
Explicit Conjunctions without Compilation:
Computing hFF(ΠC) in Polynomial Time

Jörg Hoffmann and Maximilian Fickert
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de, s9mafick@stud.uni-saarland.de

Abstract
A successful partial delete relaxation method is to compute
hFF in a compiled planning task ΠC which represents a set
C of conjunctions explicitly. While this compilation view of
such partial delete relaxation is simple and elegant, its mean-
ing with respect to the original planning task is opaque. We
provide a direct characterization of h+(ΠC), without com-
pilation, making explicit how it arises from a “marriage” of
the critical-path heuristic hm with (a somewhat novel view
of) h+. This explicit view allows us to derive a direct charac-
terization of hFF(ΠC), which in turn allows us to compute a
version of that heuristic function in time polynomial in |C|.

Introduction
Explicit conjunctions were first introduced (Haslum 2009)
to characterize critical-path heuristics (Haslum and Geffner
2000) as hm = h1(Πm), where Πm is a compiled task rep-
resenting each m-conjunction c via a newly introduced π-
fluent πc. A modified compilation ΠC (Haslum 2012), for
arbitrary sets C of conjunctions, was shown to yield a par-
tial delete relaxation method, guaranteeing to converge to
h∗, i. e., h+(ΠC) = h∗ for appropriately chosenC. The size
of ΠC is worst-case exponential in |C| because it explicitly
enumerates every subset C ′ ⊆ C of conjunctions that any
application of an action a from the original planning task
may be used to support. This size explosion was tackled by
the ΠC

ce compilation (Keyder, Hoffmann, and Haslum 2012;
2014), which handles each c by a separate conditional effect.
ΠC

ce still guarantees convergence, but loses information as it
ignores cross-context conditions, i. e. precondition π-fluents
which arise only from the combination of several c ∈ C ′.

We provide a direct formulation, without compilation, of
delete relaxation over explicit conjunctions. This makes ex-
plicit some previously opaque aspects of the approach, in
particular explaining the complexity difference between ΠC

and ΠC
ce in terms of a subgoal-choice problem easy for ΠC

ce
but hard for ΠC . By solving that problem greedily, we com-
pute relaxed plans for ΠC in time polynomial in |C|. This
supersedes ΠC

ce , in terms of achieving the same complexity
reduction without having to ignore cross-context conditions.
(Alcazar et al. (2013) pursued a similar direction but, as we
will detail, trivialized the subgoaling and lost convergence.)

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Preliminaries
We employ the usual STRIPS syntax and semantics. Plan-
ning tasks are tuples Π = (F,A, I,G) of facts, ac-
tions, initial state, and goal, each a ∈ A being a triple
(pre(a), add(a), del(a)) where add(a) ∩ del(a) = ∅. For
simplicity, we consider uniform costs (all action costs are 1);
our results straightforwardly extend to arbitrary action costs.

We assume the standard notions of h+ and h∗. We char-
acterize heuristic functions in terms of equations over re-
gressed subgoals. The regression of fact set g over action a,
R(g, a), is defined if add(a) ∩ g 6= ∅ and del(a) ∩ g = ∅.
In that case, R(g, a) = (g \ add(a)) ∪ pre(a); otherwise,
we write R(g, a) = ⊥. To simplify notation, we will often
identify a heuristic h with its value h(I) in the initial state.
All statements made generalize to arbitrary states s by set-
ting I := s. By h(Π′), we denote a heuristic for Π whose
value is given by applying h in a modified task Π′. To make
explicit that h is computed on Π itself, we write h(Π).

