
Schedule Generation Schemes and Genetic Algorithm for the Scheduling Problem
with Skilled Operators and Arbitrary Precedence Relations

Raúl Mencı́a1 and Marı́a R. Sierra1 and Carlos Mencı́a2 and Ramiro Varela1

1Department of Computer Science,
University of Oviedo, 33204 Gijón (Spain)

e-mail: raul89@gmail.com, {sierramaria, ramiro}@uniovi.es
2CASL, University College Dublin, Ireland

e-mail: carlos.mencia@ucd.ie

Abstract

In real-life production environments it is often the case
that the processing of a task on a given machine requires
the assistance of a human operator specially skilled to
process that task. In this paper, we tackle a scheduling
problem involving operators that are skilled to manage
only subsets of the whole set of tasks in a given shop
floor. This problem was recently proposed motivated
by a handicraft company. In order to solve it, we make
some contributions. We first propose a general sched-
ule builder and particularize it to generate several com-
plete solution spaces. This schedule builder is then ex-
ploited by a genetic algorithm that incorporates a num-
ber of problem-specific components, including a cod-
ing schema as well as crossover and mutation genetic
operators. An experimental study shows substantial im-
provements over existing methods in the literature and
reveals useful insights of practical interest.

Introduction
The scheduling problem with arbitrary precedence rela-
tions and skilled operators, defined in (Agnetis, Murgia, and
Sbrilli 2014) and denoted JSSO, is a generalization of the
job shop scheduling problem with operators (JSO) defined
in (Agnetis et al. 2011), which in turn generalizes the clas-
sic job shop scheduling problem (JSP). In the JSP each task
belongs to one and only one job, and each job defines a lin-
ear ordering for the processing of its tasks. The JSO extends
the JSP in such a way that each task must be assisted by a
human operator, the number of them being lower than both
the number of jobs and the number of machines. In the JSO
all the operators are equally skilled to assist any task, what
may be unrealistic in many production environments.

The JSSO is motivated by a real-life handicraft company
where the operators have different expertise. For example,
an apprentice may be able to perform only a limited subset
of single assembly tasks while the most difficult operations
may require more experienced workers. Therefore, finding
good solutions for the JSSO is an issue of major interest for
human resources management as it would allow the com-
pany to make the best use of its employees and to plan their
training for future projects.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To solve the JSSO, two heuristic algorithms were pro-
posed in (Agnetis, Murgia, and Sbrilli 2014), which were
evaluated across a benchmark set defined in accordance with
the characteristics of the problems of the handicraft com-
pany. These algorithms are termed STA-OMSB and MSB-
DOS respectively, and both of them exploit the well-known
shifting bottleneck heuristic (Adams, Balas, and Zawack
1988). The results of these algorithms were compared with
those obtained by Cplex MILP solver from a formulation
proposed in the same paper.

In this paper we make several contributions towards un-
derstanding and solving the JSSO problem. Firstly, we for-
malize it using a disjunctive graph model, which makes it
easier to reason about the problem. Then, we explore dif-
ferent ways of obtaining reduced dominant solution spaces.
Concretely, we propose a general schedule builder, termed
SOG&T , and particularize it in three different ways. The
hardness of the JSSO motivates the use of approximate al-
gorithms. Accordingly, we propose a genetic algorithm that
exploits the SOG&T and incorporates a novel problem-
dependent coding scheme. The results from an experimental
study indicate that our approach is very effective and out-
performs previous methods in the state of the art for this
problem.

The remaining of the paper is organized as follows. In
the next two sections, we give a formal definition of the
JSSO as a constraint satisfaction problem with optimization
and propose a disjunctive graph model to represent prob-
lem instances and schedules. Then, we describe and analyze
the proposed schedule generation scheme termed SOG&T .
After that, we introduce the genetic algorithm devised to
solve the JSSO and summarize the results of an experimen-
tal study where the genetic algorithm is evaluated and com-
pared with the state of the art. The paper finishes with some
conclusions and ideas for future work.

Problem Formulation
In the scheduling problem with skilled operators and arbi-
trary precedence relations, we are given a set M of q ma-
chines, a set O of p operators and a set T of n tasks or
operations. The task u requires two resources during its pro-
cessing time pu: a particular machine mu ∈ M and one of
the operators o ∈ Ou ⊆ O, where Ou denotes the subset
of operators skilled to assist the task u. We assume that the

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

165

processing time pu is independent of the assisting operator.
There are arbitrary precedence relations among tasks

specified by a task graph (T , E) where nodes correspond
to tasks and an arc (u, v) ∈ E means that task u must be
performed before task v starts.

The objective is to allocate a starting time stu and an op-
erator ou to each task u ∈ T , such that the makespan is
minimized and the following constraints are satisfied:

i. The tasks must be processed following the order ex-
pressed by the task graph; i.e., stu + pu ≤ stv if
(u, v) ∈ E.

ii. Each task u must be assisted by a skilled operator to do
it; i.e., ou ∈ Ou, and the operator is allocated to the task
over its whole processing time.

iii. Two tasks assisted by the same operator or processed on
the same machine cannot overlap; i.e., if (ou = ov) ∨
(mu = mv) then (stu + pu ≤ stv)∨ (stv + pv ≤ stu).

iv. The tasks cannot be preempted; i.e., Cu = stu + pu,
where Cu denotes the completion time of task u.

