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Abstract

Large-scale classical planning problems such as factory as-
sembly problems pose a significant challenge for domain-
independent planners. We propose a macro-based planner
which automatically identifies subproblems, generate macros
from subplans and integrate the subplans by solving the
whole augmented problem. We show experimentally that our
approach can be used to solve large problem instances that are
beyond the reach of current state-of-the-art satisficing plan-
ners.

Introduction
Although domain-independent planners have made signifi-
cant strides in recent years, large-scale problems continue
to pose a challenge due to the fundamental computational
complexity of planning. One approach to scaling the perfor-
mance of domain-independent planners is to exploit specific
types of problem structure that are naturally present in many
domains. In this paper, we propose a method for exploiting
decomposable structures that are present in assembly and
transportation type domains, where a large problem can be
decomposed into subtasks that can be solved (mostly) inde-
pendently. We focus on finding satisficing plans in classical
planning, where the objective is to find (possibly subopti-
mal) plans that achieve the goals.

Consider a factory assembly problem where the objective
is to assemble 20 instances of Widget A and 20 instances of
Widget B. Even in a relatively simple version of this domain,
it has been shown that state-of-the-art planners struggle to
assemble 4-6 instances of a single product (Asai and Fuku-
naga 2014). However, it is clear that this problem consists of
serializable subgoals (Korf 1987). The obvious strategy is to
first find a plan to assemble 1 instance of Widget A and a
plan to assemble 1 instance of Widget B, and then combine
these building blocks in order to assemble 20 instances of
both widgets.

In principle, such serializable problems should be easy for
modern planners equipped with powerful heuristic functions
and other search-enhancing techniques. In fact, techniques
such as probes (Lipovetzky and Geffner 2011) explicitly tar-
get the exploitation of serializable subgoals and have been
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shown to be quite effective. However, as we show in our
experiments, there is a limit to how far current, state-of-the-
art planners can scale when faced with very large, serializ-
able problems. The ability to assemble 4-6 instances each of
Widgets A and B does not necessarily imply the ability to
assemble 20 instances each of Widgets A and B.

One promising approach to solve this kind of prob-
lem is Factored Planning (FP) (Amir and Engelhardt 2003;
Brafman and Domshlak 2006), a framework that tries to de-
compose a problem into easy subproblems, solve them in-
dependently, and combine those results. FP is potentially a
very powerful framework which can subsume HTN planning
(Erol, Hendler, and Nau 1994), where the original problem
is decomposed by human experts. While the previous work
on FP uses Causal Graph for decomposition, they have been
limited to problems with specific structures in their causal
graphs, and the practical performance of FP on has not yet
been thoroughl investigted on a wide range of problems.

In this paper, we propose Component Abstraction Planner
(CAP), an approach to solving large scale planning prob-
lems using macro operators, which is closely related to FP.
For example, in the assembly domain mentioned above, each
subproblem corresponds to the assembly of a single product
such as Widget A or Widget B. The subproblems are solved
using standard, domain-independent planners, solutions to
these subproblems are converted to macros operators, and
the whole problem augmented by the macros is solved by a
standard planner.

The key difference between CAP and all previous macro-
based methods to our knowledge is that CAP does not
seek reusable (highly applicable) macros. Previous work,
e.g., Macro-FF/SOL-EP/CA-ED(Botea et al. 2005), Wiz-
ard(Newton et al. 2007) or MUM(Chrpa, Vallati, and
McCluskey 2014), target learning scenarios such as the
IPC2011 Learning Track, where the system first learns
Domain Control Knowledge (DCK) from the training in-
stances, and later use this DCK to solve the different, testing
instances. In such a learning setting, macros should encap-
sulate knowledge that is reusable across the problems in a
domain. Marvin (Coles and Smith 2007) learns macros in a
standard (IPC2011 satisficing track) setting, but it also seeks
macros that are reusable within the same problem instance
(Coles and Smith 2007, page 10). CAP differs from all of
these previous approaches. First, CAP targets a standard
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(IPC2011 satisficing track) setting which precludes transfer
of DCK across problem instances. Second, even within the
same instance, the primary benefit of CAP macros comes
from its problem decomposition, which does not require
reusability.

Consider the IPC2011 Barman domain, which requires
many different cocktails to be made. Each cocktail (sub-
problem) has a significantly different recipe. Previous learn-
ing systems such as MUM do not find any macros for Bar-
man (Chrpa 2014, p.8) because such recipes are not reusable
across instances. However, a Barman instance can be de-
composed into easy, independent cocktail mixing problems,
and our results show that CAP significantly increases cover-
age on Barman. Also, when all recipes are different, search-
ing for reusable macros within the same problem will fail. If
a bartender is given orders to prepare different cocktails A,
B and C, the solution to the subproblem of mixing cocktail
A is not reusable in mixing B and C. Thus, reusability (high
applicability) is unnecessary for CAP macros to be useful.
Our experimental results show that the decomposition itself
is highly effective.

The second major difference between CAP and previous
approaches is its ability to find a large number of informa-
tive, very long macros, without the need for macro-filtering
or upper bounds on macro length. All previous systems such
as MacroFF, Wizard and MUM filter their macros and/or
apply macro length bounds in order to prevent the search
algorithm branching factor from exploding. For example,
MacroFF / CA-ED generates 2-step macros, and MUM finds
macros “of length of 2 or 3, occasionally (...) 5”. Jonsson
(2007) finds long macros but is limited to domains where
all operators are unary and the Causal Graph is acyclic.
CAP is able to avoid these limitations by using completely
grounded, nullary macros that encapsulate solutions to spe-
cific subproblems.