Let C be a set of fact conjunctions. We identify conjunc-
tions with fact sets. We assume throughout that C contains
all singleton conjunctions, {p} for p ∈ F . The ΠC com-
pilation and its relatives are based on introducing a π-fluent
πc for each c ∈ C. Using the shorthand XC := {πc | c ∈
C ∧ c ⊆ X} for fact sets X , ΠC can be defined as follows:
Definition 1 ΠC is the planning task (FC , AC , IC , GC),
where AC contains an action aC

′
, for every pair a ∈ A

and ∅ 6= C ′ ⊆ {c ∈ C | R(c, a) 6= ⊥}, with aC
′

given by pre(aC
′
) = (pre(a)∪

⋃
c′∈C′(c′ \ add(a)))C , and

add(aC
′
) = {πc′ | c′ ∈ C ′}. ΠC

nc is identical to ΠC except
that pre(aC

′
) = pre(a)C∪

⋃
c′∈C′(pre(a)∪(c′\add(a)))C .

This changes Haslum’s (2012) definition in minor ways,
simplifying our presentation without affecting our results.
∅ 6= C ′ and add(aC

′
) = {πc′ | c′ ∈ C ′}work as C contains

all singleton conjunctions. A cross-context condition for aC
′

is a c ∈ C where c ⊆ pre(a) ∪
⋃

c′∈C′(c′ \ add(a)) but
there exists no single c′ ∈ C ′ s.t. c ⊆ pre(a)∪(c′ \add(a)).
ΠC

nc ignores cross-context conditions, and is equivalent to
the ΠC

ce compilation in that h+(ΠC
ce) = h+(ΠC

nc).

h+(ΠC) w/o Compilation
We commence our investigation by “marrying” critical-path
heuristics with the optimal delete-relaxation heuristic h+.

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

115

This results in a new characterization of h+(ΠC). Critical-
path heuristics here will be captured by a straightforward
extension hC of the standard heuristic hm to consider an
arbitrary conjunction set C. We capture h+ in terms of a
novel equation suitable for the subsequent “marriage”.

We define hC := h(G) where h(.) is the function on fact
sets g that satisfies h(g) ={

0 g ⊆ I
1 + mina∈A,R(g,a)6=⊥ h(R(g, a)) g ∈ C
maxg′⊆g,g′∈C h

C(g′) else
(1)

It is easy to see that hC extends hm, in the sense that hC =
hm if C consists of all conjunctions of size ≤ m.

We characterize h+ as h+ := h(G) where h(.) is the
function on fact sets g that satisfies h(g) ={

0 g ⊆ I
1 + mina∈A,∅6=g′={p∈g|R({p},a)6=⊥}
h((g \ g′) ∪

⋃
p∈g′ R({p}, a)) else

(2)

We prove this correct further below. To understand it intu-
itively, note that, for singleton subgoals, regression ignores
the delete list: R({p}, a) 6= ⊥ iff p ∈ add(a). Hence, in
the bottom case, we will always have g′ = add(a) ∩ g 6= ∅.
As, furthermore, R({p}, a) = pre(a), the recursive call of
h will always be on (g \ add(a)) ∪ pre(a).

While the notation in Equation 2 is cumbersome, it (links
to the general case below and) makes visible that the delete
relaxation can be understood as splitting subgoals up into
singletons, and considering regression separately with re-
spect to each of these. Because regression over singleton
facts ignores the deletes as outlined, in effect we need to
worry only about the part of the subgoal we can support, not
about other parts that the same action may contradict. This
understanding underlies our “marriage of h+ with hC”: in-
stead of the singleton facts in our subgoal, we now have to
achieve (apply regression to) its C-conjunctions.

Definition 2 The explicit-C delete relaxation heuristic hC+

is defined as hC+ := h({G}), where h(.) is the function on
conjunction sets G that satisfies h(G) =

0 ∀g ∈ G : g ⊆ I
1 + mina∈A,∅6=G′⊆{g∈G|R(g,a)6=⊥}
h((G \ G′) ∪ {

⋃
g∈G′ R(g, a)}) ∀g ∈ G : g ∈ C

h(
⋃

g∈G{g′ | g′ ⊆ g, g′ ∈ C}) else

hC+
nc is identical to hC+ except that, in the middle case,
{R(g, a) | g ∈ G′} is used instead of {

⋃
g∈G′ R(g, a)}.

