
Temporal Landmarks: What Must Happen, and When

Erez Karpas, David Wang, Brian C. Williams
Massachusetts Institute of Technology

Patrik Haslum
Australian National University & NICTA

Abstract

Current temporal planners have a hard time solving large,
real-world problems which involve dealing with metric time
and concurrent actions. While landmarks have enabled classi-
cal planners to scale up to significantly larger problems, they
have not yet brought as much benefit to temporal planning.
We argue that the reason for this is that for landmarks to make
an effective addition to planning with complex temporal in-
teractions (such as required concurrency), they must incorpo-
rate information about the timing of conditions and events.
We define temporal landmarks, which associate time inter-
vals and time points, respectively, with state and action land-
marks, thereby capturing both what must happen and when
it must happen. We show how to derive temporal landmarks
and constraints on their associated time points from planning
problems, and how exploiting them, in a planner-independent
way, can improve planner performance. Notably, the greatest
gain is on problems which require concurrency, showing that
the temporal information we add to landmarks complements
the reasoning used by current temporal planners.

Introduction
Many real-world problems require handling complex tem-
poral interactions which involve concurrently executing ac-
tions. However, current temporal planners have a hard time
scaling up to large problems which require concurrency
(Cushing, Kambhampati, and Weld 2007). One method
which has enabled classical planners to scale up to signif-
icantly larger problems is the use of landmarks. In classical
planning, a landmark is a fact which must be achieved at
some point along every solution (Hoffmann, Porteous, and
Sebastia 2004).

In temporal planning, one line of work has also used the
notion of landmarks (Sebastia, Marzal, and Onaindia 2007;
Marzal, Sebastia, and Onaindia 2008; 2014). This work
starts by discovering the causal (non-temporal) landmarks of
the problem, and then exploits deadlines to tighten temporal
constraints on when each landmark must be achieved, and
infer further landmarks. However, when there are no dead-
lines in the problem, this approach does not yield any benefit
over the causal landmarks.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we define a novel notion of temporal land-
marks, which describe both what must happen and when
this must happen. Specifically, we define two types of land-
marks: temporal fact landmarks, which state that some fact
must hold between two timepoints, and temporal action
landmarks, which state that some event (the start or end of an
action) must occur at some time point. Temporal information
is captured in the form of simple temporal constraints over
the symbolic time points (Dechter, Meiri, and Pearl 1991)
associated with each landmark. Thus a set of landmarks and
constraints constitutes a qualitative state plan, or QSP (Hof-
mann and Williams 2006).

The contributions of this paper are threefold: First, we in-
troduce a novel notion of temporal landmarks. Second, we
describe a sound technique for discovering temporal land-
marks using a backchaining approach and a set of deriva-
tion rules. Third, we demonstrate the usefulness of temporal
landmarks, both theoretically on an example problem, and
empirically on a set of IPC benchmarks. Our empirical eval-
uation shows that temporal landmarks allow temporal plan-
ners to scale up to larger problems which require concur-
rency, and can also help in problems without required con-
currency.

Notation
We use the non-numeric subset of PDDL 2.1 for expressing
temporal planning problems (Fox and Long 2003). In this
section we review the relevant definitions and notations for
describing such problems. A propositional temporal plan-
ning problem is a tuple Π = 〈F,A, I,G〉 where F is a
set of propositions, I ⊆ F is the initial state, G ⊆ F is
the goal, and A is a set of actions. An event e is described
by a tuple 〈cnd, eff〉, where cnd ⊆ F is a precondition,
which must hold in the state right before the event is ex-
ecuted, and eff is an effect on F , which occurs right after
the event is executed. An instantaneous action consists of a
single event 〈cnd(a), eff(a)〉. A durative action consists of
a start event, start(a) = 〈cnds(a), effs(a)〉, an end event
end(a) = 〈cnde(a), effe(a)〉, an invariant condition cndi(a)
which must hold throughout the execution of the action, and
a minimum and maximum duration, dmin(a) and dmax(a).

A schedule for Π is a list of triples, where each such triple
〈t, d, a〉 denotes that action a starts at time t and lasts for
a duration of d. A solution for Π is a schedule such that

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

138



the goal G holds after all actions have completed execution,
starting from the initial state I . We furthermore require that
pairs of events which are mutually exclusive, or where one
achieves some proposition that the other requires, are sched-
uled at least some ε > 0 time units apart.

Given an event e which is the start/end of a durative ac-
tion a, we refer to the event at the opposite end (that is, the
end/start of the same action) by oe(e). If e is the single event
of an instantaneous action a, then oe(e) = e.

We will also use a few symbolic time points:

• tSTART is the time when execution starts, and we assume
that tSTART = 0

• tEND is the time when the last action ends, and thus the
state stops changing after tEND

Temporal Landmarks
Although in classical planning, fact landmarks and action
landmarks are often used interchangeably, this is not so easy
in temporal planning. The main reason for this difference
is that in temporal planning, states hold for some length of
time, while actions start and end instantaneously. Therefore,
temporal fact landmarks and temporal action landmarks dif-
fer more than they do in classical planning.

Instead of action landmarks consisting of sets of ac-
tions, a temporal action landmark consists of a set of events
(start/end of actions). Additionally, we associate with each
temporal action landmark the time point in which one of
these events must occur. We denote such a landmark by
occurst(E), meaning that one of the events e ∈ E must
occur at time point t.

Definition 1 A temporal action landmark occurst(E) con-
sists of a set of events E, and a time point t, denoting that
one of the events in E must occur at time point t.

Note that since a temporal action landmark refers to a sin-
gle time point, using a conjunction, meaning that two events
occur at this time point, would require perfect synchroniza-
tion. As the execution semantics discourage such solutions,
using conjunctive temporal action landmarks would require
us to associate a different time point with each event, which
would complicate the management of temporal constraints.

On the other hand, states hold over a duration, and there-
fore, for temporal fact landmarks, we consider an arbitrary
formula over the propositions of the planning task, which
must hold for some duration. Informally, holdsts:te(Φ)
means that formula Φ must hold for a duration of time, start-
ing exactly at time point ts, and holding at least until time
point te.

Definition 2 A temporal fact landmark holdsts:te(Φ) con-
sists of a boolean formula Φ over the propositions of Π, and
two time points ts and te, denoting the time when Φ becomes
true, and a time when Φ is no longer required to hold, re-
spectively.