This problem was firstly defined in (Agnetis, Murgia, and
Sbrilli 2014) and denoted JSSO. In some cases, the task
graph has a tree structure with the root corresponding to
the final assembly task. However, the topology of the task
graph may be different and, for example, it may represent a
number of independent sequences of operations which are
then termed jobs. The JSSO problem is a generalization of
the JSP and JSO, and can be seen as a particular case of the
Multi-mode Resource Constrained Project Scheduling Prob-
lem (MRCPSP).

A Disjunctive Graph Model
Scheduling problems are usually represented by means of
a disjunctive model (Roy and Sussman 1964). This kind of
modeling allows for solving the problem by deciding about
the relative order among operations that share the same re-
sources, instead of considering for every operation all its
possible starting times. We propose here to use the follow-
ing model for the JSSO which is an extension to that used in
(Sierra, Mencı́a, and Varela 2013) for the JSO where all op-
erators can assist any operation and the precedence relations
define a number of jobs.

A problem instance is represented by a directed graph
G = (V,E ∪D ∪ I ∪O) where:

• Each node in V represents either a task in T , or one of the
fictitious tasks with null processing time; namely, starting
tasks for each operator o ∈ O, and the the dummy opera-
tions start and end.

• E is the set of arcs of the task graph also called con-
junctive arcs. P (v) and S(v) will denote the sets of tasks
which are predecessors and successors of v respectively
in the task graph.

• D is the set of disjunctive arcs which represent capacity
constraints of the machines. D is partitioned into subsets
Dj with D = ∪j=1,...,qDj . Dj includes an arc (v, w) for
each pair of operations requiring the machine j.

• O is the set of operator arcs and includes two types of
arcs: one arc (u, v) for each pair of operations of the prob-
lem such that Ou ∩ Ov 6= ∅, and arcs (o, u) for each op-
erator node o and task u such that o ∈ Ou.

• The set I includes arcs connecting node start to each node
o ∈ O and arcs connecting each task without successors
in the task graph to the node end.

Arcs are weighted with the processing time of the task at
the outgoing node.

From this representation, building a schedule may be
viewed as a process of fixing disjunctive and operator arcs. A
disjunctive arc between operations u and v gets fixed when
either (u, v) or (v, u) is selected and so the other one dis-
carded. If the operator arc (o, u) is fixed, the task u is as-
sisted by o, and consequently all arcs (o′, u) for o′ other than
o are discarded. Also, if the operator arc (u, v) is fixed then
u and v are assisted by the same operator, u before v. In
this case, the operator arc (v, u) and the remaining operator
arcs connecting u or v to operations assisted by operators
other than o are discarded. So, discarding both arcs (u, v)
and (v, u) means that u and v will be assisted by different
operators.

A feasible schedule S is represented by an acyclic sub-
graph of G, of the form GS = (V,E ∪ F ∪ I ∪ Q), where
F ⊂ D expresses the processing order of tasks on the ma-
chines and Q ⊂ O expresses the sequences of tasks that are
assisted by each operator. In other words:

• F = ∪j=1,...,qFj , Fj ⊂ Dj such that (u, v) ∈ Fj iff
mu = mv and u is processed before v in S. So, Fj rep-
resents the machine sequence or processing order of tasks
in the machine j.

• Q = ∪o=1,...,pQo, where Qo represents the operator se-
quence of o, and includes the arcs (o, u), (o, v) and (u, v)
for each pair of operations assisted by the operator o such
that u is processed before v. Each operation u must be
included in one and only one operator sequence.

A critical path is a longest cost path in GS from node
start to node end. The head rv of an operation v is the cost
of the longest path from node start to node v and defines a
lower bound for stv . For most regular objective functions,
in particular for the makespan, taking stv = rv produces the
optimal value restricted to the processing ordering defined
by the solution graph. In this case, the cost of a critical path
is the makespan of the schedule S denoted Cmax(S).

Figure 1 shows a solution graph for a problem instance
with 7 tasks, 3 machines and 2 operators.

A partial schedule is given by a subgraph of G where
some of the disjunctive and operator arcs have not fixed yet.
In such a schedule PM(v) denotes the disjunctive prede-
cessors of v; w ∈ PM(v) means that mw = mv and that
the disjunctive arc (w, v) was fixed (analogously, SM(v)
denotes the disjunctive successors of v). PO(v) denotes the
operator predecessors of v, i.e., w ∈ PO(v) if the operator
arc (w, v) was fixed (analogously, SO(v) are the operator
successors of v).

166

2

5

4

4

1

2

4

1{1}1 2{2}3

3{1,2}2 4{1}1

6{1}1 7{1,2}2

5{1,2}2

Op 1

Op 2

Start End

Figure 1: A solution graph for a problem instance with 7
tasks, 3 machines and 2 operators. Each task node includes
the task number, the set of skilled operators and the ma-
chine using the notation uOumu. Dotted and dashed arcs
represent operator sequences starting in an operator node,
while dotted-dashed arcs represent machine sequences. For
the sake of clarity, only the arcs between consecutive nodes
in the relations are represented and only the cost of the arcs
in the task graph are displayed. Every arc should be labeled
with the processing time of the task at the outgoing node.
The makespan is 19 and corresponds to the cost of the criti-
cal path (start Op1 6 7 3 4 5 end).