Note how Definition 2 merges the ideas underlying hC
and h+: We have to support atomic subgoals from C indi-
vidually by regression (hC); but instead of achieving only
the most costly one, we have to achieve all of them, though
separately (h+). Where, previously, atomic subgoals were
just facts (and hence we dealt with a set g of facts in the
recursion), they now are conjunctions (hence the set G of
conjunctions in the recursion). Akin to Equation 1, the bot-
tom case serves to extract the atomic subgoals (defined by
our conjunction set C) from a non-atomic subgoal. Akin
to Equation 2, the middle case selects the best action sup-
porting some of our atomic subgoals. Note that using ac-
tion a to “support” a subgoal g, which is no longer neces-
sarily a singleton, means to comply with the full definition

of regression: a is not allowed to delete any fact in g, and
R(g, a) = (g \ add(a)) ∪ pre(a) ⊇ pre(a).

Importantly, in difference to Equation 2, there is now a
choice of G′. This is the “subgoal-choice problem” men-
tioned in the introduction. The pairs a,G′ here correspond
to the pairs a and C ′ in the actions aC

′
of ΠC and ΠC

nc . The
choice is needed because (a) for ΠC (but not for ΠC

nc), larger
G′ may give rise to additional cross-context conditions; and
because (b) for both ΠC and ΠC

nc , it may be advantageous to
achieve an atomic subgoal g later on in the recursion, with
an action that has a different precondition which is easier to
combine with g. To illustrate (a), say that add(a) = {p}
and G = {{p, q1}, {p, q2}} where q1 and q2 are impossi-
ble to achieve together. Then G′ = {{p, q1}, {p, q2}} in
hC+ (corresponding to ΠC) leads to the unsolvable sub-
goal {{q1, q2}}, while G′ = {{p, q1}} leads to the subgoal
{{q1}, {p, q2}} which is solvable because we can achieve
each of {q1} and {p, q2} separately. To illustrate (b), say
again that G = {{p, q1}, {p, q2}}. Say that add(a) = {p}
and pre(a) = {r} where the conjunction {r, q1} takes a
single step to achieve, but {r, q2} takes N > 2 actions
to achieve. Say that add(a′) = {p} and pre(a) = {r′}
where the conjunction {r′, q2} takes a single step to achieve,
but {r′, q1} takes N > 2 actions to achieve. Then using
G′ = {{p, q1}, {p, q2}} for either of a or a′ yields a solution
of length N + 2, while using G′ = {{p, q1}} for a and, sub-
sequently, G′ = {{p, q2}} for a′, yields a solution of length
4. So the only optimal solutions are such that neither a nor
a′ make maximal use of the subgoals they could support.

To prove that Definition 2 does indeed capture h+(ΠC),
i. e., that h+(ΠC) = hC+(Π), we start with the simple case
where C contains only the singleton conjunctions:
Lemma 1 For C = {{p} | p ∈ F}, h+ = hC+.
Proof Sketch: For C = {{p} | p ∈ F}, G will always be a
set of singleton conjunctions, which we can identify with a
set g of facts. Re-writing the hC+ equation yields:{

0 g ⊆ I
1 + mina∈A,∅6=g′⊆{p∈g|R({p},a)6=⊥}
h((g \ g′) ∪

⋃
p∈g′ R({p}, a)) else

Choosing g′ ⊂ {p ∈ g | R({p}, a) 6= ⊥} can only lead to a
larger subgoal (g \ g′)∪ pre(a), hence we can exclude these
choices and the equation simplifies to Equation 2. Simplify-
ing the notations, that becomes:{

0 g ⊆ I
1 + mina∈A,∅6=g′=g∩add(a)
h((g \ add(a)) ∪ pre(a)) else

This last equation corresponds to h+, proving the claim.

A detailed proof of Lemma 1, along with all other proofs
omitted below, is available in (Hoffmann and Fickert 2015).