Finally, although some macro-based systems such as Mar-
vin, which generates macros to escape plateaus in the search
space, are closely coupled with the search algorithm used
by the planner, CAP is implemented as a wrapper for any
PDDL (STRIPS + action cost) planner and as we show be-
low, it can be easily combined with various planners, in-
cluding FF (Hoffmann and Nebel 2001), configurations of
Fast Downward (Helmert 2006), and Probe (Lipovetzky and
Geffner 2011). CAP can even be used as a wrapper for pre-
vious macro-based approaches such as Marvin.

The resulting system is capable of solving very large
problems (whose decomposability is unknown prior to the
search) that are beyond the range of standard, state-of-the-
art planners. In our experiments, for example, CAP can
solve Woodworking instances with 79 parts with 120%
wood – in contrast, the largest IPC2011 instances of Wood-
working has 13 parts, and the state-of-the-art Fast Down-
ward planner (LAMA2011 configuration) can solve upto 23
parts (with 120% wood). Even Probe, which can efficiently
solve IPC2011 Woodworking instances with only 31 search
nodes (Lipovetzky and Geffner 2011), can solve upto 46
parts with 140% wood. The CAP source repository is at
https://github.com/guicho271828/CAP .

The rest of the paper is organized as follows. First, we

Figure 1: CAP System Overview. SubPlanner and Main-
Planner are domain-independent planners, e.g., FD/lama
(Helmert 2006), FF (Hoffmann and Nebel 2001). They can
be the same planner, or different planners.

explain our overall approach to decomposition-based solu-
tion of large-scale problems. Next we describe the method
CAP uses to decompose large problems into smaller sub-
problems. We then describe how we generate informative
large macros, each corresponding to the solution to a sub-
problem. Finally, we experimentally evaluate the effective-
ness of our approach.

Overview of CAP
Given a large-scale problem such as the previously described
heterogeneous factory assembly and Barman instances, we
propose an approach that automatically decomposes those
problems into independent subproblems and sequences their
solutions. Figure 1 gives an overview of our overall ap-
proach, Component Abstraction Planner (CAP). CAP per-
forms the following steps:

1. Problem Decomposition: Perform a static analysis of the
PDDL problem in order to identify the independent sub-
problems. We run a Component Abstraction algorithm to
identify the components in a problem, build a component
task (subproblem) for each component.

2. Generate Subplans with SubPlanner: Solve the subprob-
lems with a domain-independent planner (SubPlanner).

3. Macro generation: For each subplan, concatenate all of its
actions into a single, ground (nullary) macro operator.

4. Main Search by MainPlanner: Solve the augmented
PDDL domain (including macros) with a standard
domain-independent planner (MainPlanner).

5. Decoding: Finally, any macros in the plan found by Main-
Planner are decoded into the primitive actions.

Problem Decomposition The decomposition of a prob-
lem into a set of easier subproblems is done by identify-
ing component tasks. Component tasks are generated from
abstract components, which are extracted using the Compo-
nent Abstraction algorithm originally used in MacroFF/CA-
ED (Botea, Müller, and Schaeffer 2004). CA-ED only uses
components in a brute-force enumeration of short (2-step)
macros, so most macros found by CA-ED are useless and
need to be filtered. In contrast, CAP takes the idea of compo-
nents much further: A component task consists of the initial
and goal propositions relevant to 1 component, and solving
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a component task results in a single macro that solves an
entire subproblem.

Component Abstraction (Botea et al. 2004) Component
Abstraction (CA) first builds a static graph of the problem
and clusters it into disjoint subgraphs (components). This
algorithm requires a typed PDDL, but this is not restrictive
because the types can be automatically added to untyped do-
mains using methods such as TIM (Fox and Long 1998).

The static graph of a problem is an undirected graph,
where the nodes are the objects in the problem and the edges
are the static facts in the initial state. Static facts are the facts
(propositions) that are never added nor removed by any of
the actions and only possibly appear in the preconditions.

Figure 2 illustrates the static graph of a simple assembly
problem where the task is to assemble 2 widgets by assem-
bling a0 and a1 with parts b0 and b1, respectively. The fill
pattern of each node indicates its type, e.g. b0 and b1 of type
part are wave-patterned ( ). The edge (a0, b0) corresponds
to a predicate (part-of a0 b0) specifying that “b0 is a part-of
a0”, which statically declares that b0 should be assembled
with a0, as opposed to, e.g., “a0 and b0 are assembled”,
which may be modified by an action “assemble”. Also, the
edge (b0, red) indicates a static fact that “part b0 can be
painted in red” (b0 is allowed to be painted red somewhere
in the plan), as opposed to (painted b0 red), which may be
modified by some actions like “paint” or “clean”. The goal
of this problem is (assembled a0 b0) and (assembled a1 b1).

Figure 2: Example of a static graph and components.

The planner usually does not know that there are two as-
sembly processes that can be performed independently. We
would like CA to identify the widgets in this problem, shown
as A0, A1, from the static graph. The CA algorithm, slightly
modified from (Botea et al. 2005), works as follows. First,
for each (ground) goal preposition, collect the types of their
parameters into a queue T and initialize the final results
R = ∅. Then, run the following procedure (below, the text in
brackets “[]” describes the corresponding behavior in Figure
2):

1. If T is empty, return R. Otherwise, pop one seed type s
from T [The type of a0: is selected as s].

2. For each object (node) o of type s, initialize single-node
abstract components and store them in a set C [The
seed objects are {a0, a1} and the components are C =
{(a0), (a1)}].

