a classical landmark detection technique to it. Any landmark Φ of the classical relaxation yields a temporal fact landmark holds[tEFF,tEND](Φ), with the constraints tSLF ≥ tSTART and tSLF ≤ tEND.

With a set of initial landmarks, we can start backchaining using a set of derivation rules. The following two subsections describe a set of such rules, which allow us to discover more landmarks.

Backchaining from Temporal Fact Landmarks

If L = holds[tEFF,tEND](Φ) is a temporal fact landmark, and Φ is not satisfied by the initial state, then we can derive temporal landmarks according to the following rules:

I occurs[tEFF](E) is a temporal landmark, where E = paUB(tEFF)(Φ) \ ineligible(d, Φ), and ineligible(d, Φ) is a superset of the events which possibly achieve Φ by time t (we describe how to obtain such a set later in this paper), from which we eliminate some ineligible achievers, ineligible(d, Φ) := {e \ e = start(a), d_{max}(a) < d, and eff(a) |= ¬Φ} — start events that could make
Φ true, but belong to an action whose end effect will then delete Φ (that is, there is no way for Φ to hold after the end effect of a has executed), with durations that are shorter than the minimal duration for which Φ must hold. UB(t) is an upper-bound on t and d = LB(t) is a lower-bound on t_e – t_s. Both of these bounds are the tightest implied by the current temporal constraints. As these constraints are all simple temporal constraints, we can compute these bounds efficiently (Dechter, Meiri, and Pearl 1991).

Additionally, we add the constraint t_a = t_s. This is the main reason for defining t_s as the time when Φ becomes true, rather than as some time from which we know Φ to be true. Using the weaker definition, where t_s is some time where Φ holds, we would only be able to derive t_a < t_s. If the only possible achievers of Φ are start events of actions which also delete Φ at the end, we can derive even more constraints: we require that the action that achieves Φ end after t_s, and thus can derive the constraint t_a + max_{start(a) \in E} d_{max}(a) ≥ t_e.

II occurs_U^t(fa_U B(t_i)(Φ)) is a temporal landmark, where fa_U(Φ) is a superset of the events which possibly achieve Φ for the first time by time t. We can also infer that t’_a ≤ t_s. Note that, unlike the previous case, we can not subtract ineligible(d, Φ) from the first achievers, as we do not know whether L refers to the first time Φ is achieved or not, and it is possible that the first time Φ was achieved was for a shorter duration than d. However, we do know that if Φ is achieved, then it must be achieved for the first time. Note that as we restrict our attention to only first achievers — a more restrictive set of actions — we might get a stronger landmark than the previous rule yields, even though the temporal constraints are weaker.

Backchaining from Temporal Action Landmarks

From a temporal action landmark L = occurs_L(E), we can also derive more temporal landmarks, according to the following rules:

III holds_L(t_s)(cc({cnd(e) | e ∈ E})), where

cnd(e) = \begin{cases}
cnd_s(a) & e = start(a)
cnd_e(a) & e = end(a) \end{cases}

cc({Φ_1 \ldots Φ_n}) is a common (logical) consequence of all of Φ_1 \ldots Φ_n, that is, a fact implied by Φ_1, and by Φ_2, \ldots and by Φ_n. In other words, cc({cnd(e) | e ∈ E}) is a common condition for all events in E. In case Φ_1 \ldots Φ_n are conjunctions over facts, the strongest common consequent is the conjunction of all literals that appear in each of Φ_1 \ldots Φ_n. Furthermore, this condition must hold when the event occurs, giving us the constraints t_s < t_a and t_e ≥ t_a. The first constraint is a strict inequality due to the “no moving targets” rule (Fox and Long 2003).

IV holds_{t_s,t_a}(cc({eff(e) | e ∈ E})), where

eff(e) = \begin{cases}
eff_s(a) & e = start(a)
eff_e(a) & e = end(a) \end{cases}

That is, the common effect of all events in E must hold. If this common effect is mutex with the common condition on these events, then we also know that the common effect starts at time t_s, and get the constraint t_s = t_a. Otherwise, it might be the case that cc({eff(e) | e ∈ E}) was already true, and thus we can not derive a temporal constraint relating t_a and t_s. Of course, in any case we have t_s < t_e.