Schedule Generation Schemes
In this section we propose a new schedule generation
scheme for the JSSO which is a generalization of the well-
known G&T algorithm proposed in (Giffler and Thompson
1960) for the classic JSP and also of the OG&T algorithm
proposed in (Sierra, Mencı́a, and Varela 2013) for the JSO.
The new schedule builder is denoted SOG&T (Skilled Op-
erators G&T).

The SOG&T Algorithm
This algorithm iterates over n steps and in each iteration one
of the tasks is scheduled following an order compatible with
the partial ordering defined by the task graph. So, by the time
the task u is scheduled, all tasks v ∈ P (u) have already been
scheduled. At this time, u is allocated an operator ou = o ∈
Ou and a starting time stu such that it is scheduled after all
the scheduled tasks that require the same machine mu or that
were allocated the same operator ou, i.e., it is an appending
scheme.

Let SC be the set of scheduled operations before the cur-
rent iteration and let GSC = (V,E ∪ H ∪ I ∪ R) be the
partial solution graph built so far. For all u, v ∈ SC such
that mu = mv , either (u, v) or (v, u) are in H . Also, for all
u ∈ SC, (o, u) is in R for some o ∈ O, and if (o, v) is also
in R then either (u, v) or (v, u) are in R as well.

The set of eligible operations in the current iteration is
defined as:

A = {v; v /∈ SC,P (v) ⊆ SC} (1)

A includes the first unscheduled tasks in the task graph.
In principle, each task in A is a candidate to be scheduled

next and it can be assisted by any of the operators skilled to
do it. So, the set of scheduling options is defined as:

A = {(u, o);u ∈ A, o ∈ Ou} (2)

As the set A may be very large, we will only consider
options in a subset X ⊆ A. If the option (u, o) ∈ X is
selected for the next scheduling step, then the lowest starting
time of u is given by

stu(o) = max{stx + px, sty + py, stz + pz} (3)

where

• x is the task in P (u) with the largest completion time; i.e.,

x = argmax{stv + pv; v ∈ P (u)}, (4)

• y is the last scheduled task in the machine required by u
and

• z is the last scheduled task assisted by the operator o.

The option (u, o) establishes the time interval
[stu(o), stu(o) + pu) for processing u under the assis-
tance of the operator o.

Algorithm 1 shows the general structure of the schedule
builder SOG&T . It starts from a set A containing the tasks
with no predecessors in the task graph and iterates along n
steps. In each iteration an option (u, o) is taken non deter-
ministically from a subset X of the scheduling options. The
task u is scheduled at the time stu(o) given by exp. (3) and
assisted by the operator o. Then the partial schedule built
so far, GSC , and the set A are updated accordingly for the
next iteration. At last, after n iterations, GSC represents a
complete schedule.

Algorithm 1: Schedule builder SOG&T . It builds a fea-
sible schedule in n steps.

Data: A JSSO problem instance P
Result: A feasible schedule for P
A = {u ∈ T ;¬∃(w, u) ∈ E};
for i=1 to n do
A = {(u, o);u ∈ A, o ∈ Ou};
X = a subset of A;
choose (u, o) ∈ X non deterministically;
set stu = stu(o) and ou = o;
add u to SC and update GSC ;
A = {v; v /∈ SC,P (v) ⊆ SC};

end
return the built schedule GSC ;

It is clear that any schedule built by Algorithm 1 is feasi-
ble. Also, depending on the subset of options considered, the
algorithm will generate schedules in different search spaces.
We will only consider here dominant search spaces; i.e.,
spaces containing at least one optimal schedule under the
objective function considered, in our case the makespan.

167

Search spaces
The simplest way to get a dominant search space is taking
X = A in Algorithm 1. In spite of being dominant, as it
is proved below, the search space generated by Algorithm
1 considering all options in A at each iteration may be very
large, even for small instances, as we have mentioned. Fortu-
nately, it is possible to further reduce the search space with-
out loss of dominance.

Let us now consider the option (v∗, o∗) with the earliest
completion time among the options in A; i.e.

(v∗, o∗) = argmin{stu(o) + pu; (u, o) ∈ A} (5)

Let C∗ = stv∗(o
∗) + pv∗ . We define the sets of options A′

and B as follows.

A′ = {(u, o) ∈ A; stu(o) < C∗} (6)
B = {(u, o) ∈ A′; (mu = mv∗ ∨ o = o∗)} (7)

The set A′ reduces the scheduling options to the options
in A having a starting time lower than C∗. So, each option
in A′ establishes a starting time for a task in the interval
[TA′ , C

∗) where

TA′ = argmin{stu(o); (u, o) ∈ A}. (8)
Then, B further restricts the number of options by filtering

those involving a machine other than mv∗ and an operator
other than o∗ at the same time. So, the set B contains the
options for tasks in A that would require either the machine
mv∗ or the operator o∗ at some time in the interval [TB, C∗)
if they were chosen in the current iteration, where

TB = argmin{stu(o); (u, o) ∈ B}, (9)
being TB ≥ TA′ as the option that establishes the value of
TA′ in expression (8) may not be included in B.