Theorem 1 h+(ΠC) = hC+(Π).
Proof Sketch: Denoting hC+ for singleton conjunctions
only by h1+, with Lemma 1 the claim is equivalent to
h1+(ΠC) = hC+(Π). We prove this by comparing two
equations, capturing h1+(ΠC) respectively hC+(Π).

For h1+(ΠC), after some simplifications our equation
(called Equation I) reads as follows:

116


0 ∀g ∈ G : g ⊆ IC

1 + minaG′∈AC ,∅6=G′⊆{{πg}∈G|R(g,a)6=⊥}

h((G \ G′) ∪ pre(aG
′
)) ∀g ∈ G : |g| = 1

h(
⋃
g∈G{g

′ | g′ ⊆ g, |g′| = 1}) else

For hC+(Π), we equivalently modify Definition 2 into an
equation (called Equation II) that works on completed sub-
goals G only. G is completed if, for all g ∈ G, every g′ ⊆ g
with g′ ∈ C is contained in G as well.

0 ∀g ∈ G : g ⊆ I
1 + mina∈A,∅6=G′⊆{g∈G|R(g,a)6=⊥}
h((G \ G′) ∪ {

⋃
g∈G′ R(g, a)})

G is completed and ∀g ∈ G : g ∈ C
h(
⋃

g∈G{g′ | g′ ⊆ g, g′ ∈ C}) else
Equations I and II are isomorphic because Equation II works
on C-subgoals and Equation I works on singleton π-fluents
representing these sameC-subgoals. Spelling this out is (no-
tationally cumbersome but) straightforward.

A similar proof shows that h+(ΠC
nc) = hC+

nc (Π), and thus
h+(ΠC

ce) = hC+
nc (Π). So, as desired, we obtain direct char-

acterizations of both h+(ΠC) and h+(ΠC
ce).

With Theorem 1 and known results about h+(ΠC) (Key-
der, Hoffmann, and Haslum 2014), delete relaxation over ex-
plicit conjunctions behaves exactly as expected: hC+ ≥ hC ,
hC+ ≥ h+, hC+ = ∞ iff hC = ∞, and hC+ = h∗ for ap-
propriately chosen C.

hFF(ΠC) w/o Compilation
We introduce a direct characterization, denoted hCFF, of
hFF(ΠC). We will build on the following characterization
of standard relaxed plans: πFF := π(G) where π(.) is a par-
tial function on fact sets g that satisfies π(g) ={∅ g ⊆ I

π(gr) ∪ {a} where a ∈ A, add(a) ∩ g 6= ∅,
and h1(gr) < h1(g ∩ add(a)) else

(3)

with gr := (g \ add(a)) ∪ pre(a). As g ∩ add(a) always
contains a fact p with h1({p}) = h1(g∩add(a)), this corre-
sponds to relaxed plan extraction from the h1 best-supporter
function (Keyder and Geffner 2008). Note that π(g) is un-
defined for unsolvable subgoals g where a feasible action
a as requested does not exist. We say that πFF = π(G) is
supported if the equation has a solution π whose domain
contains G; similar for the equations below.

From Equation 3, we obtain hCFF by similar generaliza-
tions as we made to get from Equation 2 to hC+:

Definition 3 The explicit-C FF heuristic hCFF is defined as
hCFF := ∞ if hC = ∞, else hCFF := |πCFF| with πCFF :=
π({G}) where π(.) is a partial function on conjunction sets
G that satisfies π(G) =
∅ ∀g ∈ G : g ⊆ I
π(Gr) ∪ {(a,G′)} where a ∈ A,
∅ 6= G′ ⊆ {g ∈ G | R(g, a) 6= ⊥},
and hC(Gr) < hC(G′) ∀g ∈ G : g ∈ C

π(
⋃

g∈G{g′ ⊆ g | g′ ∈ C}) else

Here, Gr := (G \G′)∪{
⋃

g∈G′ R(g, a)} and hC is extended
to sets G of conjunctions by hC(G) := maxg∈G h

C .
hCFF
nc and πCFF

nc are defined in the same way except that
Gr := (G \ G′) ∪ {R(g, a) | g ∈ G′}.