V occurs_U^t(E’) and holds_{t_s,t_a}(cc({cnd(e) | e ∈ E})), where E’ = {oe(e) | e ∈ E} and cnd(e) is the invariant condition of the action associated with e. That is, if one of the events in E must occur, then so must the event at the other end of the action. Additionally, the common invariant condition of all actions in E must hold during the execution of the action. To derive constraints on t’_a, t_s, and t_e, we consider the following cases:

• If E consists only of start events of actions, then the end must occur after at least enough time for the shortest action in E to have completed has passed, but not after the maximum duration of the longest action could pass. That is, max_{start(a) \in E} d_{max}(a) ≥ t’_a – t_a ≥ min_{start(a) \in E} d_{min}(a). The invariant condition must hold right after t_a, and therefore it must have started by t_a, and thus t_s ≤ t_a. Finally, the invariant must hold until right before the action ends. As we can not express this exactly, we use an arbitrarily small ε, and add the slightly looser constraint t_e = t’_a – ε.
• If E consists only of end events of actions, then we can derive max_{end(a) \in E} d_{max}(a) ≥ t_a – t’_a ≥ min_{end(a) \in E} d_{min}(a), with t_s ≤ t’_a and t_e = t_a – ε.
• Finally, if E consists of both start and end events of actions, then we can only use the bounds from the maximum durations in the above cases, and get the constraints max_{end(a) \in E} d_{max}(a) ≥ t_a – t_a and
Computing Possible Achievers

Recall that \(p_{\Phi} (\Phi) \) (respectively, \(f_{\Phi} (\Phi) \)) is the set of events which possibly achieve \(\Phi \) before time \(t \) (respectively, possibly achieve \(\Phi \) for the first time before time \(t \)). Finding these sets exactly is computationally infeasible even for classical planning (Hoffmann, Porteous, and Sebastia 2004), and so we use an overapproximation of these.

Similarly to classical planning, we can find the possible achievers of \(\Phi \) by looking at events (start/end of actions) with effects which might achieve \(\Phi \). In the simple case where \(\Phi \) is a disjunction over facts, \(p_{\Phi} (\Phi) \) is the set of events which have one of the disjuncts of \(\Phi \) as an effect. The case of conjunctions can be handled similarly to how achievers of conjunctive landmarks are found (Keyder, Richter, and Helmerl 2010).

If \(t \) is not unbounded (recall that \(t \) is the tightest upper bound we can derive on some time point), we further restrict this set of events to only those which could occur by time \(t \) in the temporal relaxed planning graph (Coles et al. 2008). That is, we build the temporal relaxed planning graph until time \(t \), and look at the possible achievers of \(\Phi \) which are present there. Computing possible first time achievers, \(f_{\Phi} (\Phi) \), can also be done similarly to classical planning. We construct the temporal relaxed planning graph up to time \(t \), except that we do not use any action which adds \(\Phi \). The achievers of \(\Phi \) which appear by time \(t \) are a superset of the possible first achievers of \(\Phi \).

Stopping Backchaining

So far, we have specified where backchaining starts, and a set of backchaining rules. We still need to specify when backchaining stops. With classical landmarks, backchaining terminates when it derives a landmark which has already been discovered or is true in the initial state.

With temporal landmarks, we do not necessarily have to stop backchaining when an already known landmark is discovered. This is because, as previously demonstrated, temporal landmarks are expressive enough to state that some landmark must be achieved twice, with different time points.

It is still possible to stop backchaining as soon as we derive a known landmark, where landmarks are compared without checking their time points. That is, if we already have \(L = \text{hold}_{t_s,t_a}(\Phi) \) and we derive \(L' = \text{hold}_{t_s',t_a'}(\Phi) \), we would not add \(L' \), and stop backchaining. However, this could potentially lose some information from the temporal constraints between \(t_s \) and \(t_s' \) and other time points. Another option is to stop backchaining as soon as a loop is discovered in a single chain. During the backchaining process we keep track of the “parent” landmarks along the current chain. If the same landmark (again, ignoring time points) is discovered along the same chain, we stop backchaining. The potential drawback of this approach is that it might yield multiple landmarks, with different time points, which still describe the same thing. For example, the same occurrence of an action could satisfy multiple temporal action landmarks.

Refining Temporal Bounds

When deriving a temporal landmark, we can further refine the temporal constraints using information from the temporal relaxed planning graph. Given a temporal action landmark occurs\(_t(E) \), we can add the constraint \(t \geq \min_{e \in E} \text{trpg}(e) \), where \(\text{trpg}(e) \) is the time in which event \(e \) appears in the TRPG for the first time. Similarly, for a temporal fact landmark holds\(_{t_s,t_a}(\Phi) \) we can add the constraint \(t_s \geq \min_{e \in E} \text{trpg}(e) \), where \(\text{trpg}(e) \) is the timestamp of the first layer where \(\Phi \) holds.

