
Iterated Local Search Heuristics for Minimizing Total Completion Time in
Permutation and Non-Permutation Flow Shops

Alexander J. Benavides, Marcus Ritt
Instituto de Informática
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Abstract

We study the improvement of non-permutation over
permutation schedules in flow shops when minimiz-
ing the total completion time. We solve both problems
by a two-phase heuristic. The first phase uses an it-
erated local search to find a good permutation sched-
ule. The second phase explores non-permutation sched-
ules using an effective insertion neighborhood, that per-
mits to anticipate or delay a job when passing from
one machine to the next. In computational experiments
we show that both phases yield state-of-the-art results.
We find that allowing non-permutation schedules can
reduce the total completion considerably with a mod-
erate extra effort, and without increasing the buffer
size needed during processing. We conclude that non-
permutation schedules can be viable alternative to per-
mutation schedules in flow shops.

1 Introduction
In a flow shop we have to schedule jobs J1, . . . , Jn on ma-
chinesM1, . . . ,Mm. Each job has to be processed on all ma-
chines in the given machine order. The processing of job Jj
on machine Mi is called an operation. It takes time pij and
cannot be preempted. At any instant, each job can be pro-
cessed on at most one machine, and no machine can process
more than one job. In a permutation schedule all machines
process the jobs in the same order, in a non-permutation
schedule the processing order may be different on some ma-
chines.

The most common objective functions in flow shops are to
minimize the makespan Cmax = maxCi and the total com-
pletion time

∑
Cj of the schedule, for completion times Cj

of the jobs on the last machine. In this paper we focus on the
second objective. For release times rj = 0, minimizing the
total completion time is equivalent to minimizing the total
flowtime

∑
Fj

1. Permutation and non-permutation variants
of this problem are also denoted by F | prmu |

∑
Cj and

F ||
∑
Cj (Graham et al. 1979).

For regular measures, which include makespan, and to-
tal completion time or flowtime, there is always an opti-
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1Articles about minimizing flowtime usually suppose that all
jobs are released at time 0.

mal schedule with the same job processing order on the
first two machines (Conway, Maxwell, and Miller 1967).
Thus, for m ≤ 2 the optimal permutation and non-
permutation solutions of the flow shop scheduling prob-
lem (FSSP) have the same value. For three or more ma-
chines optimal non-permutation schedules can be shorter
than optimal permutation schedules, as shown in the exam-
ple in Figure 1. Minimizing flowtime is strongly NP-hard
for m ≥ 2 (Garey, Johnson, and Sethi 1976). (Gonzalez
and Sahni 1978) have shown that no busy schedule (i.e. a
schedule where in each instant at least one machine is pro-
cessing some job) has a flowtime more than n times of the
optimum, and that processing jobs in non-decreasing total
processing time pj =

∑
i pij yields an m-approximation.

The best known approximation ratio in the permutation case
is O(

√
min{m,n}) (Nagarajan and Sviridenko 2009).

In this paper, we are interested in the difference between
permutation and non-permutation schedules, and the dif-
ficulty of finding good non-permutation schedules. There
are n!m−1 candidates for optimal non-permutation sched-
ules, compared to only n! permutation schedules. Non-
permutation schedules for flow shops have been mostly ne-
glected in the literature, since they are considered to be as
difficult to find as job shop schedules, whereas permuta-
tion schedules of good quality can be found much easier.
However, to the extent that state-of-the-art methods for per-
mutation schedules approach the optimal values for permu-
tation schedules, improvements by non-permutation sched-
ules may be interesting. (Liao, Liao, and Tseng 2006), for
example, report average improvements of up to 0.94% for
instances with 10 to 50 jobs and 5 to 15 machines.

To find good non-permutation schedules one can try to
exploit the observation that most combinations of job pro-
cessing orders on subsequent machines are very unlikely to
lead to better solutions, e.g. when the processing order of the
jobs is reversed from one machine to the next. Therefore the
challenge is to reduce the search space to interesting non-
permutation solutions of short total completion time.