We also maintain a set of simple temporal constraints be-
tween the time points associated with the landmarks, which

thus constitute a Simple Temporal Network (Dechter, Meiri,
and Pearl 1991). Simple temporal constraints are of the form
l ≤ t2 − t1 ≤ u, where t1 and t2 are time points, and
l, u ∈ R ∪ {−∞,∞} are used to bound the separation be-
tween them. Note that by using tSTART in a simple temporal
constraint, we can specify an absolute range for when a time
point occurs.

Using this more expressive language to describe land-
marks allows us to express constraints about solutions which
are impossible to express using “regular” landmarks. For
example, it is possible to specify that some proposition p
must be achieved twice, by stating that holdst1:t2(p) and
holdst3:t4(p) are landmarks, with t2 < t3. Note that had
we defined the starting point of a temporal fact landmark to
denote a time when the formula holds, rather than a time
when the formula becomes true, this would not have been
the case. Additionally, this more expressive language allows
us to revisit the notion of orderings between landmarks, and
instead of just specifying that some landmark must occur be-
fore another, we can also specify some range on the duration
between these events.

We conclude this section by giving a formal definition for
when a set of landmarks and constraints is valid with regards
to a planning task — that is, the landmarks and constraints
hold in all possible solutions.

Definition 3 A set of temporal landmarks L and constraints
C involving time points TV is valid with regards to planning
task Π, iff for every schedule τ for Π, there exists a mapping
m : TV → R0+, such that:

• Mapping m respects the constraints C, and
• For any temporal action landmark occurst(E) ∈ L, there

exists some event e ∈ E such that τ schedules e at time
m(t), and

• For any temporal fact landmark holdsts:te(Φ), for-
mula Φ holds during the execution of τ in the interval
[m(ts),m(te)], and if m(ts) > 0 then Φ becomes true at
time m(ts), i.e. there exists some δ > 0 such that for all
ε ∈ (0, δ), Φ does not hold at time m(ts)− ε.

The set of fact landmarks and constraints can be viewed
as a qualitative state plan (QSP) (Hofmann and Williams
2006), where the fact landmarks and temporal constraints
specify the desired evolution of state over time. Action land-
marks provide extra information about how this desired state
trajectory can be achieved.

Temporal Landmarks Example
In the previous section, we described temporal landmarks,
which allow us to assert claims about both what must hap-
pen and when it must happen. In the next section, we will
describe a set of rules for deriving temporal landmarks.
However, we will first demonstrate how temporal landmarks
can be used to reason over a modified matchcellar prob-
lem, so that the landmarks completely characterize the so-
lution. Throughout this example we also include pointers to
the derivation rules in the next section, which formally char-
acterize the reasoning process we use here.

139



• Propositions: {hM, hF, light, fixed}

• Initial state: {hM}

• Goal: {fixed}

• Actions:
Name Duration cnds effs cndi cnde effe
fix-fuse 10 light light fixed
light-match 5 hM light,¬hM ¬light
find-flashlight 2 light light hF
turn-on-flashlight 1 hF light

Figure 1: Description of Modified Matchcellar Task

The goal of our planning problem is to fix a fuse, an action
which takes 10 time units and requires light throughout. We
can light a match, which provides light for only 5 time units.
However, there is also a flashlight somewhere, which can
provide light indefinitely, after it is found. The flashlight can
only be found if there is light, which takes 2 time units. This
problem is described precisely in Figure 1.

If we do not take into account the durations of actions,
and discover only the causal landmarks of this problem, we
would get fixed, light, and hM . This does not allow us to
deduce that we must find the flashlight, as the match will not
give light for enough time.

However, using our temporal landmarks, we could start
with a landmark describing that the goal holds from
some time point tg , until the end of excution, that
is holdstg:tEND

(fixed). The only achiever of fixed is
end(fix-fuse), and thus occursteff

(end(fix-fuse)) is also a
temporal landmark, with constraint teff = tg (this is deriva-
tion rule I in the next section).

Every action that ends must start, and therefore
occurstsff

(start(fix-fuse)) is also a temporal landmark,
with the constraint teff = tsff + 10. The invariant condition
of the action must also hold throughout the execution, and
therefore holdstsl :tel

(light) is a temporal landmark, with the
constraints tsl ≤ tsff and tel = teff − ε (these are both de-
scribed in rule V in the next section).

There are two possible achievers for light:
end(turn-on-flashlight), and start(light-match). How-
ever, we can easily show that tel − tsl ≥ 10 − ε. As the
duration of light-match is 5, and it deletes light at the end,
light-match can not be used to achieve light for 10 − ε
time units, and thus we can eliminate it as an achiever
and deduce that occurstetof

(end(turn-on-flashlight)) is a
temporal landmark, with tetof = tsl (rule I). This also
entails that occurststof

(start(turn-on-flashlight)) is a tem-
poral landmark, with tstof = tetof − 1 (rule V). The start
condition of turn-on-flashlight gives us holdstshf :tehf

(hF ),
with tshf < tstof and tehf ≥ tstof (rule III).

The only possible achiever of hF is find-flashlight, and
thus occurstef

(end(find-flashlight)), with tef = tshf (rule
I), and occurstsf

(start(find-flashlight)), with tsf = tef − 2
(rule V) are temporal landmarks. This also gives us the in-
variant condition landmark holdstslf :telf

(light), with tslf ≤
tsf and telf = tef − ε (also rule V).

From holdstslf :telf
(light) we can then derive the tempo-

ral landmark consisting of the first time possible achievers
of light. As the flashlight can not provide light before we
find it, which requires light, occurstslm

(start(light-match))

is also a temporal landmark, with tslm ≤ tslf (rule II).
Thus, we have accounted for all of the actions in the so-

lution, using only reasoning about temporal landmarks. Fig-
ure 2 shows these time points and the constraints connecting
them graphically.

Temporal Landmark Extraction
Having defined a language for describing temporal land-
marks and demonstrating that it can be useful on an exam-
ple problem, we must still provide a general method for dis-
covering temporal landmarks in any given planning prob-
lem. This is a computationally hard problem even in classi-
cal planning (Hoffmann, Porteous, and Sebastia 2004), and
therefore we focus on a tractable algorithm which might
not discover all temporal landmarks. Our landmark extrac-
tion technique is similar to backchaining approaches used in
landmark extraction for classical planning (Hoffmann, Por-
teous, and Sebastia 2004; Richter and Westphal 2010), but
also reasons over the temporal information associated with
each landmark.