Efficient Implementation

While the derivation rules above are described generally, in order to make reasoning about temporal landmarks more efficient, we restrict the formulas we use in temporal fact landmarks to be disjunctions over propositions. Thus we start backchaining from a set of goal landmarks, one for each proposition in the goal. It is important to note that this also means that instead of having a single time point, \(t_G \), we have a separate time point \(t_g \) for each goal proposition \(g \in G \).

Additionally, derivation rules which yield a temporal fact landmark with a conjunction instead produce several landmarks, one for each conjunct. Note that care must be taken when splitting a temporal fact landmark with a conjunction, \(\text{hold}_{t_s,t_a}(\Phi_1 \land \ldots \land \Phi_n) \), into a set of landmarks, one for each conjunct. Specifically, it would not be correct to create the landmarks \(\text{hold}_{t_s,t_a}(\Phi_1) \), \ldots , \(\text{hold}_{t_s,t_a}(\Phi_n) \), as only the conjunction \(\Phi_1 \land \ldots \land \Phi_n \) is achieved exactly at \(t_s \), not necessarily each of the conjuncts. Rather, each of the landmarks for the conjuncts would need to have its start time upper bounded by \(t_s \). As the derivation rules described above already produce fact landmarks which only have an upper bound on their start times, we do not need to modify our derivation rules. However, should a new derivation rule, which produces a fact landmark with a lower bound on its start time be added, we would need to modify it accordingly.

Previous Temporal Landmark Techniques

Now that we have fully explained the formalism for our temporal landmarks, and how they are derived, we can compare our approach to previous work on temporal landmarks (Marzal, Sebastia, and Onaindia 2014). First, as the theoretical example illustrates, our approach does not rely on the presence of deadlines to discover landmarks that are not causal landmarks. On the other hand, Marzal, Sebastia, and Onaindia’s approach only discovers non-causal landmarks when deadlines are present. Furthermore, even had there been a deadline on when the fuse must be fixed, Marzal, Sebastia, and Onaindia’s approach would not be able to deduce that the flashlight must be found, as that is not a consequence of the goal deadline, but rather of implicit temporal constraints due to the duration a match can burn for.
On a more technical level, our approach is based on symbolic time points with simple temporal constraints between them. Marzal, Sebastia, and Onaïndia’s approach, on the other hand, associates with each landmark explicit intervals describing when it can become true, when it can be true, and when it must be true. Thus, while our formalism allows us to express the fact that some event must occur exactly 10 seconds before another event, even if there is no exact time for when either of these occurs, this is not possible in Marzal, Sebastia, and Onaïndia’s formalism.

Nevertheless, while both approaches differ on a technical level, they share many of the same intuitions. For example, taking fact landmark $holds_{t_e}(\Phi)$, t_e corresponds conceptually to the start of the validity interval of Φ, and t_e to the end of its necessity interval in Marzal, Sebastia, and Onaïndia’s work. Furthermore, Marzal, Sebastia, and Onaïndia present some ideas which could be adapted to our framework, such as exploiting information about mutual exclusion to further refine temporal constraints. Merging these two lines of research is a promising direction for future work.

Using Temporal Landmarks

Having discovered a set of temporal landmarks, we would like to use them in order to help guide a planner. We now briefly describe a few options for doing this.

Heuristics based on Temporal Landmarks

Temporal landmarks can provide us with information about what must occur in the future. As done with heuristics based on classical landmarks, we can look at the set of actions which must still occur in the future, given the landmarks that were already achieved, similarly to what LAMA does by looking at the possible achievers of each landmark (Richter and Westphal 2010). From this information, we can derive heuristic estimates over several different metrics.

First, we can simply count the number of actions that must still be applied, to get an estimate of the remaining plan length. To get an estimate on remaining cost, we can either sum over the costs of these actions, or derive a lower bound on remaining cost by using action cost partitioning (Karpas and Domshlak 2009). Another option is to use the heuristic described by Marzal, Sebastia, and Onaïndia (2014).

Finally, if we want to derive an admissible estimate on makespan, we can create a simple temporal problem (Dechter, Meiri, and Pearl 1991), encoding the known temporal constraints. Solving this problem, which can be done efficiently, would give us a lower bound on t_{END}, which constitutes an admissible estimate of makespan.