The step from Equation 3 to Definition 3 should be clear
given the discussion in the previous section. As before,
atomic subgoals are conjunctions instead of single facts,
each atomic subgoal must be supported correctly, and we
minimize over choices of G′. The equivalent of h1 given
conjunctions C is hC . Maintaining a set of pairs (a,G′) in-
stead of a set of actions is required because the same action
may be used several times, for different purposes (exactly as
for the “action representatives” aC

′
in ΠC (Haslum 2012)).

Theorem 2 πCFF is supported iff hC <∞.
Proof Sketch: If hC = ∞, then the top level subgoal al-
ready is unsolvable. Vice versa, if hC < ∞, then the πCFF

equation has a solution for π({G}) even when restricting the
choice of G′, in the middle case, to singletons (i. e., to sin-
gle conjunctions G′ = {g}). Intuitively, this is because hC
corresponds to reasoning over singleton conjunctions.

Theorem 3 πCFF, if supported, is a relaxed plan for ΠC .
Proof Sketch: Consider the sequence of pairs (ai,G′i) se-
lected in a solution for πCFF. It is easy to prove by induction
over i that the sequence aG

′
i

i is a relaxed plan in ΠC .

Similar proofs show that the same properties hold for πCFF
nc .

There is an exponential number of choices for G′ in the
πCFF and πCFF

nc equations. The ΠC compilation can be un-
derstood as enumerating these choices explicitly in memory,
via the action representatives aC

′
. So how do we solve these

equations in polynomial time? The answer is, for πCFF
nc the

equation simplifies to a unique choice of G′, and for πCFF

we can approximate that choice greedily.
For πCFF

nc , G′ is decomposable in the sense that, for
G′ = G′1 ∪ G′2 and corresponding new generated subgoals
Gr,G1r ,G2r , we have Gr = G1r ∪ G2r . So G′ is feasible, i. e.
hC(Gr) < hC(G′), iff each of its elements is, and we can
restrict the choice of G′ to be maximal, G′ := {g ∈ G |
R(g, a) 6= ⊥, hC(R(g, a)) < hC(g)}. This essentially cor-
responds to what ΠC

ce achieves via conditional effects.
For ΠC , due to cross-context conditions, G′ is not decom-

posable. However, to get a practical heuristic function, all
we need is for the choice of G′ to be complete (we do find
feasible G′ if there exists one) and sound (any G′ we choose
is feasible). Completeness is preserved even for singleton
G′, cf. Theorem 2. Soundness can be ensured easily during
relaxed plan extraction. Our implementation keeps greedily
adding new g ∈ G into G′, until adding any single more g
would result in hC({

⋃
g∈G′ R(g, a)}) 6< hC(G′). It is inter-

esting to note that an optimal selection of G′ would be hard:

Theorem 4 Given an integer K, in πCFF it is NP-complete
to decide whether there exists a feasible G′ with |G′| ≥ K.
Proof Sketch: Membership by guess and check. Hardness
via a reduction of Hitting Set: Given a collection of sets
b ⊆ E, the construction is such that choosing G′ amounts to
choosing E′ ⊆ E, where E′ is feasible iff there is no b with
b ⊆ E′. E′ \ E then is a hitting set, and maximizing |E′| is
equivalent to finding a minimum-size such set.

This result somewhat “explains” the complexity differ-
ence between ΠC and ΠC

ce : ΠC
ce exploits decomposability

117

for easy choice of G′, whereas that choice is hard in ΠC .
The ΠC compilation enumerates all possible choices, which
our πCFF algorithm avoids using a simple greedy algorithm.