3. Select one fringe fact f(a, b) of some component c ∈ C.
A static fact f(a, b) is a fringe of c if a belongs to the

component (a ∈ c), and b does not belong to any com-
ponents (b /∈ c′,∀c′ ∈ C, c′ 6= c). An n-ary predicate
p(x1, . . . xn) is treated as a combination of binary pred-
icates pij(xi, xj)(j 6= i) [f =(part-of a0 b0)]. Mark the
name of f [“part-of”] as tried and do not select it twice.
If no such f exists, update R = R ∪ C, reset C = ∅, and
return to step 1.

4. If f exists, collect all fringe facts of the same name as f
[(part-of a0 b0) and (part-of a1 b1)].

5. Extend the components by merging each with the argu-
ments in the selected facts [C = {(a0), (a1)} are updated
to {A0 = (a0 b0), A1 = (a1 b1)}]. However, if the result-
ing components share any part of the structure, we dis-
card newly merged nodes [extending these components
further by merging s results in (a0 b0 red green),(a1 b1
red green) which share red and green, so this extension is
discarded]. Finally, go back to step 3.

The resulting components form an equivalence class
called an abstract type. Components are of the same abstract
type when their clustered subgraphs are isomorphic. This al-
lows the planner to detect something like “Widget-A Type”,
a structure shared among A0 and A1, analogous to the notion
of Class in object-oriented programming.

Our modified CA algorithm tries all seed types s as long
as some object of type s is referenced by the goal condi-
tions, while Botea et al. (2004) selects s randomly regard-
less of the goal. In addition, while their procedure stops and
returns C immediately when some fully extended C meets
some (heuristically chosen) criteria, we collect C into R and
use all results of the iterations. This allows us to collect all
components necessary to achieving the goal.

Component Tasks While (Botea, Müller, and Schaeffer
2004) generated short macros by using abstract components
to identify “related” actions, our novel approach fully ex-
ploits the structure extracted by Component Abstraction. For
an abstract component X , we can define a component task as
a triple consisting of (1) X , (2) init (X) – a subset of propo-
sitions from the initial states relevant to X , and (3) goal (X)
– a subset of goal propositions relevant to X .

In order to find init (X) and goal (X), we define a flu-
ent (non-static) version of fringe facts. A fluent fringe fact
f(a, b) of X is defined as a fluent (a predicate that can be
added or removed by some action) such that one of its pa-
rameters (e.g., a) belongs to X and none of the other param-
eters (e.g., b) belong to any other components.

For each X , we collect fluent fringe facts in the initial
state and the goal condition as init (X) and goal (X), respec-
tively. For example, the initial state of the problem in Figure
2 may contain (painted b0 white), a fluent which takes b0
∈ A0 and may be removed by some actions like paint. Sim-
ilarly, (assembled a0 b0) in the goal is a fluent fringe fact of
A0, and therefore a goal condition specific to A0.

Next, since a component task is a compact representa-
tion of a subproblem, we can expand it into a PDDL prob-
lem. Let X = {o0, o1 . . .} be an abstract component. The
original planning problem can be expressed as 4-tuple Π =
〈D, O, I,G〉 where D is a domain, O is the set of objects
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and I,G is the initial/goal condition. Also, let X ′ be another
component of the same abstract type, which is written as
X ≈ X ′. Then a subproblem ΠX = 〈D, OX , IX , GX〉 is
defined as follows:

OX =X ∪ EX , EX = {O 3 o | ∀X ′ ≈ X; o 6∈ X ′},
IX ={I 3 f | params (f) ⊆ OX}, GX = goal (X)

Informally, OX contains X , but does not contain the siblings
of X , the components of the same abstract type. OX also
contains EX , which can be seen as environment-like objects
that are not part of any such siblings e.g. painting machines
used by all widgets that needs painting. In IX , ill-defined
propositions (referencing the removed objects) are removed.

We solve ΠX with SubPlanner (Figure 1), which is
a domain-independent planner such as Fast Downward
(Helmert 2006) or FF (Hoffmann and Nebel 2001), using
a short time limit (30 seconds for all experiments in this
paper). ΠX is usually far easier than the original problem
due to the relaxed goal conditions. However, since ΠX is
mechanically generated by removing objects and part of the
initial state, ΠX may be unsatisfiable or ill-defined (e.g., GX

contains references to removed objects). If SubPlanner fails
to solve ΠX for any reason, the component is simply ignored
in the following macro generation phase.

Component Macro Operators At this point, we have
generated the subplans which are solutions to corresponding
subproblems. In general, it is not possible to solve the whole
problem by simply concatenating these subplans, because
each subplan is based on local reasoning about some projec-
tion of the original search space. Previous work in factored
planning seeks a tree-decomposition of the problem descrip-
tion and uses a bottom-up planning algorithm to combine the
subplans into a complete plan (Amir and Engelhardt 2003).
In contrast, CAP takes a “best-effort” approach which seeks
plan fragments that might be composable.

Instead of seeking plan fragments that are guaranteed to
be composable into a complete plan, we generate macro op-
erators based on the subplans, and add them to the original
PDDL domain. This augmented domain is then solved us-
ing a standard domain-independent planner (MainPlanner in
Figure 1). MainPlanner uses those macros for solving each
subproblem in 1 step, inserting additional actions as neces-
sary. If the resulting plan uses macro operators, they are later
mapped back to the corresponding ground instances of the
primitive actions in the original domain. On the other hand,
it is possible that some (or all) macros are not used at all,
and the planner relies heavily on the primitive actions in the
original domain.