Note that, as in LAMA, these are path-dependent heuristics. However, this is not a problem in the context of a heuristic forward search planner, as it has the path to each node it evaluates.

QSP and Constraint Based Planners

As previously mentioned, the set of temporal landmarks and constraints can be viewed as a qualitative state plan (Hofmann and Williams 2006). While this is not directly useful for most planners, the tBurton planner (Wang and Williams 2015) takes a QSP as its goal representation. Thus, we can use the temporal landmarks and constraints as tBurton’s goal.

A potentially more powerful technique exploits the fact that tBurton searches over partial plans, which are all represented as QSPs. Thus, we can apply the temporal landmark backchaining rules whenever tBurton adds an action to the QSP. Furthermore, we can apply the backchaining rules only to the new action, rather than to the entire problem, thus performing more reasoning during tBurton’s search. We intend to explore this technique in future work.

Additionally, partial order planners such as CPT (Vidal and Geffner 2006) can be initialized with a partial plan which corresponds to the temporal landmarks and constraints. CPT can then refine this partial plan into a full solution, without having to expend effort on deriving it initially.

Compiling Temporal Landmarks into the Problem

Another method of exploiting temporal landmarks, which can be used to endow any temporal planner with knowledge of the discovered temporal landmarks, is to compile them into the problem, similarly to previous work on compiling classical planning landmarks for use with abstraction heuristics (Domshlak, Katz, and Lefler 2012). Unfortunately, we do not have a good way of compiling the temporal constraints into the problem, only the temporal landmarks.

While the compilation is fairly straightforward, we prefer to modify the operator definitions at the PDDL domain level, rather than generate a fully grounded problem. This slightly complicates our compilation, which is described next:

- For every operator O, with parameters $o_1 \ldots o_n$, such that a grounded action a derived from O appears in a landmark, we add two new predicates $started_O$ and $ended_O$, both with parameters $o_1 \ldots o_n$. These are added at the start and end of O, respectively.

- For every predicate P, with parameters $o_1 \ldots o_n$, such that a grounded proposition p derived from P appears in a landmark, we add a new predicate, $achieved_p$, also with parameters $o_1 \ldots o_n$. Every operator that adds $P(o_1 \ldots o_n)$ is modified to also add $achieved_p(o_1 \ldots o_n)$, at the same time (that is, start or end) that it adds $P(o_1 \ldots o_n)$.

- For every temporal landmark that consists of a single proposition or event, we add the corresponding new fact to the goal.

- For every disjunctive landmark L, we create a new proposition (that is, predicate with 0 arguments) $achieved_L()$, and add it to the goal. Additionally, for each proposition p that corresponds to each of the disjuncts in L, we add a new action that has precondition p and adds $achieved_L()$, with 0 cost and duration. Note that a temporal action landmark is a disjunction over its events, and so the propositions in its actions would be the appropriate $started_O$ or $ended_O$.

Note that compilation of single (fact or action) landmarks can be done mostly on the symbolic level, by modifying
lifted PDDL operators. On the other hand, disjunctive landmarks add a significant overhead to the compilation, as they not only increase the size of the state, but also the number of grounded actions in the problem, and the length of a solution to the compiled problem. However, it is always possible to simply ignore the disjunctive landmarks, and use only the single landmarks in the compilation. In the empirical evaluation, we will examine the effects of limiting the size of the disjunctions we consider.

Empirical Evaluation

Having described ways to discover and exploit temporal landmarks, in this section we examine the question of how useful they are. As a first step, we examine how temporal landmarks help different types of planners, and thus we perform an empirical evaluation of the temporal landmark compilation technique, and compare the performance of different planners on the original problem, and on compiled versions of the same problem, enriched with landmark knowledge. While we would have liked to compare our approach with that of Marzal, Sebastia, and Onaindia (2014), there was no readily available implementation of their technique.

We implemented our landmark discovery algorithm on top of OPTIC (Benton, Coles, and Coles 2012). We used the goal propositions as the initial landmarks for backchaining, and stopped backchaining as soon as a known landmark was derived. Preliminary experiments comparing the use of this approach vs. stopping backchaining only when a duplicate landmark is encountered in the same chain showed that a makespan estimate from the initial state was almost always the same when the TRPG was also used to refine temporal bounds. However, our chosen technique is much faster.