The following result establishes that taking X = B makes
the search space dominant.
Proposition 1. In at least one of the best schedules that can
be eventually reached from the current iteration, one of the
operations in A is scheduled in accordance with and option
in B.

Proof. Let S be one schedule that can be eventually built
from the current iteration such that none of the tasks in A is
scheduled in accordance with an option in B. In S, mv∗ and
o∗ are idle over the interval [stv∗(o∗), C∗). Then v∗ could
be rescheduled in accordance with the option (v∗, o∗); i.e.,
starting at stv∗(o∗) and assisted by o∗. As none of the re-
maining operations has to be delayed and stv∗(o

∗) ≤ stv∗ ,
then Cmax(S

′) ≤ Cmax(S). So, if S is one of the best
schedules, then S′ is also one of the best schedules.

Corollary 1. There is a sequence of non deterministic
choices of options, each one from the set B calculated in
each iteration, that allows Algorithm 1 to reach an optimal
schedule.

Proof. It follows trivially from Proposition 1 considering
the initial iteration in which none of the tasks is sched-
uled.

So, due to the fact that B ⊆ A′ ⊆ A, taking X = A′ or
X = A makes the search space dominant as well.

Remark 1. Regarding the sets A′ and B is important to
make the following observation. As we have mentioned, if
in a given iteration the chosen option (u, o) is selected from
A′, then stu ∈ [TA′ , C

∗), while if it is selected from B, then
stu ∈ [TB, C

∗), with TA′ ≤ TB. This fact may have con-
sequences on the idle times of the machines and operators
and so on the average makespan of the schedules. So, as a
consequence of the potentially larger mean idle times of the
schedules generated from B, due to the difference TB−TA′ ,
the average of these schedules may be larger than the aver-
age makespan of the schedules generated from A′.

Also, if the option (u, o) is selected from A, then stu ∈
[TA′ , C), where C is expected to be larger than C∗, so the
average makespan of the schedules generated from A is ex-
pected to be larger than that of the schedules generated from
A′ or B as C − C∗ is likely greater than TB − TA′ .

Summary of Search Spaces and Schedule Builders
In this section we have introduced the SOG&T as a generic
schedule builder and we have seen how it may be adapted
to search in three different dominant search spaces charac-
terized by the sets of options A, A′ and B. Abusing the lan-
guage we will denote these spacesA,A′ and B respectively.

Genetic Algorithm for the JSSO
Genetic algorithms have been successfully applied to
scheduling problems such as JSP (Mattfeld 1995; Bierwirth
1995) or JSO (Mencı́a et al. 2014). In these cases, the prob-
lems were defined by a set of jobs, what allowed the GAs to
use the efficient encoding based on permutations repetition
(Bierwirth 1995). In the JSSO, as it was defined here, this
encoding cannot be used due to the arbitrary precedence re-
lations. So, in principle, we opted to use a more conventional
coding schema as single permutations of tasks.

At the same time, in JSP and JSO no information about
operators needs to be included in the chromosome; in the
first case no operators exist, while in the second all of them
are skilled to assist any operation and so they may be in fact
considered as a cumulative resource of capacity p. However,
in the JSSO, it is reasonable to express operator preferences
for the tasks in the chromosomes in order to get an appropri-
ate coding schema.

In the following subsections, we detail the main compo-
nents of the proposed GA for the JSSO; namely, the coding
schema, the decoding algorithm, the genetic operators and
the general structure of the GA used.

Coding Schema
We propose here a coding schema for the JSSO where a
chromosome consists of two permutations of symbols. The
first one is the task sequence which is a conventional permu-
tation of the numbers 1 . . . n, while the second is the opera-
tor sequence and is given by a permutation with repetition of
the symbols 1 . . . p of size n and represents operator prefer-
ences. Notice that some operators could appear several times
in the chromosome and also some operator may be absent.

168

For example the following two permutations represent a fea-
sible chromosome for the instance considered in Figure 1.

(6, 7, 5, 4, 1, 2, 3)
(1, 2, 2, 2, 1, 1, 1)

(10)

This encoding should be understood in such a way that if
task u appears before task v in the first permutation, then u
should be preferably scheduled before v. At the same time,
the second permutation represents priorities for the opera-
tors to be allocated to tasks. In order to avoid that all tasks
see the same order of operators, the first operator for a task
will be that in the same position as the task in the first permu-
tation and then the remaining ones are taken following the
chromosome as a circular structure. An important observa-
tion is that the task ordering and the operators’ allocation in
the schedule does not only depend on the chromosome, but
also on the decoding algorithm, as we will see in the next
section.

One of the most interesting properties of this encoding is
that any solution can be encoded into a chromosome rep-
resenting the same machine orderings and operator alloca-
tions. At the same time, it is simple and so it allows for
designing efficient genetic operators for crossover and mu-
tation. In principle, the only inconvenience comes from the
fact that the number of replicas of a symbol in the opera-
tor sequence is variable and so an operator could disappear
from the chromosome. However, this problem can be easily
solved by means of some heuristic repairing as we will see.