A subplan is converted to a macro as follows: Suppose
we have two actions a1: 〈params1, pre1, e+1 , e−1 , c1〉 and a2:
〈params2, pre2, e+2 , e−2 , c2〉, where paramsi is the parame-
ters of action ai, prei are the preconditions of ai, e+i and e−i
are the add and delete effects of ai, and ci is the cost of ai.
A merged action equivalent to sequentially executing a1 and
a2 is defined as

a12 = 〈params1 ∪ params2, pre1 ∪ (pre2 \ e
+
1 ),

(e+1 \ e
−
2 ) ∪ e+2 , (e−1 \ e

+
2 ) ∪ e−2 , c1 + c2〉 (1)

Iteratively folding this merge operation over the sequence of
actions in the subplan results in a single, ground macro op-
erator that represents the application of the plan. Feasibility
(internal consistency) of CAP macros is clearly guaranteed
as long as the SubPlanner is a sound planner.

Since each macro generated by CAP corresponds to the
solution to a single component problem, all merged actions
are fully grounded. Our macros are always nullary, unlike
traditional macro operators which are the combinations of
several parametrized (lifted) actions. This has several im-
portant implications: First, they do not significantly increase
the number of ground actions. Current forward-search based
planners tend to instantiate ground actions from action
schema, but their number increases exponentially with the
number of parameters. Lifted macros suffer from this ex-
plosion because merging actions into macros creates actions
with more parameters (in our preliminary experiments, long
lifted macros caused the input parser/translator to exhaust
memory), while nullary macros produce only 1 ground in-
stance each. Second, since they are grounded and are appli-
cable to the limited situations, they do not increase the effec-
tive branching factor significantly. Finally, the overwhelm-
ing majority of ground instances of lifted macros are useless.
Since a subplan is inherently specialized to the subproblem,
each subplan is less likely to be useful in the other contexts.
In contrast, our nullary macros do not produce ground ac-
tions with futile combinations of parameters.

Experimental Results
All experiments below were run on an Intel Xeon
E5410@2.33GHz CPU. As baselines, we evaluated FF,
Probe, and 2 configurations of Fast Downward: (a) FD/lama
(iterated search), (b) FD/hcea (greedy best first search on
context-enhanced additive heuristic).

We tested the following CAP configurations: CAP(FF),
CAP(FD/lama), CAP(Probe) and CAP(FD/hcea), which use FF,
FD/lama, Probe, and FD/hcea, respectively as both the SubPlan-
ner (for component planning) and the MainPlanner (for solv-
ing the macro-augmented problem generated by CAP). It
is possible for SubPlanner and MainPlanner to be different
planners (Figure 1): Some planners may be better suited as
the SubPlanner rather than the MainPlanner, and vice versa,
so mixed configurations, e.g., CAP(FF +FD/lama), which uses
FF as SubPlanner and FD/lama as MainPlanner, are possible.
However, in this paper, for simplicity, we focus on configu-
rations where SubPlanner and MainPlanner are the same.

Treatment of domains with action costs depend on
the SubPlanner (SP) and MainPlanner (MP) capabili-
ties: (1) when both SP and MP handle action costs like
CAP(FD/lama), CAP uses action costs during all stages. (2)
When neither SP nor MP handle action costs like CAP(FF),
CAP removes action costs while planning, but in Table 1,
plan costs are evaluated using the original domain definition
(with costs).

Evaluation in IPC Satisfying Track Settings
We evaluated CAP using three sets of instances: (1)
IPC2011 sequential satisfying (seq-sat) track instances,
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barman-ipc11(20) 0 20 20 - 20 20 20 .85±.06 20 20 20 1.00±.15 0 10 10 -
elevators-ipc11(20) 20 20 20 2.03±.52 20 20 20 1.42±.40 17 19 20 1.44±.30 3 3 3 .91±.08
floortile-ipc11(20) 10 4 4 .99±.03 4 5 5 .99±.06 4 3 3 .87±.00 6 5 5 .95±.08

nomystery-ipc11(20) 8 6 6 .98±.11 13 7 7 1.08±.03 9 6 6 .99±.04 6 6 6 1.04±.05
openstacks-ipc11(20) 20 0 0 - 20 5 15 .67±.07 12 10 11 1.19±.19 0 0 0 -
parcprinter-ipc11(20) 20 18 18 .99±.03 14 20 20 .96±.07 13 18 18 .91±.09 14 13 13 1.00±.00

parking-ipc11(20) 5 6 7 1.05±.11 20 16 14 1.13±.24 13 10 9 1.01±.14 9 9 9 1.00±.00
pegsol-ipc11(20) 20 20 20 1.00±.00 20 20 20 1.00±.02 20 20 20 1.00±.02 20 20 20 1.00±.00

scanalyzer-ipc11(20) 19 19 19 1.00±.00 18 18 18 1.03±.12 17 17 17 1.00±.01 17 17 17 1.00±.00
sokoban-ipc11(20) 15 15 15 1.02±.08 19 19 19 .98±.09 16 15 15 1.01±.07 13 13 13 1.05±.19
tidybot-ipc11(20) 13 13 13 1.00±.00 15 15 15 1.00±.00 18 18 18 1.00±.09 18 18 17 1.00±.00

transport-ipc11(20) 8 14 14 1.38±.26 15 19 18 1.58±.24 13 15 14 1.24±.14 6 6 6 1.23±.15
visitall-ipc11(20) 4 4 4 1.00±.00 19 17 19 1.00±.00 18 13 15 1.00±.04 3 3 3 1.00±.00

woodworking-ipc11(20) 10 19 19 1.00±.03 20 20 20 1.05±.05 19 20 20 1.02±.05 18 20 20 1.04±.11
Sum 172 178 179 1.17±.42 237 221 230 1.07±.26 209 204 206 1.06±.19 133 143 142 1.01±.09