The remainder of this paper is organized as follows. We
discuss related work in Section 1 and present in Section 2
our two-phase local search heuristic. We present a detailed
computational analysis in Section 3 and conclude in Sec-
tion 4.
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Figure 1: Gantt chart of the optimal non-permutation sched-
ule of total completion time 21 of a three-machine two-job
flow shop. The best permutation schedule has total comple-
tion time of 23 (Rinnooy Kan 1976).

Related work

(Pan and Ruiz 2013) surveyed simple and composite heuris-
tics for minimizing total completion time in permutation
flow shop, and (Pan and Ruiz 2012) compared four iterated
local search methods to twelve state-of-the-art metaheuris-
tics, including the estimation of distribution algorithm and
the variable neighborhood search of (Jarboui, Eddaly, and
Siarry 2009), four hybrid genetic algorithms of (Tseng and
Lin 2009), (Tseng and Lin 2010), (Zhang, Li, and Wang
2009), (Xu, Xu, and Gu 2011), the discrete differential evo-
lution algorithm of (Zhang and Li 2011), and the stochastic
local search of (Dubois-Lacoste, López-Ibáñez, and Stützle
2010). Recently, (Dong et al. 2013) proposed the multi-
restart iterated local search MRSILS working with a pool
of solutions, and (Zhang and Wu 2014) proposed a parti-
cle swarm optimization hybridized with simulated anneal-
ing and variable neighborhood search. All the above stud-
ies are limited to permutation schedules. Only a few au-
thors consider non-permutation schedules. (Krone and Stei-
glitz 1974) propose a two-phase heuristic. The first phase
improves a random permutation schedule by shifting jobs,
and the second phase constructs a non-permutation schedule
by selective job passing. (Liao, Liao, and Tseng 2006) pro-
pose a tabu search on an insertion neighborhood and com-
pare it to the genetic algorithm of (Reeves 1995) on six
objective functions, including total completion time. Non-
permutation schedules are obtained inm−1 phases. In phase
i the permutations on machines 1, . . . , i + 1 are fixed, and
the permutation π for machines i + 2, . . . ,m is optimized.
(Pugazhendhi et al. 2004) observe that the improvement of
non-permutation schedules over permutation schedules in-
creases with the percentage of missing operations. They de-
rive non-permutation schedules from permutation schedules
by anticipating operations that can be executed in idle inter-
vals of the current machine.

From the above surveys and the more recent publications
iterated local search methods emerge as the most effective
technique to find good permutation schedules, and the tabu
search of (Liao, Liao, and Tseng 2006) seems to be the cur-
rent best method for finding non-permutation schedules of
short total completion time. Iterated local search methods
are also among the state-of-the-art techniques for minimiz-
ing the makespan. For this reason we focus in this paper
on iterated local search heuristics to find non-permutation
schedules.

Algorithm 1 Iterated local search
Input: A solution s.
Output: An improved solution s′.

1: function ILS(s)
2: s := localsearch(s)
3: repeat
4: perturb the current solution s to obtain s′
5: s′ := localsearch(s′)
6: if accept(s, s′) then
7: s := s′

8: end if
9: until some stopping criterion is satisfied

10: return the best solution s∗ found during the search
11: end function

2 Iterated local search heuristics for
minimizing total completion time

An iterated local search (ILS) starts from some initial solu-
tion and repeatedly applies a local search procedure to find
a local minimum, followed by a perturbation to escape from
it, until some stopping criterion is satisfied. To avoid visit-
ing substantially worse local minima, often the next local
minimum must satisfy some acceptance criterion; otherwise
the search maintains the current local minimum. The general
structure of an ILS is shown in Algorithm 1.