Initial Landmark
In order to use backchaining, we must start with some set
of trivial landmarks. One such trivial landmark is the goal,
which must obviously hold in every solution. We will de-
fine the time point tG as the last time in which the goal
was achieved (that is, the value of the goal formula transi-
tions from false to true). By definition of tG, once the goal
is achieved at tG it stays true forever.

Using tG and the previously defined tEND (the last time
point in which any event can occur), we can formulate the
landmark holdstG:tEND

(G) — the goal must hold from tG
until the end of execution. We can also derive the temporal
constraint tG ≤ tEND . Furthermore, if the goal has a dead-
line t, we can add the constraint tG − tSTART ≤ t.

Another option is to start backchaining from a set of non-
temporal landmarks, as done by Marzal, Sebastia, and On-
aindia. We can take the classical relaxation of our temporal
problem (Haslum 2009), and apply a classical landmark de-
tection technique to it. Any landmark Φ of the classical re-
laxation yields a temporal fact landmark holdsts:te(Φ), with
the constraints ts ≥ tSTART and te ≤ tEND .

With a set of initial landmarks, we can start backchaining
using a set of derivation rules. The following two subsec-
tions describe a set of such rules, which allow us to discover
more landmarks.

Backchaining from Temporal Fact Landmarks
If L = holdsts:te(Φ) is a temporal fact landmark, and Φ is
not satisfied by the initial state, then we can derive temporal
landmarks according to the following rules:

I occursta(E) is a temporal landmark, where E =
paUB(ts)(Φ) \ ineligible(d,Φ), pat(Φ) is a superset
of the events which possibly achieve Φ by time t (we
describe how to obtain such a set later in this paper),
from which we eliminate some ineligible achievers,
ineligible(d,Φ) := {e | e = start(a), dmax(a) < d,
and effe(a) |= ¬Φ} — start events that could make

140



t_g t_ENDt_eff
[0,0]

t_sff [10,10]

t_sl
t_el

[e,e]t_etof
[0,0]

t_stof
[1,1]

t_ehf
t_shft_ef

[0,0]
t_sf [2,2]

t_slf
t_elf

[e,e]t_slmt_START

Figure 2: Time Points and Constraints of Temporal Landmarks

Φ true, but belong to an action whose end effect will
then delete Φ (that is, there is no way for Φ to hold
after the end effect of a has executed), with durations
that are shorter than the minimal duration for which
Φ must hold. UB(t) is an upper-bound on t and d =
LB(te − ts) is a lower-bound on te − ts. Both of these
bounds are the tightest implied by the current temporal
constraints. As these constraints are all simple tempo-
ral constraints, we can compute these bounds efficiently
(Dechter, Meiri, and Pearl 1991).
Additionally, we add the constraint ta = ts. This is the
main reason for defining ts as the time when Φ becomes
true, rather than as some time from which we know Φ to
be true. Using the weaker definition, where ts is some
time where Φ holds, we would only be able to derive
ta < ts. If the only possible achievers of Φ are start
events of actions which also delete Φ at the end, we can
derive even more constraints: we require that the action
that achieves Φ end after te, and thus can derive the
constraint ta + maxstart(a)∈E dmax(a) ≥ te.

II occurst′a(faUB(ts)(Φ)) is a temporal landmark, where
fat(Φ) is a superset of the events which possibly
achieve Φ for the first time by time t. We can also infer
that t′a ≤ ts. Note that, unlike the previous case, we can
not subtract ineligible(d,Φ) from the first achievers, as
we do not know whether L refers to the first time Φ is
achieved or not, and it is possible that the first time Φ
was achieved was for a shorter duration than d. How-
ever, we do know that if Φ is achieved, then it must
be achieved for the first time. Note that as we restrict
our attention to only first achievers — a more restric-
tive set of actions — we might get a stronger landmark
than the previous rule yields, even though the temporal
constraints are weaker.

Backchaining from Temporal Action Landmarks
From a temporal action landmark L = occursta(E), we
can also derive more temporal landmarks, according to the
following rules:

III holdsts:te(cc({cnd(e) | e ∈ E})), where

cnd(e) =

{
cnds(a) e = start(a)

cnde(a) e = end(a)

cc({Φ1 . . .Φn}) is a common (logical) consequence of
all of Φ1 . . .Φn, that is, a fact implied by Φ1, and by
Φ2, . . . and by Φn. In other words, cc({cnd(e) | e ∈
E}) is a common condition for all events in E. In

case Φ1 . . .Φn are conjunctions over facts, the strongest
common consequent is the conjunction of all literals
that appear in each of Φ1 . . .Φn. Furthermore, this con-
dition must hold when the event occurs, giving us the
constraints ts < ta and te ≥ ta. The first constraint is
a strict inequality due to the “no moving targets” rule
(Fox and Long 2003).

IV holdsts:te(cc({eff(e) | e ∈ E})), where

eff(e) =

{
effs(a) e = start(a)

effe(a) e = end(a)

That is, the common effect of all events in E must
hold. If this common effect is mutex with the com-
mon condition on these events, then we also know that
the common effect starts at time ta, and get the con-
straint ts = ta. Otherwise, it might be the case that
cc({eff(e) | e ∈ E}) was already true, and thus we can
not derive a temporal constraint relating ta and ts. Of
course, in any case we have ts < te.

V occurst′a(E′) and holdsts:te(cc({cndi(e) | e ∈ E})),
where E′ = {oe(e) | e ∈ E} and cndi(e) is the invari-
ant condition of the action associated with e. That is,
if one of the events in E must occur, then so must the
event at the other end of the action. Additionally, the
common invariant condition of all actions in E must
hold during the execution of the action. To derive con-
straints on t′a, ts, and te, we consider the following
cases:

• If E consists only of start events of actions, then the
end must occur after at least enough time for the
shortest action in E to have completed has passed,
but not after the maximum duration of the longest
action could pass. That is, maxstart(a)∈E dmax(a) ≥
t′a− ta ≥ minstart(a)∈E dmin(a). The invariant con-
dition must hold right after ta, and therefore it must
have started by ta, and thus ts ≤ ta. Finally, the in-
variant must hold until right before the action ends.
As we can not express this exactly, we use an arbi-
trarily small ε, and add the slightly looser constraint
te = t′a − ε.
• If E consists only of end events of actions, then

we can derive maxend(a)∈E dmax(a) ≥ ta − t′a ≥
minend(a)∈E dmin(a), with ts ≤ t′a and te = ta − ε.
• Finally, if E consists of both start and end events

of actions, then we can only use the bounds from
the maximum durations in the above cases, and get
the constraints maxend(a)∈E dmax(a) ≥ ta − t′a and

141



maxstart(a)∈E dmax(a) ≥ t′a − ta. For the invari-
ant, we can only derive constraints from the min-
imum duration of actions in E: the invariant must
last for a minimum duration, that is, te − ts ≥
minstart(a)∈E∪end(a)∈E dmin(a). We also know that
the action starts at min(ta, t

′
a), so ts ≤ ta and

ts ≤ t′a.