L
ar

ge
In

st
an

ce
s

assembly-mixed-large(20) 4 20 20 .71±.08 4 19 19 .87±.15 4 20 20 .66±.14 2 2 2 .63±.08
barman-large(20) 0 9 8 - 3 19 20 .98±.02 4 7 10 1.09±.03 0 0 0 -

elevators-large(20) 3 7 7 2.54±.52 11 20 18 1.65±.24 0 11 12 - 0 0 0 -
floortile-large(20) 5 3 3 1.23±.19 2 2 2 1.04±.06 2 2 2 1.08±.08 2 3 3 .92±.01

nomystery-large(20) 2 1 1 .87±.00 5 3 3 1.00±.03 0 0 0 - 2 2 2 1.03±.00
openstacks-large(21) 19 0 0 - 21 0 18 - 0 0 0 - 0 0 0 -

parking-large(20) 2 1 1 1.00±.00 19 9 9 1.00±.00 0 0 0 - 2 3 3 1.00±.00
tidybot-large(20) 10 10 10 1.00±.00 9 9 9 1.00±.00 13 12 12 1.00±.00 7 6 7 1.00±.00

transport-large(20) 0 2 2 - 3 14 13 1.62±.14 5 6 7 1.26±.17 0 1 1 -
visitall-large(20) 0 0 0 - 20 0 13 - 0 0 0 - 0 0 0 -

woodworking-large(20) 3 0 0 - 0 11 11 - 4 4 3 1.01±.02 0 13 13 -
Sum 48 53 52 1.18±.60 97 106 135 1.20±.35 32 62 66 1.01±.19 15 30 31 .94±.13

IP
C

20
11

L
ea

rn
in

g

barman-ipc11-learn(30) 0 30 30 - 4 29 28 .90±.03 6 28 28 .91±.04 0 0 0 -
blocksworld-ipc11-learn(30) 6 6 6 1.00±.00 26 27 26 1.00±.00 19 17 20 1.02±.11 1 1 1 1.00±.00

depots-ipc11-learn(30) 4 3 4 .97±.04 0 0 0 - 29 30 29 1.00±.09 0 0 0 -
gripper-ipc11-learn(30) 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 -
parking-ipc11-learn(30) 1 1 1 1.00±.00 14 9 10 1.00±.00 1 5 4 1.00±.00 0 0 0 -
rover-ipc11-learn(30) 2 5 5 .99±.01 29 17 22 1.03±.08 18 16 18 1.06±.11 0 0 0 -

satellite-ipc11-learn(30) 2 4 4 - 5 2 2 1.00±.00 0 0 0 - 0 0 0 -
spanner-ipc11-learn(30) 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 -

tpp-ipc11-learn(30) 0 20 20 - 16 29 29 1.45±.12 9 10 10 1.24±.08 1 0 0 -
Sum 15 69 70 .99±.02 94 113 117 1.10±.20 82 106 109 1.04±.13 2 1 1 1.00±.00

Table 1: 30 min, 2 GB results for IPC2011 sequential satisfying track instances, large instances (see Table 3), and IPC2011
learning track test instances. Coverage results (#) and cost comparison for 4 baseline planners, their CAP variants and the CAP
variants with 15 min preprocessing time limit (pre15). Cost ratios include only those instances that were solved by baseline and
CAP configurations.
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barman-ipc11-learning(31) 0 30 29 0 0 0 3 28 29 0 0 0 2 20 30 1 1 1
blocksworld-ipc11-learning(60) 6 5 6 0 0 0 26 24 26 18 0 27 19 19 19 20 18 30

depots-ipc11-learning(60) 4 3 3 1 2 4 0 0 0 3 3 3 30 30 30 30 30 30
gripper-ipc11-learning(56) 0 0 0 0 0 25 0 0 0 0 0 26 0 0 0 0 0 0
parking-ipc11-learning(37) 1 1 1 7 0 7 11 7 9 4 4 4 3 0 0 3 3 3
rover-ipc11-learning(59) 1 2 3 0 0 0 24 4 10 6 6 29 16 12 16 20 20 11

satellite-ipc11-learning(48) 1 4 4 0 0 7 1 0 0 2 2 18 0 0 0 0 0 0
spanner-ipc11-learning(30) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tpp-ipc11-learning(46) 0 20 20 0 0 0 12 29 27 13 13 16 6 10 9 10 6 15
Sum 13 65 66 8 2 43 77 92 101 46 28 123 76 91 104 84 78 90

Table 2: IPC2011 learning track results. Coverages of our baselines, CAP, CAP with 7.5 preprocessing limit (pre7.5) (all with
15 min, 4 GB). Chrpa’s baselines, Wizard and MUM are from (Chrpa, Vallati, and McCluskey 2014). Note that in (Chrpa,
Vallati, and McCluskey 2014), MUM and Wizard were given 30 min (15 min for learning phase, 15 min for solving phase).
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(2) large instances of IPC2011 seq-sat track domains and
assembly-mixed, and (3) IPC2011 learning track, testing
instances. All runs adhered to IPC seq-sat settings i.e. 30
min, 2GB memory limits. All phases of CAP (including pre-
processing, main search and postprocessing) were included
in these resource limitations.

We emphasize that (1) is not the main target of CAP – the
motivation for CAP is scalability on (2) and (3), which may
or may not be decomposable but are more difficult than (1).
However, the results on (1) are useful in order to address
the two major concerns regarding CAP when the input is
relatively small: (1a) Will the overhead of the preprocessing
(Component Abstraction + macro generation) decrease the
coverage compared to the base planner? (1b) Will solution
quality suffer significantly?