In our algorithms we use a Metropolis acceptance crite-
rion in line 6. The new solution s′ is accepted with probabil-
ity

P [accept(s, s′)] = min{e−∆(s,s′)/T , 1} (1)

for an increase in total completion time of ∆(s, s′) =
Csum(s′)−Csum(s) and a temperature T = αpn/10, where

p =
∑
j∈[n]

∑
i∈[m]

pij/nm

is the average processing time of an operation. A similar
criterion has been proposed by (Osman and Potts 1989) for
minimizing the makespan in permutation flow shops by Sim-
ulated Annealing and has been successfully applied in sev-
eral iterated local search algorithms. For the total completion
time criterion the temperature has been adjusted to be a fac-
tor of n higher to account for the higher objective function
value.

Besides the acceptance criterion, the performance of an
ILS depends on the structure of the neighborhood, and the
perturbation strength. A perturbation which is too weak may
lead to stagnation, while a too strong perturbation can turn
the algorithm into a randomized multi-start local search.

A special case of an ILS is an iterated greedy algorithm
(IGA). Here, the perturbation is achieved by removing some
random elements from the current solution and using a
greedy algorithm to rebuild a complete solution. Since the
rebuilding step is not random, an IGA which repeatedly de-
structs and reconstructs the solution can be effective even
without a local search.
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Evaluation of schedules
A permutation schedule is given by a permutation π of the
index set [n] of the job2 a non-permutation solution s =
(π1, . . . , πm) is defined by the permutation of the job indices
on each of the m machines. Then πi(k) is the k-th job on
machine Mi and its completion time is

Ci,πi(k) = max{Ci,πi(k−1), Ci−1,πi−1(k)}+ pi,πi(k), (2)

where Ci,πi(0) = 0 and C0,π0(k) = 0. The completion time
of job j is Cj = Cmj and the total completion time is
Csum =

∑
j∈[n] Cj . Computing the total completion time

using equation (2) needs time Θ(nm). Clearly, when the
order of some operations has changed, only the modified
completion times have to be updated. Moreover, (Duan et
al. 2013) have observed that the completion times of the
operations on the last machine depend only on the comple-
tion times of the operations on the critical path. This can be
used to further reduce the number of completion times that
must be updated. We use both techniques in our algorithms
to compute updated total completion times.

An iterated local search for permutation schedules
The most common neighborhoods for permutation sched-
ules are swapping adjacent jobs, swapping arbitrary pairs of
jobs and shifting jobs (Dubois-Lacoste, López-Ibáñez, and
Stützle 2010; Pan and Ruiz 2012; Rajendran and Ziegler
2004; Liu and Reeves 2001; Jarboui, Eddaly, and Siarry
2009; Tasgetiren et al. 2011). For a permutation schedule
π, where π is a permutation of the index set [n] of the jobs,
an adjacent swap at position i ∈ [n − 1] exchanges jobs
π(i) and π(i + 1), a swap of positions i, j ∈ [n] exchanges
the jobs π(i) and π(j), and a shift of the job at position
i ∈ [n] to j ∈ [n + 1] \ {i, i + 1} results in the permu-
tation (π(1), . . . , π(j − 1), π(i), π(j), . . . , π(i − 1), π(i +
1), . . . , π(n)). The size of the adjacent swap neighborhood
is n − 1, the swap and shift neighborhoods have size

(
n
2

)
.

For each neighbor the new total completion time has to be
computed in time O(nm) as described earlier.

The swap and shift neighborhoods have repeatedly been
identified as the most effective ones. In our tests we found
that the order in which the neighbors are examined has a
small but consistent effect on solution quality and robust-
ness. For this reason, and for definiteness, we propose to
visit the shift neighborhood in a random order, and the swap
neighborhood in order of increasing distance of the swapped
jobs. This latter order will, in particular, explore the adja-
cent swap neighborhood, which is part of the complete swap
neighborhood, first. The shift and swap local search are de-
scribed in Algorithms 2 and 3. Our tests have also shown
that both neighborhoods can complement each other, and
thus we apply them alternately. Finally, we impose a rep-
etition limit r on the number of full neighborhood searches
to avoid occasional local minima which are costly to find.
In our experiments below we have set the repetition limit to
r = 3.