We used three different planners in our experiments: POPF (Coles et al. 2010; 2011), Temporal Fast Downward (Eyerich, Mattmüller, and Röger 2009), and YAHSP (Vidal 2004). Specifically, we used the IPC-2011 version of POPF, the IPC-2014 version of Temporal Fast Downward, and the YAHSP3-MT variant of YAHSP from IPC-2014. These are all either winners or runners-up in the temporal satisficing tracks of IPC-2011 and IPC-2014.

The planners we chose represent different types of planners: POPF is a temporally expressive planner which performs a lot of temporal reasoning, Temporal Fast Downward is also temporally expressive, but performs rather limited temporal reasoning, and YAHSP all but ignores the temporal aspect of the problem, and attempts to find a sequence of actions. We ran these planners on the problems from the temporal satisficing track of IPC-2011 (García-Olaya, Jiménez, and Linares López 2011) and IPC-2014, using the automated tools that ran IPC-2011 (Linares López, Jiménez, and Helmert 2013).

For each problem instance, we created three compiled versions: one enriched only with non-disjunctive landmarks (e1), one enriched with landmarks with disjunctions up to size 4 (e4), and one enriched with all landmarks (e∞). In our evaluation, we simulated a planner with a 30 minute time limit, which spends 5 minutes on temporal landmark discovery. Landmark discovery was performed on the development machine, once for each problem instance, and was limited to 144
would have solved 1 or 2 more problems, depending on the maximum disjunction size, while the results for POPF would have been the same.

We split our presentation of the results into domains which feature required concurrency (temporally expressive), and those which do not. Table 1 shows the number of problems solved in each domain and the IPC score for POPF and Temporal Fast Downward on the temporally expressive domains. YAHSP was omitted, as it can not solve any of these problems. Looking at these results, we can see a significant benefit from using temporal landmarks in the TMS domain. To examine this domain in more detail, Table 3a shows the solution time on each instance of TMS that was solved by any planner. These results show that multiple problems which were not solved by POPF in 1800 seconds without landmarks were solved by the same planner when enriched with the single landmarks, an order of magnitude faster. TMS is a rich, temporally expressive, domain, and therefore it is not surprising that adding more temporal reasoning helps.

Table 3b shows detailed results for TURNANDOPEN. TURNANDOPEN is a temporally expressive version of the classical GRIPPER domain, and suffers from the same problem of many symmetric solutions. Unfortunately, temporal landmarks do not break symmetries, and thus do not help in this domain. This domain illustrates an issue with Temporal Fast Downward, which does not always return correct solutions.

Finally, Table 3c shows detailed results for MATCHCELLAR, which turns out to be easy enough for both planners to solve all problems without any help. Thus, temporal landmarks can not improve the number of problems solved. Even when solution time is considered, both planners are fast enough that there is no significant difference in solution times with or without landmarks.

Turning our attention to domains without required concurrency, Table 2 shows the number of problems solved and the IPC score in each domain for POPF, Temporal Fast Downward, and YAHSP. These results reveal that there is some benefit from using temporal landmarks, even in some non temporally expressible domains. First, temporal landmarks help improve solution quality (and thus, IPC score) in several domains. However, more interestingly, disjunctive temporal landmarks help some of the planners in a few domains, even more than single landmarks. Specifically, note that disjunctive landmarks help both POPF and YAHSP in PARPRINTER (2011), and POPF in FLOOR TILES (2011) and PARKING (2014). We believe that in these domains, the disjunctive landmarks are able to capture a key piece of knowledge about the solution, which can only be represented as a disjunction. This leads us to believe that directly integrating the guidance from landmarks into the planner, without the overhead of compiling disjunctive landmarks into the problem, will lead to even greater benefit.

Conclusion

In this paper, we described a new reasoning mechanism for discovering temporal landmarks, which combine information about what must be achieved and when it must be achieved. We described a technique for discovering such
temporal landmarks, and presented both a theoretical example and empirical results which show that temporal landmarks can help temporal planners, especially on problems with complex temporal interactions. In future work, we intend to use temporal landmarks directly in a planner: both by incorporating the landmark derivation rules into the tBurton planner (Wang and Williams 2015), and by using the landmarks directly inside OPTIC (Benton, Coles, and Coles 2012), thus avoiding the large overhead of compiling disjunctive landmarks into the problem.

Acknowledgements
The work was partially supported by the DARPA MRC Program, under grant number FA8650-11-C-7192, Boeing Corporation, under grant number MIT-BA-GTA-1, and ARC project DP140104219, “Robust AI Planning for Hybrid Systems”. NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. Finally, we would like to thank the anonymous reviewers for their insightful comments, and the authors of the OPTIC planner for making it publicly available.

References