Decoding Algorithm
Decoding algorithms map chromosomes to feasible solu-
tions. To this aim, we use the SOG&T algorithm presented
above, exploiting the information encoded in the chromo-
somes to guide the search. This algorithm is issued and in
each iteration the option (u, o) ∈ X that is the “leftmost” in
the chromosome, i.e., that fulfills the following two condi-
tions, is chosen
• u is the leftmost in the task sequence of the chromosome

among all tasks appearing in some option in X , and
• o is the first operator skilled to assist u in the preference

list defined by the operator sequence, among the operators
appearing in some option in X for the operation u. If the
operator of none of the options for u in X is present in the
operator sequence, then the operator o with (u, o) ∈ X
that allows u to start earliest is selected.

In the experimental study we will consider all the possibil-
ities above for the set of options X ; namely, A, A′ and B.
In the three cases, the genetic algorithm searches over dom-
inant search spaces and so it has the chance to reach an op-
timal schedule.

We illustrate how the decoding algorithm works by means
of an example. Let us consider the chromosome in (10). It
contains the tentative orderings (6,4,1) and (7,5,3) for ma-
chines 1 and 2 respectively, which are inconsistent due to
the fact that the task 4 must be processed after the task 1,
and the task 5 must be processed after the tasks 7 and 3,
in accordance with the precedences expressed by the task
graph. In spite of that, the chromosome is feasible as the

decoding algorithm will build a feasible schedule from it in
which some of the tentative orderings and operator prefer-
ences will hold, while others will not. If we consider the set
X = A, in the first iteration the scheduling options would
be {(1, 1), (3, 1), (3, 2), (6, 1)}; in all four cases the start-
ing time would be 0. So, according to the chromosome, the
task scheduled in this step would be 6, as it is the leftmost
one in the chromosome among 1, 3, and 6, and the opera-
tor assigned would be 1 (as this is the only option). In the
next iteration, the options would be {(3, 2)} with starting
time 0 and {(1, 1), (3, 1), (7, 1), (7, 2)} with starting time
4. In accordance with the chromosome, the chosen option
would be (7,2). In the third iteration the options would be
{(3, 1), (3, 2)} with starting time 9 and {(1, 1)} with start-
ing time 4, and the chosen option would be (1,1). This way,
the tentative ordering (4,1) in the chromosome is not kept in
the schedule. Finally, we will have the schedule of Fig. 1.
It is important to remark that with X = A′ or X = B, we
could reach different schedules from the same chromosome.

Genetic Operators
We build on conventional two point crossover and single
mutation operators, and start with an initial population of
chromosomes generated at random following a uniform dis-
tribution. Also, in order to better translate characteristics
from parents to offsprings, we propose to code back the
structure of the schedule into the chromosome. This oper-
ation is expected to produce small changes in the chromo-
some and so we refer to it as weak Lamarckian evolution.

We will use a double-chromosome variant of the classic
order crossover (OX) which translates the subsequence of
symbols between two cutting points from one parent to the
offspring and the relative order of the remaining values from
the second. OX may be a good option for the JSSO due to
the fact that relevant characteristics, as processing order of
tasks on the machines or priorities of operators for assisting
the tasks, may be transmitted from parents to offsprings. To
avoid a strong disruptive effect of the crossover, the cutting
points will be the same in both sequences (tasks and opera-
tors).

Also, we will consider single mutation (SM) by swapping
two consecutive positions at random. This seems to be ap-
propriate as it may produce small changes. As before, the
same positions will be swapped in both sequences. More-
over, to get different distributions of operators in the opera-
tor sequences, we will also use an operator mutation (OM)
which will change the value in a location of the operator se-
quence at random. When a chromosome is mutated, one of
SM or OM is chosen with probability 0.5.

Genetic Algorithm Structure
We use here a rather conventional genetic algorithm with
generational replacement. In order to avoid premature con-
vergence, we opted not to use the classic roulette wheel se-
lection combined with unconditional replacement. Instead,
in the selection phase all chromosomes are organized into
pairs at random, then each pair undergoes crossover and mu-
tation. After this, the offsprings are evaluated and the sched-
ules coded back into the chromosomes as described in the

169

Algorithm 2: Genetic Algorithm.
Data: A JSSO problem instance P and a set of

parameters (Pc, Pm,#gen,#popsize,X)
Result: A feasible schedule for P
Generate and evaluate the initial population P (0);
for t=1 to #gen-1 do

Selection: organize the chromosomes in P (t− 1)
into pairs at random ;
Recombination: mate each pair of chromosomes
and mutate the two offsprings in accordance with
Pc and Pm;
Evaluation: evaluate the resulting chromosomes
considering the search space X and code back the
schedules into the chromosomes;
Replacement: make a tournament selection
among every two parents and their offsprings to
generate P (t);

end
return the best schedule built so far;

section above. Finally, the new population is obtained by
means of tournament selection keeping the best two individ-
uals among every two parents and their two offsprings. The
algorithm requires 5 parameters: crossover and mutation
probabilities (Pc and Pm), number of generations (#gen),
population size (#popsize) and the search space considered
X . Algorithm 2 shows the main steps of the genetic algo-
rithm.