We perturb a local minimum by removing d random jobs
from the current schedule, and inserting them again, one by

2We use the notation [n] = {1, . . . , n}.

Algorithm 2 Randomized shift local search.
Input: A permutation schedule π, a repetition limit r
Output: A permutation schedule π′ with Csum(π′) ≤

Csum(π).
1: function RSLS(π,r)
2: repeat at most r times
3: for j ∈ [n] in some random order do
4: let π′ be the result of the best shift of job
π(j)

5: let π:=π′ if Csum(π′) < Csum(π)
6: return π, if the last n shifts did not improve
7: end for
8: until π did not improve
9: return π

10: end function

Algorithm 3 Swap local search.
Input: A permutation schedule π, a repetition limit r
Output: A permutation schedule π′ with Csum(π′) ≤

Csum(π).
1: function SLS(π,r)
2: d := 1
3: while d ≤ n and up to rn2 swaps do
4: for j ∈ [n− d] do
5: swap jobs π(j) and π(j + d) to get π′
6: let π := π′, if Csum(π′) < Csum(π)
7: end for
8: if π improved then
9: d := 1

10: else
11: d := d+ 1
12: end if
13: end while
14: return π
15: end function

one, at the position which minimizes the total completion
time. If there are several insertion positions of minimal to-
tal completion time, we break ties by inserting the job at the
first of them. The initial schedule is obtained by the con-
structive heuristic LR(n/m) of (Liu and Reeves 2001) ap-
plied to n/m initial sequences. The complete iterated local
search for permutation schedules is shown in Algorithm 4.

An iterated greedy algorithm for finding
non-permutation schedules
Our main hypothesis for finding short non-permutation
schedules is that only limited changes to the processing or-
der between two machines need to be considered during
the search. We propose an extended job insertion procedure
which reflects this principle. When inserting a job at some
position into a partial schedule, we allow job passing: the
processing of a job may be anticipated or delayed at some
intermediate machine.

Formally, let π1, . . . , πm be a partial non-permutation
schedule, with j jobs. Inserting a job J at position k ∈
[2, j+ 1] with anticipation after machine i ∈ [m− 1] inserts
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Algorithm 4 Iterated local search for permutation sched-
ules.
Input: A repetition limit r
Output: A permutation schedule π.

1: function ILS(r)
2: π := LR(n/m)
3: π := RSLS(π)
4: repeat
5: remove d random jobs J1, . . . , Jd from π to get
π′

6: for j ∈ [d] do
7: insert Jj into π′ at the position which mini-

mizes Csum(π′)
8: end for
9: if current iteration is even then

10: π′ := SLS(π′, r)
11: else
12: π′ := RSLS(π′, r)
13: end if
14: π := π′, with prob. P [accept(π, π′)] eq. (1)
15: until some stopping criterion is satisfied
16: return the best permutation schedule π found
17: end function

J into π1, . . . , πi at position k, and into πi+1, . . . , πm at po-
sition k − 1. Similarly, inserting a job J at position k ∈ [j]
with delay after machine i ∈ [m−1] insert J into π1, . . . , πi
at position k, and into πi+1, . . . , πm at position k + 1. Fig-
ure 2 gives examples of insertions with anticipation, without
job passing, and with delay.

Insertion with job passing increases the number of possi-
ble insertions of a job from O(n) to O(nm). Thus, the to-
tal time finding the insertion position and the machine after
which the job is anticipated or delayed, if any, such that the
total completion is minimized is O(n2m2). We obtain a it-
erated greedy algorithm for finding non-permutation sched-
ules by repeatedly removing d random jobs, and reinserting
them optimally into the schedule with job passing. If sev-
eral insertions lead to the same total completion time pref-
erence is given to insertions without job passing over inser-
tions with anticipation, followed by insertions with delay.
The earliest insertion position is used as a second-level tie-
breaker. As for the iterated local search, the new schedule is
accepted according to the Metropolis criterion (1). The com-
plete algorithm proceeds in two phases. In the first phase,
the ILS is used to find a good permutation schedule, which
serves as the initial solution for the second phase, which ap-
plies the IGA to find an improved non-permutation schedule.
The complete procedure is shown in Algorithm 5.