Computing Possible Achievers
Recall that pat(Φ) (respectively, fat(Φ)) is the set of events
which possibly achieve Φ before time t (respectively, possi-
bly achieve Φ for the first time before time t). Finding these
sets exactly is computationally infeasible even for classical
planning (Hoffmann, Porteous, and Sebastia 2004), and so
we use an overapproximation of these.

Similarly to classical planning, we can find the possi-
ble achievers of Φ by looking at events (start/end of ac-
tions) with effects which might achieve Φ. In the simple
case where Φ is a disjunction over facts, pat(Φ) is the set
of events which have one of the disjuncts of Φ as an ef-
fect. The case of conjunctions can be handled similarly to
how achievers of conjunctive landmarks are found (Keyder,
Richter, and Helmert 2010).

If t is not unbounded (recall that t is the tightest upper
bound we can derive on some time point), we further restrict
this set of events to only those which could occur by time
t according to the temporal relaxed planning graph (Coles
et al. 2008). That is, we build the temporal relaxed plan-
ning graph until time t, and look at the possible achievers
of Φ which are present there. Computing possible first time
achievers, fat(Φ), can also be done similarly to classical
planning. We construct the temporal relaxed planning graph
up to time t, except that we do not use any action which adds
Φ. The achievers of Φ which appear by time t are a superset
of the possible first achievers of Φ.

Stopping Backchaining
So far, we have specified where backchaining starts, and
a set of backchaining rules. We still need to specify when
backchaining stops. With classical landmarks, backchaining
terminates when it derives a landmark which has already
been discovered or is true in the initial state.

With temporal landmarks, we do not necessarily have to
stop backchaining when an already known landmark is dis-
covered. This is because, as previously demonstrated, tem-
poral landmarks are expressive enough to state that some
landmark must be achieved twice, with different time points.

It is still possible to stop backchaining as soon as we
derive a known landmark, where landmarks are compared
without checking their time points. That is, if we already
have L = holdsts:te(Φ) and we derive L′ = holdst′s:t′e(Φ),
we would not add L′, and stop backchaining. However, this
could potentially lose some information from the temporal
constraints between t′s and t′e and other time points.

Another option is to stop backchaining as soon as a loop
is discovered in a single chain. During the backchaining
process we keep track of the “parent” landmarks along
the current chain. If the same landmark (again, ignoring

time points) is discovered along the same chain, we stop
backchaining. The potential drawback of this approach is
that it might yield multiple landmarks, with different time
points, which still describe the same thing. For example, the
same occurrence of an action could satisfy multiple tempo-
ral action landmarks.

Refining Temporal Bounds
When deriving a temporal landmark, we can further re-
fine the temporal constraints using information from the
temporal relaxed planning graph. Given a temporal ac-
tion landmark occurst(E), we can add the constraint t ≥
mine∈E trpg(e), where trpg(e) is the time in which event e
appears in the TRPG for the first time. Similarly, for a tem-
poral fact landmark holdsts:te(Φ) we can add the constraint
ts ≥ mini trpg(Φ), where trpg(Φ) is the timestamp of the
first layer where Φ holds.

Efficient Implementation
While the derivation rules above are described generally, in
order to make reasoning about temporal landmarks more ef-
ficient, we restrict the formulas we use in temporal fact land-
marks to be disjunctions over propositions. Thus we start
backchaining from a set of goal landmarks, one for each
proposition in the goal. It is important to note that this also
means that instead of having a single time point, tG, we have
a separate time point tg for each goal proposition g ∈ G.

Additionally, derivation rules which yield a temporal fact
landmark with a conjunction instead produce several land-
marks, one for each conjunct. Note that care must be taken
when splitting a temporal fact landmark with a conjunction,
holdsts:te(Φ1 ∧ . . . ∧ Φn), into a set of landmarks, one for
each conjunct. Specifically, it would not be correct to create
the landmarks holdsts:te(Φ1), . . . , holdsts:te(Φn), as only
the conjunction Φ1 ∧ . . . ∧ Φn is achieved exactly at ts,
not necessarily each of the conjuncts. Rather, each of the
landmarks for the conjuncts would need to have its start
time upper bounded by ts. As the derivation rules described
above already produce fact landmarks which only have an
upper bound on their start times, we do not need to modify
our derivation rules. However, should a new derivation rule,
which produces a fact landmark with a lower bound on its
start time be added, we would need to modify it accordingly.

Previous Temporal Landmark Techniques
Now that we have fully explained the formalism for our tem-
poral landmarks, and how they are derived, we can com-
pare our approach to previous work on temporal landmarks
(Marzal, Sebastia, and Onaindia 2014). First, as the theo-
retical example illustrates, our approach does not rely on
the presence of deadlines to discover landmarks that are not
causal landmarks. On the other hand, Marzal, Sebastia, and
Onaindia’s approach only discovers non-causal landmarks
when deadlines are present. Furthermore, even had there
been a deadline on when the fuse must be fixed, Marzal,
Sebastia, and Onaindia’s approach would not be able to de-
duce that the flashlight must be found, as that is not a conse-
quence of the goal deadline, but rather of implicit temporal
constraints due to the duration a match can burn for.

142



On a more technical level, our approach is based on sym-
bolic time points with simple temporal constraints between
them. Marzal, Sebastia, and Onaindia’s approach, on the
other hand, associates with each landmark explicit intervals
describing when it can become true, when it can be true, and
when it must be true. Thus, while our formalism allows us to
express the fact that some event must occur exactly 10 sec-
onds before another event, even if there is no exact time for
when either of these occurs, this is not possible in Marzal,
Sebastia, and Onaindia’s formalism.