Experimental Study
To assess the performance of the proposed GA and compare
it with the state of the art, we have conducted an experimen-
tal study. We considered two sets of instances1: firstly a set
of instances derived from the well-known FT10 instance for
the classic JSP with n = 100 tasks and q = 10 machines
and, on the other hand, a set of instances used in (Agnetis,
Murgia, and Sbrilli 2014).

The instances in the first set were generated consider-
ing different values for p (5, 7 and 9 operators) and differ-
ent probabilities, Pr, that an operator can assist one task
(0.2 and 0.6). Five instances were generated from each pair
(Pr, p) and five more from each p taking Pr as 0.2 or 0.6 at
random for each task. So we have 45 instances in all. These
instances are denoted 2 5 1, 2 5 2, . . . , 2/6 5 1, etc.

The second set includes 50 instances organized in 5
groups with 10 instances each. Each group is defined by
the values of n, p and q ranging in the sets {100, 150, 200},
{10, 15, 20} and {15, 30, 50} respectively. The processing
times are uniformly distributed in [1, 100]. The topology of
the task graph was inspired in real-life assembly trees and
was distributed in a number of branches, between 3 and 6.
The sets of operators skilled for each operation were gen-
erated at random and the workload of the machines was

1The instances and more details of the experimental study are
available at http://www.di.uniovi.es/iscop (Repository).

Table 1: Summary of results from GA on the sets of
instances derived from the FT10, considering the search
spaces A′ and B. The results are averaged for each subset
of 5 instances. Times are given in seconds.

Sets A′ B
Pr p Best Avg. Time Best Avg. Time
1 2 5 1281.8 1309.3 8.7 1361.4 1397.9 7.2
2 2 7 1109.8 1142.4 8.6 1183.6 1223.5 6.9
3 2 9 1022.0 1051.5 9.5 1123.8 1151.7 7.5
4 6 5 1164.0 1187.6 14.0 1235.6 1265.0 10.9
5 6 7 1009.0 1030.1 16.7 1081.6 1110.7 12.6
6 6 9 972.2 995.6 19.4 1024.2 1046.8 14.5
7 2/6 5 1203.4 1235.7 11.5 1306.4 1349.2 9.1
8 2/6 7 1053.2 1078.0 13.5 1167.4 1196.8 10.0
9 2/6 9 985.6 1016.6 13.7 1111.4 1132.6 10.3
Average 1089.0 1116.3 12.9 1177.3 1208.2 9.9

roughly balanced. We obtained detailed results from MSB-
DOS and Cplex from a personal communication from the
authors of (Agnetis, Murgia, and Sbrilli 2014). These results
are summarized in Table 2.

Evaluation of the Genetic Algorithm
We evaluated different options in the proposed GA, in partic-
ular we considered different search spacesA,A′ and B, and
coding the schedule back into the chromosome or not. The
evaluation was done on the instances in the first set. We have
chosen a rather conventional parameter setting: Pc = 12,
Pm = 0.1, #popsize = 100, #gen = 1000. The target
machine was Intel Core i7-3770K 3.50 GHz. 12 GB RAM
and the algorithm was coded in C++.

Firstly, we evaluated the average quality of the schedules
in the three search spaces. To do this, we generated 1000
random solutions in each subset. Figure 2 shows the distri-
bution of makespan outcomes for each set of schedules. As
we can observe, schedules sampled from the space A are
clearly much worse than the schedules from the other two
spaces; and schedules from A′ are better than those from B.
So, from these results, the space A′ seems to be good for a
successful evolution and convergence of the GA.

In order to visualize the evolution of the GA, we show
in Figure 3 the convergence pattern of the GA for three in-
stances considering the search spaces A′ and B with and
without the coding-back option. In view of these results, the
coding-back option is good in all cases and decoding in A′
is better than decoding in B. We conducted the same experi-
ments considering the setA and the results were much worse
as it was expected from the first experiments.

To further assess the differences between decoding in
the subsets A′ and B, we solved the 45 instances with the
coding-back option. In this case, each instance was solved
10 times and the best and average of the solutions reached

2Taking Pc < 1 makes that some pairs of chromosomes are not
mated and in this case the offsprings are the same as their parents
if they are not mutated, so the best parent is chosen twice in the
replacement phase, what may contribute to premature convergence.

170

A A’ B

15
00

20
00

25
00

30
00

35
00

40
00

45
00

(a) Instance 2 9 1

A A’ B
15
00

20
00

25
00

30
00

35
00

40
00

45
00

(b) Instance 2/6 9 1

A A’ B

15
00

20
00

25
00

30
00

35
00

40
00

45
00

(c) Instance 6 9 1

Figure 2: Summary of results from 1000 random schedules for the instances 2 9 1, 2/6 9 1 and 6 9 1 derived from the FT10 in
the spaces A, A′ and B.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 200 400 600 800 1000

A
ve

ra
ge

 M
ak

es
pa

n

Generations

A’-NC
A’-C

B-NC
B-C

(a) Instance 2 9 1

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 200 400 600 800 1000

A
ve

ra
ge

 M
ak

es
pa

n

Generations

A’-NC
A’-C

B-NC
B-C

(b) Instance 2/6 9 1

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 200 400 600 800 1000

A
ve

ra
ge

 M
ak

es
pa

n

Generations

A’-NC
A’-C

B-NC
B-C

(c) Instance 6 9 1

 3000

 3050

 3100

 3150

 3200

 3250

 3300

 3350

 3400

 0 200 400 600 800 1000

A
ve

ra
ge

 M
ak

es
pa

n

Generations

A’-NC
A’-C

B-NC
B-C

(d) Instance 100/10/15 1

Figure 3: Convergence of the GA for the instances 2 9 1, 2/6 9 1 and 6 9 1 derived from the FT10 and the instance
100/10/15 1 from (Agnetis, Murgia, and Sbrilli 2014), combining the search spaces A′ and B and the coding (C) and non-
coding (NC) back options. Each plot represents the evolution of the mean makespan of the population averaged for 10 runs.