3 Computational experiments
We report the results of two computational tests. The first
compares the quality of the permutation schedules obtained
by our iterated local search to state-of-the-art methods from
the literature. The second test compares the quality of non-
permutation schedules to permutation schedules. Addition-
ally, we study the amount of job reordering between con-
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Figure 2: Top: insertion of a job at position k = 2 with antic-
ipation after machine 2. Middle: insertion of a job at position
k = 2 without job passing. Bottom: insertion of a job at po-
sition k = 2 with delay after machine 2.

Table 1: Sizes of the test instances.

Grp. n m Grp. n m Grp. n m

ta01 20 5 ta05 50 10 ta09 100 20
ta02 20 10 ta06 50 20 ta10 200 10
ta03 20 20 ta07 100 5 ta11 200 20
ta04 50 5 ta08 100 10 ta12 500 20

secutive machines in non-permutation schedules. Finally,
we assess the buffer requirements of permutation and non-
permutation schedules.

Test instances and experimental methodology
We have tested our algorithms on 120 difficult instances pro-
posed by (Taillard 1993), which are the standard benchmark
in the literature. The instances consist of 12 groups of 10 in-
stances of the same size. Table 1 shows the number of jobs
(“n”) and the number of machines (“m”) of each group. The
processing times are uniform random numbers from the in-
terval [1, 99].

It is common to compare metaheuristics for flow shops
using a time limit of τnmms, for some constant τ . We
use three different time scales in our experiments. For the
ILS we adopt the shortest time scale τ = 30 used in the
literature. We further use a time scale of τ = 60, since
this is the total time needed for the two phases of the IGA.
Finally, since finding non-permutation schedules is consid-
erably harder, we report results for a longer time limit of
30nm2 for the IGA. We present the quality of the results
as relative deviations (Csum − C∗sum)/C∗sum from the best
known values C∗sum reported by (Pan and Ruiz 2012). All
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Algorithm 5 Iterated greedy algorithm for non-permutation
schedules.
Input: A repetition limit r.
Output: A non-permutation schedule s = (π1, . . . , πm).

1: function IGA(r)
2: π := ILS(r)
3: let s := (π, π, . . . , π)
4: repeat
5: remove d random jobs J1, . . . , Jd from each
πi ∈ s to get π′i ∈ s′

6: for j ∈ [d] do
7: for all positions k ∈ [n] do
8: evaluate insertion of Jj at k with antici-

pation after machine 2, . . . ,m− 1.
9: evaluate insertion of Jj at k with delay

after machine 2, . . . ,m− 1.
10: evaluate insertion of Jj at k.
11: end for
12: apply the best insertion of Jj to s′
13: end for
14: s := s′, with probability P [accept(s, s′)] eq. (1)
15: until some stopping criterion is satisfied
16: return the best permutation schedule π found
17: end function

reported values are averages of 10 replications.
Our algorithms have been implemented in C++, compiled

with g++ version 4.7.3 and run on an PC with an eight-
core AMD FX-8150 processor running at 1.4 GHz and with
32 GB of main memory, using only one core in each ex-
ecution. The detailed results reported in the tables below
are available online at http://www.inf.ufrgs.br/
algopt/npcsum.

Calibration of parameters
Both local search algorithms, ILS and IGA, depend on two
parameters: the number of jobs d to remove and reinsert
in a perturbation and the temperature factor α. We use
the R package irace (López-Ibáñez et al. 2011) which im-
plements an iterative F-Race (Balaprakash, Birattari, and
Stützle 2007) to tune the parameters. An F-Race generates
random parameters settings and compares their performance
by applying the non-parametric Friedman test for comparing
multiple blocks and treatments and post-hoc tests to iden-
tify the best parameter settings. The iterated version repeats
this process using the best parameter settings from the previ-
ous iteration to generate new ones. We chose the three hard
instances ta061, ta071, and ta081 for these tests. Based on
values of the literature and some preliminary tests we have
chosen parameter search ranges α ∈ [0.01, 0.25], d ∈ [1, 15]
for the iterated local search for permutation schedules, and
α ∈ [0.0125, 2.0], d ∈ [1, 10] for the iterated greedy search
for non-permutation schedules. The racing algorithm was
run in both cases with a budget of 2000 executions. The best
parameter settings found were α = 0.2353 and d = 8 for
the permutation version, and α = 0.146 and d = 2 for the
non-permutation version.