Nevertheless, while both approaches differ on a technical
level, they share many of the same intuitions. For example,
taking fact landmark holdsts:te(Φ), ts corresponds concep-
tually to the start of the validity interval of Φ, and te to the
end of its necessity interval in Marzal, Sebastia, and On-
aindia’s work. Furthermore, Marzal, Sebastia, and Onaindia
present some ideas which could be adapted to our frame-
work, such as exploiting information about mutual exclution
to further refine temporal constraints. Merging these two
lines of research is a promising direction for future work.

Using Temporal Landmarks
Having discovered a set of temporal landmarks, we would
like to use them in order to help guide a planner. We now
briefly describe a few options for doing this.

Heuristics based on Temporal Landmarks
Temporal landmarks can provide us with information about
what must occur in the future. As done with heuristics based
on classical landmarks, we can look at the set of actions
which must still occur in the future, given the landmarks
that were already achieved, similarly to what LAMA does by
looking at the possible achievers of each landmark (Richter
and Westphal 2010). From this information, we can derive
heuristic estimates over several different metrics.

First, we can simply count the number of actions that must
still be applied, to get an estimate of the remaining plan
length. To get an estimate on remaining cost, we can either
sum over the costs of these actions, or derive a lower bound
on remaining cost by using action cost partitioning (Karpas
and Domshlak 2009). Another option is to use the heuristic
described by Marzal, Sebastia, and Onaindia (2014).

Finally, if we want to derive an admissible estimate
on makespan, we can create a simple temporal problem
(Dechter, Meiri, and Pearl 1991), encoding the known tem-
poral constraints. Solving this problem, which can be done
efficiently, would give us a lower bound on tEND , which
constitutes an admissible estimate of makespan.

Note that, as in LAMA, these are path-dependent heuris-
tics. However, this is not a problem in the context of a heuris-
tic forward search planner, as it has the path to each node it
evaluates.

QSP and Constraint Based Planners
As previously mentioned, the set of temporal landmarks and
constraints can be viewed as a qualitative state plan (Hof-
mann and Williams 2006). While this is not directly useful
for most planners, the tBurton planner (Wang and Williams

2015) takes a QSP as its goal representation. Thus, we can
use the temporal landmarks and constraints as tBurton’s
goal.

A potentially more powerful technique exploits the fact
that tBurton searches over partial plans, which are all repre-
sented as QSPs. Thus, we can apply the temporal landmark
backchaining rules whenever tBurton adds an action to the
QSP. Furthermore, we can apply the backchaining rules only
to the new action, rather than to the entire problem, thus per-
foming more reasoning during tBurton’s search. We intend
to explore this technique in future work.

Additionally, partial order planners such as CPT (Vidal
and Geffner 2006) can be initialized with a partial plan
which corresponds to the temporal landmarks and con-
straints. CPT can then refine this partial plan into a full solu-
tion, without having to expend effot on deriving it initially.

Compiling Temporal Landmarks into the Problem
Another method of exploiting temporal landmarks, which
can be used to endow any temporal planner with knowledge
of the discovered temporal landmarks, is to compile them
into the problem, similarly to previous work on compiling
classical planning landmarks for use with abstraction heuris-
tics (Domshlak, Katz, and Lefler 2012). Unfortunately, we
do not have a good way of compiling the temporal con-
straints into the problem, only the temporal landmarks.

While the compilation is fairly straightforward, we prefer
to modify the operator definitions at the PDDL domain level,
rather than generate a fully grounded problem. This slightly
complicates our compilation, which is described next:

• For every operatorO, with parameters o1 . . . on, such that
a grounded action a derived from O appears in a land-
mark, we add two new predicates startedO and endedO,
both with parameters o1 . . . on. These are added at the
start and end of O, respectively.

• For every predicate P , with parameters o1 . . . on,
such that a grounded proposition p derived from P
appears in a landmark, we add a new predicate,
achievedP , also with parameters o1 . . . on. Every op-
erator that adds P (o1 . . . on) is modified to also add
achievedP (o1 . . . on), at the same time (that is, start or
end) that it adds P (o1 . . . on).

• For every temporal landmark that consists of a single
proposition or event, we add the corresponding new fact
to the goal.

• For every disjunctive landmark L, we create a new propo-
sition (that is, predicate with 0 arguments) achievedL(),
and add it to the goal. Additionally, for each proposition
p that corresponds to each of the disjuncts in L, we add a
new action that has precondition p and adds achievedL(),
with 0 cost and duration. Note that a temporal action land-
mark is a disjunction over its events, and so the proposi-
tions in its actions would be the appropriate startedO or
endedO.

Note that compiliation of single (fact or action) landmarks
can be done mostly on the symbolic level, by modifying

143



Domain Solved IPC Score
orig e1 e4 e∞ orig e1 e4 e∞
POPF2 (IPC-2011 Version)

MATCHCELLAR (2011) 20 20 20 20 20.00 20.00 20.00 20.00
MATCHCELLAR (2014) 20 20 20 20 20.00 20.00 20.00 20.00
TMS (2011) 5 11 4 4 2.78 11.00 2.70 2.70
TMS (2014) 0 6 0 0 0.00 6.00 0.00 0.00
TURNANDOPEN (2011) 9 8 9 8 8.47 7.58 8.40 7.42
TURNANDOPEN (2014) 0 0 0 0 0.00 0.00 0.00 0.00
TOTAL 54 65 53 52 51.24 64.58 51.09 50.12

Temporal Fast Downward (IPC-2014 Version)
MATCHCELLAR (2011) 20 20 18 0 19.90 19.90 17.92 0.00
MATCHCELLAR (2014) 20 20 20 0 19.91 19.91 19.91 0.00
TMS (2011) 0 2 0 0 0.00 2.00 0.00 0.00
TMS (2014) 0 0 0 0 0.00 0.00 0.00 0.00
TURNANDOPEN (2011) 19 19 0 0 16.96 16.65 0.00 0.00
TURNANDOPEN (2014) 7 1 0 0 7.00 0.86 0.00 0.00
TOTAL 66 62 38 0 63.77 59.32 37.82 0.00

Table 1: Results on Temporally Expressive Domains

lifted PDDL operators. On the other hand, disjunctive land-
marks add a significant overhead to the compilation, as they
not only increase the size of the state, but also the number
of grounded actions in the problem, and the length of a solu-
tion to the compiled problem. However, it is always possible
to simply ignore the disjunctive landmarks, and use only the
single landmarks in the compilation. In the empirical evalu-
ation, we will examine the effects of limiting the size of the
disjunctions we consider.