The IPC2011 results in Table 1 show that the cover-
age of CAP(FF) increased over FF (172 vs 178). Similarly,
CAP(FD/hcea) had significantly increased coverage com-
pared to FD/hcea. On the other hand, CAP(FD/lama) and
CAP(Probe) both had worse coverage compared to FD/lama
and Probe. Plan costs tend to be slightly higher when CAP is
used. For example, c(CAP(FF))/c(FF), the ratio of plan costs
of CAP(FF) to FF on problems solved by both is 1.17 on av-
erage with a standard deviation of 0.42. However, as would
be expected, results vary per domain, and we observed that
the cost has improved in some domains, namely, barman,
floortile, openstacks (on FD/lama), parcprinter.

Our main results are the lower half of Table 1, which
shows the results for (2) large instances and (3) IPC2011
learning track testing instances. In (2), we evaluated CAP
on assembly-mixed, the original motivating domain for this
work, as well as larger instances of IPC2011 domains ob-
tained by the same generator as in the competition, but with
significantly larger parameters (see Table 3 for a compari-
son). We could not locate generators for pegsol, parcprinter,
scanalyzer, sokoban, so their results are not shown here.
However, extrapolating from the IPC2011 instances of these
domains, it seems safe to say that the overall trends would
not be significantly affected even if large instances of these
domains were available. For (3), we used the test instances
of IPC2011 learning track. We reemphasize that this exper-
iment was run with a 30 min time limit and 2 GB memory
limit, unlike the IPC learning track setting which allows 15
min learning + 15 min planning + 4 GB memory.

Overall, CAP variants obtained significantly higher cov-
erages. We see major improvements in barman, elevators,
transport, woodworking, tpp. However, there is a severe
degradation in openstacks, parking and visitall – the next
subsection addresses how performance on these domains
can be improved.

Improving CAP by Limiting the Preprocessing Time
CAP is expected to perform well on domains that can be de-
composed into serializable subproblems. On domains with-
out this decomposable structure, CAP will not yield any ben-
efits – all of the time spent by the CAP preprocessor analyz-
ing the domain and searching for component macros will be
wasted. According to Table 4, which shows the fraction of
time spent on preprocessing by CAP on the large instances,

domain IPC2011 Satisficing Track Large Instances
assembly-mixed n/a (not an IPC2011 domain) 1-20 product A, 1-20 product B

barman 10-15 shots, 8-11 cocktails 47-78 shots, 47-71 cocktails
elevators 16-40 floors 13-60 passengers 40 floors 62-137 passengers
floortile 3x5 - 8x8 tiles, 2-3 robots Same range, but different distribution

nomystery 6-15 locations & packages 8-24 locations & packages
openstacks 50-250 stacks 170-290 stacks

parking 10-15 curbs 20-30 cars 15-18 curbs 28-34 cars
tidybot 81-144 area, 5-15 goals 144-169 area, 8-20 goals

transport 50-66 nodes,20-22 packages 66 nodes, 20-60 packages
visitall 12-50 grids 61-80 grids

woodworking 3-13 parts,1.2-1.4 woods 34-81 parts,1.2-1.4 woods

Table 3: Large instances: some characteristics compared to
IPC2011 Satisficing Track instances.

CAP sometimes spent the majority (85-100%) of its time
on preprocessing. While the preprocessing time varies, there
are essentially three cases: 1) There are few, if any, com-
ponent problems so preprocessing is fast (e.g. tidybot); 2)
Although useful macros are discovered, the preprocessing
consumes too much time, leaving insufficient time for the
MainPlanner to succeed (e.g. elevators); or 3) large prepro-
cessing time is wasted because the macros are not useful to
the MainPlanner (e.g. openstacks).

A simple approach to alleviate failures due to cases 2 and
3 above is to limit the time CAP spends on its macro gen-
eration phase. As shown in Table 1, running CAP with a 15
minute preprocessing limit (50% of the 30-minute overall
limit) dramatically improves the coverages for most of the
CAP variants (except CAP(FD/hcea) on IPC2011 seq-sat and
CAP(FF) on Large). The 15-minute cutoff is arbitrary and
has not been tuned. This shows that a reasonable prepro-
cessing limit allows CAP to discover some useful macros,
while leaving sufficient time for the MainPlanner to exploit
these macros and solve the problem more effectively than
the MainPlanner by itself (addressing case 2). Furthermore,
on problems where CAP can not identify useful macros,
this prevents CAP from wasting all of its time on a fruitless
search for macros (addressing case 3).

Domain CAP(FF)
mean±sd

CAP
(FD/lama)
mean±sd

CAP(Probe)
mean±sd

CAP(FD/hcea)
mean±sd

assembly-mixed-large(20) .84±.10 .83±.05 .60±.20 .07±.19
barman-large(20) .60±.42 .90±.01 .87±.14 .91±.12

elevators-large(20) .84±.16 .60±.13 .42±.35 .14±.03
floortile-large(20) .16±.27 .05±.09 .06±.17 .07±.14

nomystery-large(20) .08±.12 .34±.32 .28±.39 .27±.24
openstacks-large(21) .94±.10 1.00±.00 1.00±.00 1.00±.00

parking-large(20) .56±.49 .70±.33 .95±.02 .57±.48
tidybot-large(20) .06±.11 .01±.00 .07±.21 .01±.02

transport-large(20) .56±.44 .51±.21 .46±.36 .23±.26
visitall-large(20) 1.00±.00 1.00±.00 1.00±.00 1.00±.00

woodworking-large(20) .26±.12 .67±.20 .31±.09 .76±.17
Mean .52±.42 .57±.37 .53±.41 .43±.42