171

Table 2: Summary of results from MSB-DOS and Cplex averaged for the 10 instances in each of the 10 sets. #Opt. is the
number of instances in each subset which are optimally solved. Time is given in seconds. For GA, the values reported are the
average values of the 10 runs for each instance.

Sets MSB-DOS CPLEX GA
Tasks(n) Operators(p) Machines(q) GAP% Time #Opt. Time #Op. GAP% Time #Opt.
1 100 10 15 0.78 106.44 5.00 106.21 10.00 0.06 1.84 8.00
2 150 15 30 0.20 8.28 6.00 190.54 10.00 0.00 2.87 10.00
3 150 15 50 0.03 9.58 9.00 129.28 10.00 0.00 2.84 10.00
4 200 15 30 0.42 25.62 6.00 755.85 10.00 0.00 3.64 9.70
5 200 20 30 0.41 23.43 6.00 913.32 10.00 0.00 4.24 10.00

Average 0.37 34.67 6.40 419.04 10.00 0.01 3.09 9.54

in all runs were recorded. These results, averaged for each
subset of 5 instances, together with the average time taken
to solve one instance in each run, are summarized in Ta-
ble 1. These results confirm that A′ is the best choice as
the makespan with A′ is about 8.2% better than it is with
B. This is quite reasonable from Remark 1 above. As we
can observe, in all cases the values from A′ are better than
those from B; even the average values from A′ are better
than the best values from B. Also, the time taken with B is
about 23.25% lower than it is with A′, what is natural as
A′ offers more options in each step of the schedule builder
and so looking for the leftmost one in the chromosome takes
more time. We have also registered the results from A′ by
the time taken with B, and the difference is still significant,
it only drops from 8.2% to 7.7% in favor of A′.

Comparison with Other Methods
In (Agnetis, Murgia, and Sbrilli 2014) the authors proposed
two heuristic methods, MSB-DOS and STA-OMSB and they
also experimented with Cplex 12.2 on a MILP formulation
they proposed. The authors report results from this study
averaged for each subset of instances showing clearly that
MSB-DOS is the best of the two heuristics proposed. Their
target machine was AMD Athlon II 2.70 GHz using Matlab
2009b. Cplex was given a time limit of 3600 s. and was able
to find optimal solutions for all the 50 instances.

Table 2 summarizes the results produced by MSB-DOS,
Cplex and our GA. GA was parameterized as indicated
above, with the only difference that the number of gener-
ations given was 250 instead of 1000. The reason for this
is that GA needs less generations to converge due to the
topology of the precedence graph. This fact can be observed
in Figure 3(d), which represents the convergence patterns
for the instance 100/10/15 1; after generation 250 the GA
hardly converges any more with the four combinations. In
this example, there are not significant differences between
spacesA′ and B when the coding-back option is considered.

As we can observe, Cplex can reach optimal solutions for
all the instances with an average time of 419.04s. MSB-DOS
takes much lower time in average, 34.67s, and obtains opti-
mal solutions for 6.4 instances in average for each subset
with an average gap of 0.37%. Regarding GA, it is able to
obtain optimal solutions in the 10 runs for all instances in
three sets, 2,3 and 5; and in average for 8 and 9.7 instances

in the remaining two sets. Overall, it was able to obtain the
optimal solution in 477 of the 500 runs and in at least one
of the 10 runs for 49 of the 50 instances. The only instance
not solved optimally at least once was instance 8 of the set 1
where the best makespan reached was 4537, being the opti-
mum 4534 (GA was able to find an optimal solution in 1000
generations). The average gap in percent was 0.01 and the
average time taken 3.09s indicating that, despite the differ-
ences on the target machines, GA is faster than the methods
proposed in the literature, and finds much better solutions
than any other approximate approach.

Conclusions and Future Work
We have seen that the well-known G&T schedule builder
proposed in (Giffler and Thompson 1960) for the classic JSP
problem may be extended to solve JSSO problem proposed
in (Agnetis, Murgia, and Sbrilli 2014), in a similar way as
it was previously extended to other problems such as the
EG&T for the JSP with Sequence Dependent Setup times
(Artigues, Lopez, and Ayache 2005), the OG&T for the JSO
(Sierra, Mencı́a, and Varela 2013) or the fG&TSGS for the
JSP with fuzzy processing times (González Rodrı́guez, Vela,
and Puente 2007; Palacios et al. 2014).