Empirical Evaluation
Having described ways to discover and exploit temporal
landmarks, in this section we examine the question of how
useful they are. As a first step, we examine how temporal
landmarks help different types of planners, and thus we per-
form an empirical evaluation of the temporal landmark com-
pilation technique, and compare the performance of different
planners on the original problem, and on compiled versions
of the same problem, enriched with landmark knowledge.
While we would have liked to compare our approach with
that of Marzal, Sebastia, and Onaindia (2014), there was no
readily available implementation of their technique.

We implemented our landmark discovery algorithm on
top of OPTIC (Benton, Coles, and Coles 2012). We used
the goal propositions as the initial landmarks for backchain-
ing, and stopped backchaining as soon as a known landmark
was derived. Preliminary experiments comparing the use of
this approach vs. stopping backchaining only when a dupli-
cate landmark is encountered in the same chain showed that
a makespan estimate from the initial state was almost always
the same when the TRPG was also used to refine temporal
bounds. However, our chosen technique is much faster.

We used three different planners in our experiments:
POPF (Coles et al. 2010; 2011), Temporal Fast Downward
(Eyerich, Mattmüller, and Röger 2009), and YAHSP (Vidal
2004). Specifically, we used the IPC-2011 version of POPF,
the IPC-2014 version of Temporal Fast Downward, and the
YAHSP3-MT variant of YAHSP from IPC-2014. These are
all either winners or runners-up in the temporal satisficing
tracks of IPC-2011 and IPC-2014.

The planners we chose represent different types of plan-
ners: POPF is a temporally expressive planner which per-

Domain Solved IPC Score
orig e1 e4 e∞ orig e1 e4 e∞

POPF2 (IPC-2011 Version)
CREWPLANNING (2011) 20 20 16 16 20.00 20.00 16.00 16.00
DRIVERLOG (2014) 0 0 0 0 0.00 0.00 0.00 0.00
ELEVATORS (2011) 3 0 1 0 2.18 0.00 0.45 0.00
FLOORTILE (2011) 1 0 2 2 0.89 0.00 1.21 1.21
FLOORTILE (2014) 0 0 0 0 0.00 0.00 0.00 0.00
MAPANALYSER (2014) 0 0 0 0 0.00 0.00 0.00 0.00
OPENSTACKS (2011) 20 20 20 20 16.59 16.59 16.59 16.59
PARCPRINTER (2011) 0 0 1 5 0.00 0.00 1.00 4.48
PARKING (2011) 20 19 19 18 17.42 16.29 16.29 13.29
PARKING (2014) 12 12 12 17 9.16 9.89 9.89 11.31
PEGSOL (2011) 19 19 10 3 18.77 18.77 9.47 2.89
RTAM (2014) 0 0 0 0 0.00 0.00 0.00 0.00
SATELLITE (2014) 4 4 2 2 3.67 3.79 1.81 1.92
SOKOBAN (2011) 3 3 2 0 2.54 2.67 1.79 0.00
STORAGE (2011) 0 0 0 0 0.00 0.00 0.00 0.00
STORAGE (2014) 0 0 0 0 0.00 0.00 0.00 0.00
TOTAL 102 97 85 83 91.22 88.00 74.50 67.68

Temporal Fast Downard (IPC-2014 Version)
CREWPLANNING (2011) 20 20 6 6 19.85 19.84 6.00 6.00
DRIVERLOG (2014) 0 0 0 0 0.00 0.00 0.00 0.00
ELEVATORS (2011) 20 19 5 6 19.03 18.04 4.95 5.95
FLOORTILE (2011) 5 5 0 0 5.00 4.44 0.00 0.00
FLOORTILE (2014) 0 0 0 0 0.00 0.00 0.00 0.00
MAPANALYSER (2014) 17 17 0 0 15.58 16.20 0.00 0.00
OPENSTACKS (2011) 20 20 20 0 19.84 18.99 18.99 0.00
PARCPRINTER (2011) 10 0 0 0 9.88 0.00 0.00 0.00
PARKING (2011) 20 10 10 0 19.14 6.67 6.67 0.00
PARKING (2014) 20 20 19 0 16.18 14.25 13.75 0.00
PEGSOL (2011) 19 19 0 0 18.42 18.18 0.00 0.00
RTAM (2014) 0 0 0 0 0.00 0.00 0.00 0.00
SATELLITE (2014) 17 8 1 0 12.57 4.87 0.46 0.00
SOKOBAN (2011) 5 1 0 0 4.94 0.78 0.00 0.00
STORAGE (2011) 0 0 0 0 0.00 0.00 0.00 0.00
STORAGE (2014) 0 0 0 0 0.00 0.00 0.00 0.00
TOTAL 173 139 61 12 160.44 122.25 50.82 11.95

YAHSP3-MT (IPC-2014 Version)
CREWPLANNING (2011) 20 20 20 20 19.88 18.54 17.30 17.31
DRIVERLOG (2014) 3 3 0 2 1.77 1.86 0.00 1.57
ELEVATORS (2011) 20 10 9 8 12.37 5.39 4.65 4.27
FLOORTILE (2011) 11 10 2 2 9.29 8.43 1.10 1.10
FLOORTILE (2014) 6 5 1 0 5.83 4.88 1.00 0.00
MAPANALYSER (2014) 1 1 1 1 0.96 0.89 0.98 0.85
OPENSTACKS (2011) 20 20 20 20 14.47 13.61 13.61 13.66
PARCPRINTER (2011) 1 3 5 3 1.00 2.27 2.65 1.38
PARKING (2011) 20 20 18 15 15.74 14.68 13.39 9.47
PARKING (2014) 20 20 20 20 17.96 19.27 19.09 16.85
PEGSOL (2011) 20 20 17 13 18.52 19.14 15.97 11.80
RTAM (2014) 0 0 0 0 0.00 0.00 0.00 0.00
SATELLITE (2014) 20 20 20 20 17.46 18.06 16.71 13.48
SOKOBAN (2011) 10 5 6 1 8.69 4.34 4.33 0.48
STORAGE (2011) 7 8 7 0 6.52 4.46 3.91 0.00
STORAGE (2014) 9 9 4 0 8.41 5.35 1.93 0.00
TOTAL 188 174 150 125 158.87 141.17 116.61 92.21

Table 2: Results on Non Temporally Expressive Domains

forms a lot of temporal reasoning, Temporal Fast Downward
is also temporally expressive, but performs rather limited
temporal reasoning, and YAHSP all but ignores the tempo-
ral aspect of the problem, and attempts to find a sequence
of actions. We ran these planners on the problems from
the temporal satisficing track of IPC-2011 (Garcı́a-Olaya,
Jiménez, and Linares López 2011) and IPC-2014, using the
automated tools that ran IPC-2011(Linares López, Jiménez,
and Helmert 2013).