Table 4: The fraction of time spent on preprocessing (out of
30 min. total runtime) on large problem instances.
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Comparison against Previous Macro Based
Planners/Learners
To compare CAP performance with previous existing
macro-based methods, we first compared CAP against Mar-
vin. Table 5 shows the coverages of FF, CAP(FF) and Mar-
vin on (1,2,3), with 30 min and 2 GB resource constraints.
We chose CAP(FF) for comparison to Marvin because Mar-
vin is based on FF. Neither FF or Marvin are able to handle
action-costs, so we used the unit-cost version of the prob-
lem. We also removed some domains because the latest 32bit
binary of Marvin runs into segmentation faults or emits in-
valid plans on those domains. Interestingly, CAP(Marvin) and
CAP(Marvin, pre15) improves upon Marvin on some domains,
indicating that CAP is complementary to Marvin’s plateau es-
caping macro.
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barman-ipc11(20) 0 20 20 16 20 20
floortile-ipc11(20) 10 4 4 2 1 1

nomystery-ipc11(20) 8 6 6 8 3 4
openstacks-ipc11(20) 20 0 0 19 9 12

pegsol-ipc11(20) 20 20 20 20 20 20
scanalyzer-ipc11(20) 19 19 19 19 20 20
sokoban-ipc11(20) 15 15 15 10 9 10
tidybot-ipc11(20) 13 13 13 14 14 14

transport-ipc11(20) 8 14 14 0 13 13
visitall-ipc11(20) 4 4 4 0 1 1

Sum 117 115 115 108 110 115
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barman-large(20) 0 9 8 0 20 19
floortile-large(20) 5 3 3 3 2 2

nomystery-large(20) 2 1 1 3 0 0
openstacks-large(21) 19 0 0 11 0 5

tidybot-large(20) 10 10 10 9 10 10
transport-large(20) 0 2 2 0 2 3
visitall-large(20) 0 0 0 0 0 0

Sum 36 25 24 26 34 39
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barman-ipc11-learn(30) 0 30 30 1 30 30
blocksworld-ipc11-learn(30) 6 6 6 12 10 11

depots-ipc11-learn(30) 4 3 4 0 1 1
satellite-ipc11-learn(30) 2 4 4 0 11 10

tpp-ipc11-learn(30) 0 20 20 1 27 27
Sum 12 63 64 14 79 79

Table 5: Coverages of FF, CAP(FF), CAP(FF,pre15), Marvin,
CAP(Marvin) and CAP(Marvin,pre15), on 30 min, 2 GB ex-
periments. In this table, elevators, woodworking, assembly-
mixed, parcprinter, parking, gripper, rover, spanner are not
counted for all 6 configurations because Marvin, CAP(Marvin)
and CAP(Marvin, pre15) obtained 0 coverages, possibly due
to bugs or PDDL incompatibilities (The FF family solved all
domains successfully – see also the results in Table 1.)

Next, Table 2 compares CAP with the results of (Chrpa,
Vallati, and McCluskey 2014). Experiments were run on
the testing instances of IPC2011 learning track, with a 4
GB memory limit. While MUM and Wizard were given
15 min for learning plus 15 min for solving, CAP variants
were given only the solving phase of 15 min, because un-
like MUM and Wizard, CAP does not learn reusable do-

main knowledge. Also, CAP variants with a 7.5 min prepro-
cessing time limit (included within the 15 min) are shown
as pre7.5. All phases of CAP, including its preprocessing
(macro generation) are included in the 15 min solving phase.

Due to the differences in CPU, RAM, execution environ-
ments or parameters etc., coverage results in (Chrpa, Vallati,
and McCluskey 2014) should not be directly compared to
ours. Their experiments were run on a “3.0 GHz machine”
(2014, p.5) while we used a 2.33GHz Xeon E5410. There-
fore, the baseline (control) coverages differ between ours
and theirs, e.g., our baseline FD/lama coverage sum is 75 (all
plans were verified using the Strathclyde VAL plan valida-
tion tool), while (Chrpa, Vallati, and McCluskey 2014) re-
ported that their baseline FD/lama solved 46 instances.

Figure 2 shows that CAP and MUM improves perfor-
mance on different domains – In particular, CAP performs
well in barman and TPP, while MUM performs well in
blocksworld, gripper, rover and satellite. Based on these re-
sults, CAP and MUM appear to be complementary, and their
combination is an avenue for future work.

How Are CAP Macros Used?
So far, we have focused on the performance of CAP on
benchmark instances. We now investigate the properties of
CAP macros and their usage. First, we measured the length
of all macros generated by the preprocessing phase, includ-
ing unused macros, as well as the lengths of the macros that
were actually used during the search. For example, Figure
3 clearly shows that CAP finds both long and short macros:
There were > 1000 short macros of length 2, as well as at
many macros with length > 100. As expected, the size and
the shape of the curve depends on the domain. If we limit
the macros to those used in the result plan (right side of Fig-
ure 3), the number of points decreases due to the exclusion
of unused macros, but there is still a large number of long
and short macros used. We observed a similar distribution
for all other settings (benchmark sets and Sub/MainPlanner
variations), but these are not shown due to space.
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Figure 3: (Left) Distribution of the length of macros found
by CAP(FD/lama) in IPC2011 seq-sat instances. (Right) Dis-
tribution of the length of macros used in the solutions (plans)
for the same instances (same scales for both figures).