Table 2: Comparison to the best heuristic IGA reported in
(Pan and Ruiz 2012) on the instances of (Taillard 1993).

n m This paper PR

30nm 60nm 30nm 60nm

20 5 0.00 0.00 0.00 0.00
20 10 0.00 0.00 0.00 0.00
20 20 0.00 0.00 0.00 0.00
50 5 0.23 0.17 0.51 0.46
50 10 0.33 0.27 0.75 0.70
50 20 0.41 0.36 0.75 0.67

100 5 0.61 0.52 1.03 0.91
100 10 0.83 0.69 1.43 1.23
100 20 0.98 0.88 1.49 1.35
200 10 0.67 0.57 1.08 0.93
200 20 0.60 0.41 1.00 0.82
500 20 0.36 0.30 0.52 0.45

Averages 0.42 0.35 0.71 0.63

Table 3: New upper bounds on the total completion time for
permutation schedules.

Instance Csum Instance Csum

ta099 1025946 ta115 6728404
ta103 1268383 ta118 6771654
ta109 1234115 ta119 6710587

Quality of permutation schedules
Table 2 compares our results for a time limit of 30nmms
and 60nmms to the iterated greedy algorithm of (Pan and
Ruiz 2012) (PR) with the same time limits. PR is the best of
16 heuristics evaluated by (Pan and Ruiz 2012). The table re-
ports, for each instance group, the average relative deviation
from the best known values in percent. For our algorithm
we report averages of 10 replications, the values of PR are
averages of 5 replications.

The machine of (Pan and Ruiz 2012) is about 10% faster
than our machine, but the average relative deviations of
our algorithm in 30nmms is still better than that of PR in
60nmms. Indeed, in 89 of the 120 instances the average
total completion time of our algorithm is less than that of
PR obtained in about the double of the time. Our algorithm
found 6 new upper bounds on the total completion time,
which are reported in Table 3.

We further compare our results to the heuristic MRSILS
of (Dong et al. 2013). They report a slightly better average
relative deviation compared to the heuristics DABC of (Tas-
getiren et al. 2011) and hDDE of (Pan, Tasgetiren, and Liang
2008). Both DABC and hDDE are dominated by PR of (Pan
and Ruiz 2012), which achieves solutions with an average
relative deviation of about 0.4% less. (Dong et al. 2013) re-
port the best values found in their experiments for instances
with 50 and 100 jobs for a time limit of 400nmms over 10
replications. We compare these values to the best values of

38



Table 4: Comparison to the results of (Dong et al. 2013)’s
heuristic MRSILS: average relative deviations of the best re-
sult of 10 replications.

n m This paper MRSILS

30nm 60nm 400nm∗

50 5 0.10 0.07 0.09
50 10 0.13 0.09 0.17
50 20 0.18 0.17 0.21

100 5 0.44 0.39 0.45
100 10 0.58 0.41 0.53
100 20 0.61 0.59 0.55

Averages 0.34 0.29 0.34
∗: about 130nmms on our hardware.

our ILS for time limits of 30nmms and 60nmms over 10
replications in Table 4. The machine of (Dong et al. 2013)
is about a factor of 3 slower than ours. After taking into ac-
count that factor, our method produces comparable results
in about a quarter of the time of MRSILS, and consistently
better results in half the time.