For each problem instance, we created three compiled
versions: one enriched only with non-disjunctive landmarks
(e1), one enriched with landmarks with disjunctions up to
size 4 (e4), and one enriched with all landmarks (e∞). In
our evaluation, we simulated a planner with a 30 minute time
limit, which spends 5 minutes on temporal landmark discov-
ery. Landmark discovery was performed on the development
machine, once for each problem instance, and was limited to

144



POPF TFD
IPC # orig e1 e4 e∞ orig e1 e4 e∞
2011 1 7 4 27 28 — 273 — —
2011 2 12 7 11 13 — 411 — —
2011 3 — 228 — — — — — —
2011 13 20 10 14 21 — — — —
2011 14 31 17 21 24 — — — —
2011 15 49 28 — — — — — —
2011 16 — 41 — — — — — —
2011 17 — 61 — — — — — —
2011 18 — 86 — — — — — —
2011 19 — 118 — — — — — —
2011 20 — 174 — — — — — —

2014 1 — 41 — — — — — —
2014 12 — 72 — — — — — —
2014 14 — 98 — — — — — —
2014 15 — 151 — — — — — —
2014 16 — 189 — — — — — —
2014 17 — 235 — — — — — —

(a) TMS

POPF TFD

IPC # orig e1 e4 e∞ orig e1 e4 e∞
2011 1 1 1 4 3 1 6 X X
2011 2 2 2 2 3 5 2 X X
2011 3 — — — — 21 31 X —
2011 4 — — — — 17 100 X —
2011 5 — — — — 37 163 — —
2011 6 — — — — 22 151 — —
2011 7 — — — — 36 141 — —
2011 8 — — — — 55 88 — —
2011 9 — — — — 121 — — —
2011 10 — — — — — 396 — —
2011 11 — — — — 93 512 X X
2011 12 — — — — 130 485 — —
2011 13 2 3 7 28 3 2 X X
2011 14 6 2 9 13 2 4 X X
2011 15 8 12 10 37 4 19 X X
2011 16 10 13 6 10 4 5 X X
2011 17 17 16 22 31 20 11 — X
2011 18 43 14 43 47 10 19 X —
2011 19 174 — 248 — 10 35 — —
2011 20 — — — — 11 X — —

2014 1 — — — — 183 — — —
2014 2 — — — — 136 — — —
2014 3 — — — — 259 — — —
2014 4 — — — — 248 702 — —
2014 6 — — — — 224 — — —
2014 7 — — — — 457 — — —
2014 10 — — — — 1130 — — —

(b) TURNANDOPEN

POPF TFD

IPC # orig e1 e4 e∞ orig e1 e4 e∞
2011 1 0 0 0 0 1 1 X X
2011 2 0 0 0 0 1 0 X X
2011 3 0 0 0 1 2 1 2 X
2011 4 0 0 0 0 2 1 1 X
2011 5 0 0 0 1 2 3 2 X
2011 6 1 0 1 1 3 2 3 X
2011 7 0 0 0 1 2 3 3 X
2011 8 0 0 0 1 4 4 4 X
2011 9 0 0 0 1 12 6 5 X
2011 10 0 0 0 1 6 6 5 X
2011 11 0 0 0 2 6 7 7 X
2011 12 0 0 1 2 9 8 8 X
2011 13 0 0 0 0 0 1 2 X
2011 14 0 0 0 0 1 0 0 X
2011 15 0 0 0 1 21 0 1 X
2011 16 0 0 0 1 0 1 1 X
2011 17 0 1 0 1 1 1 0 X
2011 18 0 0 0 1 1 1 1 X
2011 19 0 0 0 0 1 14 1 X
2011 20 0 0 0 0 1 1 3 X

2014 1 0 0 0 0 1 1 2 X
2014 2 0 0 0 0 1 1 3 X
2014 3 0 0 0 0 1 1 2 X
2014 4 0 0 0 0 2 2 2 X
2014 5 1 0 0 0 1 2 3 X
2014 6 1 0 0 0 2 2 3 X
2014 7 0 0 0 0 2 3 4 X
2014 8 1 0 0 1 2 3 4 X
2014 9 0 0 0 1 2 4 6 X
2014 10 0 1 0 1 2 5 6 X
2014 11 0 0 1 1 3 4 6 X
2014 12 0 0 0 1 4 5 6 X
2014 13 0 0 0 1 3 7 8 X
2014 14 0 0 0 1 3 7 7 X
2014 15 1 0 0 2 5 6 9 X
2014 16 0 0 1 1 5 8 10 X
2014 17 0 0 0 2 5 8 10 X
2014 18 1 0 0 2 23 11 12 X
2014 19 0 0 0 2 7 10 36 X
2014 20 0 0 0 2 7 11 17 X

(c) MATCHCELLAR

Table 3: Time until first solution on each instance of the
problems featuring requires concurrency. Solution times are
in seconds, — indicates a timeout, X indicates an invalid so-
lution was found. Instances which were not solved at all are
omitted.

5 minutes of CPU time. If landmark discovery did not ter-
minate in 5 minutes, we used an empty set of landmarks
(in which case the compiled problem was the original prob-
lem). On the compiled problems, CPU time for running the
planner was limited to 25 minutes (regardless of how long
landmark discovery took on that specific problem), and CPU
time on the original problems was limited to 30 minutes. In
both cases, the memory limit was 6 GB.