We also hypothesized that the large number of long
macros generated by CAP does not harm the planner per-
formance because the nullary ground macros generated by
CAP have very limited applicability (although they are
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Figure 4: Each point represents IPC2011 seq-sat instances
solved by baseline planner X and its CAP variant CAP(X).
(Left) shows the number of nodes expanded where X ∈
{FF, FD/lama, FD/hcea, Probe}. (Right) shows the number of
instantiated ground actions where X ∈ {FF, Probe}.

highly effective when applicable), and therefore, the ef-
fective branching factor does not increase significantly.
We support these claims in Figure 4 (Left), which plots
the # of node expansions by the baseline planner X ∈
{FF, FD/lama, FD/hcea, Probe} (all included) vs. # of nodes ex-
panded by CAP(X). Each point represents an IPC2011 seq-
sat instance solved by both X and CAP(X). While an in-
crease in node expansion can be seen in a few domains, in
most domains, the number of expansion by CAP(X) is the
same or even reduced compared to X . This result shows that
our nullary macros benefit planner performance even when
they are rarely applicable. While previous macro methods
were forced to impose macro length limitations in order to
avoid the problem of generating many highly applicable,
low-utility macros, CAP successfully takes the opposite ap-
proach of generating rarely applicable, high-utility macros.

Also, Figure 4 (Right), which plots the number of ground
actions on the same set of instances solved by the base-
line planner X ∈ {FF, Probe} vs. that of the main search of
CAP(X), shows that the increase in the number of ground
actions due to CAP are negligible.

Related Work
Asai and Fukunaga (2014) developed ACP, a system which
automatically formulates an efficient cyclic problem struc-
ture from a PDDL problem for assembling a single instance
of a product. ACP focuses on identifying efficient cyclic
schedules for mass manufacturing multiple instances of one
particular product. In CAP terminology, ACP assumes that
its input contains exactly 1 kind of “component” and noth-
ing else. Thus, ACP can not handle heterogeneous, repeti-
tive problems, e.g., a manufacturing order to assemble 20
instances each of Widget A and Widget B. CAP is therefore
a more general approach.

CAP can be viewed as a method for identifying and con-
necting a tractable set of waypoints in the search space.
This is somewhat related to Probe (Lipovetzky and Geffner
2011), a best first search augmented by “probes” that try
to reach the goal from the current state by quickly travers-
ing a sequence of next unachieved landmarks in a “consis-
tent”(Lipovetzky and Geffner 2009) greedy chain. CAP and
Probe work at different levels of abstraction: While the land-

marks are single propositions (Probe does not handle disjunc-
tive landmarks), CAP identifies serializable subproblems,
each of which contains a set of subgoals and requires a sig-
nificant amount of search by the SubPlanner. As shown in
Table 1, CAP is complementary to Probe. CAP(Probe), which
uses Probe as both the SubPlanner and MainPlanner, per-
forms better than Probe by itself.

CAP macros can also be viewed as an extension to T-
macros introduced in MORRIS (Minton 1985) along with
S-macros. T-macros are used less frequently than S-macros
are, but MORRIS benefits from T-macros when there are re-
occuring sets of interacting subgoals.

CAP is an offline approach which statically analyzes a
problem before the search. In contrast, Marvin (Coles and
Smith 2007) embed macro learning into the search, and
stratified planning (Chen, Xu, and Yao 2009) uses decompo-
sition to focus the search online. An advantage of an offline
approach is modularity. Different planners (including other
macro-based methods) can be easily wrapped by an offline
approach – indeed, we showed that CAP can even be used
as a wrapper around Marvin.

Factored Planning (Amir and Engelhardt 2003; Brafman
and Domshlak 2006) and CAP both seek to decompose
problems in order to make them more tractable. The fun-
damental difference between Factored Planning and CAP
is that Factored Planning seeks a complete decomposition
of the problem (i.e., a partition) such that a bottom-up ap-
proach can be used to compose subplans into a complete
plan. CAP, on the other hand, limits itself to seeking sub-
problems (components, as opposed to partitions) that may or
may not be composable into a complete plan. While the cur-
rent implementation of CAP uses Component Abstraction
for decomposition, applying decomposition techniques in-
vestigated for Factored Planning (e.g., Causal Graph-based
decomposition) is an interesting avenue for future work.

Conclusions
We proposed CAP, an approach to solving large, decompos-
able problems. CAP uses static analysis of a PDDL domain
to decompose the problem into components. Plans for solv-
ing these components are solved independently and are con-
verted to ground, nullary macros which are added to the do-
main. In contrast to previous macro systems that generate
lifted macro operators, this has a significant benefit – since
relatively few ground macros are added and instantiated,
CAP avoids the macro utility problem (i.e., branching fac-
tor is not significantly increased) without the need for macro
filtering or bounds on macro length.

We showed that CAP can be used to find satisficing so-
lutions to large problems that are beyond the reach of cur-
rent, state-of-the-art domain-independent planners. CAP is
implemented as a wrapper for standard domain-independent
planners, and was applied to 5 different combinations of
planners and heuristics. We experimentally compared CAP
with previous macro based approaches (Marvin, Wizard, and
MUM) and showed that they are orthogonal to CAP.

One promising direction for future work is exploitation of
symmetry (Fox and Long 1998) among components. While
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macro reusability is completely optional in CAP, some sub-
problems may be very similar to each other when the com-
ponent share the abstract type, and such reusability can be
easily exploited by checking abstract type in order to further
reduce the preprocessing time. Preliminary results with such
a mechanism have been promising.
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