We cannot directly compare to the recent particle swarm
optimization heuristic of (Zhang and Wu 2014), since nei-
ther the total completion times nor the upper bounds used
to compute the relative deviations are available. Their av-
erage relative deviation in instances with up to 100 jobs is
about 0.5% less than that of the particle swarm optimiza-
tion of (Tasgetiren et al. 2007). (Pan, Tasgetiren, and Liang
2008) report an improvement of about 0.75% over the latter
method for their IGARLS heuristic, which in turn is dom-
inated by PR of (Pan and Ruiz 2012). Therefore, PR very
likely is comparable to or dominates (Zhang and Wu 2014)’s
method.

In summary, the results show that our iterated local search
is competitive with the currently best methods, and thus can
serve as a fair baseline in the comparison to non-permutation
schedules in our next experiment.

Quality of non-permutation schedules
In our second experiment we compare the quality of permu-
tation and non-permutation schedules. Table 5 reports aver-
age relative deviations for all 12 instance groups for the ILS
for permutation schedules with a time limit of 60nmms, and
for the IGA for non-permutation schedules with the same
time limit. We also report the results for the IGA for a longer
time limit of 30nm2 ms. The longer time limit has been cho-
sen to study the convergence of the search, since the non-
permutation problem is considerably more difficult to solve.
All values are averages of 10 replications. Negative relative
deviations indicate an improvement over the current best up-
per bound for permutation schedules.

The comparison shows that non-permutation schedules
achieve a relative deviation which is in average about 0.44%
less. The improvement over permutation schedules is largest
for smaller instances, and for instances with a large number
of machines. Permutation schedules of the instances with 20

Table 5: Comparison of permutation (PS) and non-
permutation (NPS) schedules on the instances of (Taillard
1993).

n m PS NPS

60nm 60nm 30nm2

20 5 0.00 -0.60 -0.62
20 10 0.00 -1.18 -1.28
20 20 0.00 -1.01 -1.19
50 5 0.17 0.08 0.06
50 10 0.27 -0.01 -0.10
50 20 0.36 -0.38 -0.48

100 5 0.52 0.50 0.43
100 10 0.69 0.47 0.43
100 20 0.88 0.39 0.22
200 10 0.57 0.45 0.38
200 20 0.41 0.06 -0.08
500 20 0.30 0.18 -0.01

Averages 0.35 -0.09 -0.19

jobs and the instances with 20 machines improve in average
by about 0.9%. The longer time limit of 30nm2 ms improves
mostly the instances with a large number of machines, which
are harder to optimize, and results in an overall improvement
of 0.1%.

Of the 120 instances, 114 non-permutation schedules have
a smaller total completion time than the permutation sched-
ules found with the same time limit of 60nmms. The aver-
age total completion in 10 replications is better than the best
upper bound for the permutation schedules in 49 instances,
and overall 79 shorter non-permutation schedules have been
found. For the longer time scale 66 non-permutation sched-
ules are shorter in average, and 88 instances permit a shorter
schedule than the best known permutation schedule.

In summary, the non-permutation schedules can improve
significantly over permutation schedules, and given the cur-
rent quality of heuristics for permutation schedules, it seems
that additional optimization time is better invested into find-
ing non-permutation schedules.

Amount of job reordering

Next, we investigated the amount of operations that change
their processing order in the non-permutation schedules
found in our second experiment. To do this, we define the
job reordering index of an schedule s = (π1, . . . , πm) as the
mean number of job inversions between adjacent machines
per job and number of adjacent machine pairs. This is de-
fined mathematically as

JRI(s) =

∑m−1
i=1 τ(πi, πi+1)

n(m− 1)
,

where τ is Kendall’s tau distance between two permutations
π and σ. Kendall’s tau is the number of pairs that are in
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Table 6: Comparison of average (b) and maximum buffer
(B) sizes of permutation (PS) and non-permutation sched-
ules (NPS) on the instances of (Taillard 1993).