Timeouts in landmark discovery occurred in 14 out of 430
problems: 6 from ELEVATORS (2011), 6 from DRIVERLOG
(2014), and 2 from TMS (2014). Of these, only the ELEVA-
TORS (2011) instances were solved by any planner in our
experiments; the others were not solved either with or with-
out landmarks. Additionally, if the planners running on the
compiled problems enriched with temporal landmarks had
the full 30 minutes, Temporal Fast Downward and YAHSP

would have solved 1 or 2 more problems, depending on the
maximum disjunction size, while the results for POPF would
have been the same.

We split our presentation of the results into domains
which feature required concurrency (temporally expressive),
and those which do not. Table 1 shows the number of prob-
lems solved in each domain and the IPC score for POPF and
Temporal Fast Downward on the temporally expressive do-
mains. YAHSP was omitted, as it can not solve any of these
problems. Looking at these results, we can see a significant
benefit from using temporal landmarks in the TMS domain.
To examine this domain in more detail, Table 3a shows the
solution time on each instance of TMS that was solved by any
planner. These results show that multiple problems which
were not solved by POPF in 1800 seconds without land-
marks were solved by the same planner when enriched with
the single landmarks, an order of magnitude faster. TMS is a
rich, temporally expressive, domain, and therefore it is not
surprising that adding more temporal reasoning helps.

Table 3b shows detailed results for TURNANDOPEN. TUR-
NANDOPEN is a temporally expressive version of the clas-
sical GRIPPER domain, and suffers from the same problem
of many symmetric solutions. Unfortunately, temporal land-
marks do not break symmetries, and thus do not help in this
domain. This domain illustrates an issue with Temporal Fast
Downward, which does not always return correct solutions.

Finally, Table 3c shows detailed results for MATCHCEL-
LAR, which turns out to be easy enough for both planners to
solve all problems without any help. Thus, temporal land-
marks can not improve the number of problems solved.
Even when solution time is considered, both planners are
fast enough that there is no significant difference in solution
times with or without landmarks.

Turning our attention to domains without required concur-
rency, Table 2 shows the number of problems solved and the
IPC score in each domain for POPF, Temporal Fast Down-
ward, and YAHSP. These results reveal that there is some
benefit from using temporal landmarks, even in some non
temporally expressive domains. First, temporal landmarks
help improve solution quality (and thus, IPC score) in sev-
eral domains. However, more interestingly, disjunctive tem-
poral landmarks help some of the planners in a few domains,
even more than single landmarks. Specifically, note that dis-
junctive landmarks help both POPF and YAHSP in PAR-
CPRINTER (2011), and POPF in FLOORTILE (2011) and
PARKING (2014). We believe that in these domains, the dis-
junctive landmarks are able to capture a key piece of knowl-
edge about the solution, which can only be represented as a
disjunction. This leads us to believe that directly integrating
the guidance from landmarks into the planner, without the
overhead of compiling disjunctive landmarks into the prob-
lem, will lead to even greater benefit.

Conclusion
In this paper, we described a new reasoning mechanism
for discovering temporal landmarks, which combine infor-
mation about what must be achieved and when it must be
achieved. We described a technique for discovering such

145



temporal landmarks, and presented both a theoretical exam-
ple and empirical results which show that temporal land-
marks can help temporal planners, especially on problems
with complex temporal interactions. In future work, we in-
tend to use temporal landmarks directly in a planner: both by
incorporating the landmark derivation rules into the tBur-
ton planner (Wang and Williams 2015), and by using the
landmarks directly inside OPTIC (Benton, Coles, and Coles
2012), thus avoiding the large overhead of compiling dis-
junctive landmarks into the problem.

Acknowledgements
The work was partially supported by the DARPA MRC Pro-
gram, under grant number FA8650-11-C-7192, Boeing Cor-
poration, under grant number MIT-BA-GTA-1, and ARC
project DP140104219, “Robust AI Planning for Hybrid Sys-
tems”. NICTA is funded by the Australian Government
through the Department of Communications and the Aus-
tralian Research Council through the ICT Centre of Excel-
lence Program. Finally, we would like to thank the anony-
mous reviewers for their insightful comments, and the au-
thors of the OPTIC planner for making it publicly available.

References
Benton, J.; Coles, A. J.; and Coles, A. I. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In Proc. ICAPS 2012.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with problems requiring temporal coordination. In Proc.
AAAI 2008.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proc. ICAPS
2010.
Coles, A. J.; Coles, A. I.; Clark, A.; and Gilmore, S. T.
2011. Cost-sensitive concurrent planning under duration un-
certainty for service level agreements. In Proc. ICAPS 2011.
Cushing, W.; Kambhampati, S.; and Weld, D. S. 2007.
When is temporal planning really temporal? In Proc. IJCAI
2007.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. AIJ 49(1):61–95.
Domshlak, C.; Katz, M.; and Lefler, S. 2012. Landmark-
enhanced abstraction heuristics. AIJ 189:48–68.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In Proc. ICAPS 2009, 130–137.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.
Garcı́a-Olaya, A.; Jiménez, S.; and Linares López, C.
2011. The 2011 international planning competition.
Technical report, Universidad Carlos III de Madrid.
http://hdl.handle.net/10016/11710.
Haslum, P. 2009. Admissible makespan estimates for
pddl2.1 temporal planning. In ICAPS 2009 Workshop on
Heuristics for Domain-Independent Planning.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Hofmann, A., and Williams, B. 2006. Robust execution
of temporally flexible plans for bipedal walking devices. In
Proc. ICAPS 2006, 386–389.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proc. IJCAI 2009, 1728–1733.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In Proc. ECAI 2010,
335–340.
Linares López, C.; Jiménez, S.; and Helmert, M. 2013. Au-
tomating the evaluation of planning systems. AI Communi-
cations 26(4):331–354.
Marzal, E.; Sebastia, L.; and Onaindia, E. 2008. Detection
of unsolvable temporal planning problems through the use
of landmarks. In Proc. ECAI 2008, 919–920.
Marzal, E.; Sebastia, L.; and Onaindia, E. 2014. On the use
of temporal landmarks for planning with deadlines. In Proc.
ICAPS 2014.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Sebastia, L.; Marzal, E.; and Onaindia, E. 2007. Extracting
landmarks in temporal planning domains. In IC-AI 2007,
520–526.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. AIJ 170(3):298–335.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proc. ICAPS 2004, 150–159.
Wang, D., and Williams, B. 2015. tBurton: A divide and
conquer temporal planner. In Proc. AAAI 2015.

146