Much in the same way as G&T , EG&T , fG&TSGS and
OG&T were exploited in (Mattfeld 1995), (Vela, Varela,
and González 2010), (González Rodrı́guez, Vela, and Puente
2007) and (Mencı́a et al. 2014) respectively, SOG&T has
been exploited here to devise a decoder which is the core of
the GA proposed to solve the JSSO. The success of this al-
gorithm relies not only in the capability of the SOG&T to
generate schedules in different search spaces, but also in the
proposed coding schema that encodes candidate solutions by
means of a conventional permutation of tasks and a permu-
tation with repetition of operators.

As future work, we plan to design local search algorithms
which will be combined with the GA. To this end, we will
devise neighborhood structures for the JSSO from the pro-
posed disjunctive model. In principle, we will try to extend
the structures proposed in (Dell’ Amico and Trubian 1993;
Laarhoven, Aarts, and Lenstra 1992) and consider new
structures aiming at exploring changes in the assignment
of operators. Furthermore, we will tackle the JSSO in the
framework of heuristic search using SOG&T as branch-
ing schema, in this case B will be likely the best option.

172

In this setting, the disjunctive graph model could help to de-
vise consistent heuristics and dominance rules. We expect it
to work well when using the proper search strategy as, for
example, in (Mencı́a, Sierra, and Varela 2013) for the JSO.
It will also be interesting to consider and evaluate constraint
programming approaches on the JSSO, both general frame-
works as CPLEX CP Optimizer (Laborie 2009), or more
specific algorithms such as the successful Solution Guided
Search (Beck, Feng, and Watson 2011).

Acknowledgments
This research has been supported by the Spanish Govern-
ment under research projects TIN2010-20976-C02-02 and
TIN2013-46511-C2-2-P, and by the Principality of Asturias
under project FICYT2013 - COF13-035. Carlos Mencı́a
is supported by SFI grant BEACON (09/IN.1/I2618). We
are grateful to the anonymous reviewers for their insightful
comments.

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling. Management
Science 34(3):391–401.
Agnetis, A.; Flamini, M.; Nicosia, G.; and Pacifici, A. 2011.
A job-shop problem with one additional resource type. J.
Scheduling 14(3):225–237.
Agnetis, A.; Murgia, G.; and Sbrilli, S. 2014. A job
shop scheduling problem with human operators in handicraft
production. International Journal of Production Research
52(13):3820–3831.
Artigues, C.; Lopez, P.; and Ayache, P. 2005. Schedule gen-
eration schemes for the job shop problem with sequence-
dependent setup times: Dominance properties and computa-
tional analysis. Annals of Operations Research 138:21–52.
Beck, J. C.; Feng, T. K.; and Watson, J. 2011. Combin-
ing constraint programming and local search for job-shop
scheduling. INFORMS Journal on Computing 23(1):1–14.
Bierwirth, C. 1995. A generalized permutation approach to
job shop scheduling with genetic algorithms. OR Spectrum
17:87–92.
Dell’ Amico, M., and Trubian, M. 1993. Applying tabu
search to the job-shop scheduling problem. Annals of Oper-
ational Research 41:231–252.
Giffler, B., and Thompson, G. L. 1960. Algorithms for solv-
ing production scheduling problems. Operations Research
8:487–503.
González Rodrı́guez, I.; Vela, C. R.; and Puente, J. 2007.
A memetic approach to fuzzy job shop based on expectation
model. In Proceedings of IEEE International Conference on
Fuzzy Systems, FUZZ-IEEE2007, 692–697. London: IEEE.
Laarhoven, P. J. M. v.; Aarts, E. H. L.; and Lenstra, J. K.
1992. Job shop scheduling by simulated annealing. Opera-
tions Research 40(1):pp. 113–125.
Laborie, P. 2009. IBM CP Optimizer for detailed schedul-
ing illustrated on three problems. In van Hoeve, W.-J.,
and Hooker, J., eds., Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization
Problems, volume 5547 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg. 148–162.
Mattfeld, D. C. 1995. Evolutionary Search and the Job
Shop Investigations on Genetic Algorithms for Production
Scheduling. Springer-Verlag.
Mencı́a, R.; Sierra, M. R.; Mencı́a, C.; and Varela, R. 2014.
A genetic algorithm for job-shop scheduling with operators
enhanced by weak lamarckian evolution and search space
narrowing. Natural Computing 13(2):179–192.
Mencı́a, C.; Sierra, M. R.; and Varela, R. 2013. An effi-
cient hybrid search algorithm for job shop scheduling with
operators. International Journal of Production Research
51(17):5221–5237.
Palacios, J. J.; Vela, C. R.; Rodrı́guez, I. G.; and Puente, J.
2014. Schedule generation schemes for job shop problems
with fuzziness. In ECAI 2014 - 21st European Conference
on Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic, 687–692.
Roy, B., and Sussman, B. 1964. Les problemes
d’ordonnancements avec contraintes disjonctives. Notes DS
no. 9 bis, SEMA, Paris.
Sierra, M.; Mencı́a, C.; and Varela, R. 2013. New schedule
generation schemes for the job-shop problem with operators.
Journal of Intelligent Manufacturing 1–15.
Vela, C. R.; Varela, R.; and González, M. A. 2010. Lo-
cal search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics 16(2):139–165.

173