PS NPS

n m 30nm 60nm 60nm 30nm2

b B b B b B b B

20 5 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.0
20 10 2.2 2.2 2.2 2.2 2.2 2.3 2.1 2.4
20 20 2.7 2.7 2.7 2.7 2.4 2.8 2.4 2.9
50 5 2.8 3.3 2.7 3.2 2.7 3.4 2.8 3.3
50 10 3.1 3.8 3.1 3.9 3.0 3.5 3.1 3.8
50 20 3.9 5.2 4.0 4.9 3.8 4.6 3.8 4.8

100 5 3.9 4.6 3.9 4.6 3.9 4.7 3.7 4.4
100 10 4.4 5.6 4.3 5.0 4.3 5.2 4.4 5.3
100 20 5.7 6.9 5.6 6.5 5.5 6.3 5.6 6.8
200 10 5.2 6.3 5.3 6.2 5.2 6.4 5.0 6.1
200 20 6.5 7.9 6.4 7.6 6.4 7.7 6.4 7.7
500 20 9.3 10.4 9.1 10.1 9.2 10.3 8.9 9.9

Avg. 4.3 5.1 4.3 4.9 4.2 4.9 4.2 5.0

different order in the two permutations, namely

τ(π, σ) =

|{{i, j} | π−1(i) < π−1(j) ∧ σ−1(i) > σ−1(j)}|,

where i, j ∈ [n], and π−1 and σ−1 are the inverse permuta-
tions.

We observed that the average JRI is 3.3% and the max-
imum JRI is 6% among 2400 non-permutation schedules,
with exception of ta003 schedules that present JRI between
6% and 9%. We also counted the number of inversions that
each job has on each schedule, and we observed that 83.7%
of the jobs change their position only once in a schedule,
12.5% change twice, 3.2% change three times, and the re-
maining jobs (0.6%) change between four and sixteen times,
mainly in the instances of 200 jobs or more. This confirms
our hypothesis that good non-permutation schedules with a
very limited amount of reordering of the operations between
the machines can be found.

Buffer sizes
Finally, we evaluate the buffer requirements of permutation
and non-permutation schedules. In Table 6 we report the
average buffer size b and the maximum buffer size B for
all permutation and non-permutation schedules found in the
first two experiments. The buffer size of a single schedule
is defined as the largest buffer necessary between any two
machines. As in the previous experiments, the values are av-
erages over 10 replications.

The results show that the average and maximum buffer
sizes depend mainly on the number of jobs and machines of
the instance, and do not vary significantly with the quality of
the heuristic solution. In particular, non-permutation sched-
ules do not lead to larger buffer sizes, and therefore can be
implemented in practice without technological changes.

4 Conclusions
We have studied heuristics based on iterated local search for
minimizing the total completion time in flow shops. We have
proposed an ILS for permutation schedules and an IGA to
find non-permutation schedules. The ILS is an evolution of
current iterated local search methods and produces solutions
of an average relative deviation from the current best solu-
tions about 0.3% shorter than state-of-the-art methods on the
benchmarks of (Taillard 1993). In our experiments we have
found 6 new upper bounds for these instances.

When permitting non-permutation schedules the IGA can
reduce the average relative deviation by another 0.44%. The
gain of non-permutation schedules is particularly large for
instances with a small number of jobs and a high number
of machines. For the smallest instances with 20 jobs, whose
current best upper bounds are presumably very close to op-
timal, the improvement in average relative deviation is close
to 1%. In our experiments we found 88 non-permutation
schedules of less total completion time than the current best
upper bounds for permutation schedules. From the com-
parison of the results for permutation and non-permutation
schedules with a time limit of 60nmms, we conclude that
additional computation time after 30nmms is better in-
vested in finding non-permutation schedules.

(Liao, Liao, and Tseng 2006) found an average improve-
ment of non-permutation over permutation schedules of
0.25% for small instances with 10 to 50 jobs and 5 to 15
machines. Our results indicate that larger improvements of
about 0.44% can be achieved. The improvements of non-
permutation schedules we found is comparable to the im-
provements of (Pugazhendhi et al. 2004) for instances with
20% missing operations. Most likely the gains for instances
with missing operations can be even larger.
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