Alcazar et al. (2013) earlier on introduced a heuristic
“FFm” which, like ours, handles explicit conjunctions with-
out compilation. FFm is like hm in that it deals with all
size-m conjunctions. Extending FFm to arbitrary conjunc-
tion sets C, it corresponds in our notation to this equation:

∅ g ⊆ I
π(R(g, a)) ∪ {a}

where a ∈ A,R(g, a) 6= ⊥, and
hC(R(g, a)) < hC(g ∩ add(a)) g ∈ C⋃
g′⊆g,g′∈C π(g′) else

(4)

This suffers from two major weaknesses, with respect to
our definition of πCFF above. (1) It uses “∪{a}” instead
of “∪{(a, g)}”, which bereaves the heuristic of almost all
its power. It is now bounded from above by |A|, in contrast
to hC+ which converges to h∗. (2) It restricts the choice of
G′ to singletons, and thus over-simplifies the subgoal-choice
problem, running the risk of excessively long relaxed plans
(or rather, the heuristic would be running that risk were it not
trivialized as per (1)). Alcazar et al. effectively tackle ΠC

nc
rather than ΠC because, with singleton G′, cross-context
conditions never occur. Indeed, using “∪{(a, g)}” rather
than ‘∪{a}”, Equation 4 is exactly what both πCFF and πCFF

nc
simplify to when restricting the choice of G′ to singletons.

Experiments
We implemented hC , hCFF, and hCFF

nc in FD (Helmert 2006).
For hC , we extended FF’s counter-based implementation of
relaxed planning graphs (Hoffmann and Nebel 2001). In-
stead of a counter for each action precondition, we maintain
a counter for each pair (a, c) of action a and conjunction
c ∈ C where R(c, a) 6= ⊥ and R(c, a) contains no mutex
fact pair. The last condition prunes useless counters, and is
similar to mutex pruning of useless actions/conditional ef-
fects in ΠC /ΠC

ce as discussed by Keyder et al. (2014).
For each heuristic in our experiment, we implemented and

ran three tie-breaking methods for relaxed plan extraction,
FF’s “difficulty” measure vs. arbitrary vs. random.1 We ran
all heuristics in FD’s lazy-greedy search with a dual open
queue for preferred operators, with time/memory bounds of
30 minutes/2 GB on Intel E5-2660 machines running at 2.20
GHz, on the IPC’11 and IPC’14 satisficing benchmarks.

The primary practical advantage of our work lies in the
different computation of relaxed plans for ΠC , via greedy
selection of G′ in hCFF vs. enumerative such selection in
hFF(ΠC). This corresponds to a different trade-off of heuris-
tic function speed vs. accuracy. Consider Figure 1.

Keyder et al. generate C by iterative refinement of a re-
laxed plan for the initial state, stopping when either a bound
x on the growth of the action set in ΠC relative to the origi-
nal action set A, or a time-out of 15 minutes, is reached. To
examine the effect of large C on hCFF vs. hFF(ΠC), we ran
this process with x = ∞ (but keeping the time bound). As

1The performance variance over different random seeds is con-
sistently small. Depending on the heuristic and domain, the differ-
ence to non-random tie-breaking, however, can be large.

Figure 1: States per second (left) and initial state heuris-
tic value (right) for hCFF (x-axis) vs. hFF(ΠC) (y-axis) on
the IPC’11 and IPC’14 satisficing benchmarks, with large
C (size bound x = ∞). Both heuristics are run with FF’s
“difficulty” tie breaking.

reported by Keyder et al., on IPC benchmarks, mutex prun-
ing avoids the exponential blow-up of ΠC in |C| completely.
Still, an overhead remains, leading to the clear speed-up in
Figure 1 (left). In Figure 1 (right), we see that the accuracy
price paid, measured in terms of relaxed plan length on the
initial state, is benign in comparison.

For x = ∞, this results in a substantial performance ad-
vantage, overall coverage being 256 with hCFF vs. 217 with
hFF(ΠC). However, in most domains the best performance
is obtained with small size bounds x. For x = 2, the overall
best setting in Keyder et al.’s experiments, the comparison
between hCFF and hFF(ΠC) is dominated by the variance
over tie-breaking. The best overall coverage is 314 for hCFF

(random tie-breaking) vs. 301 for hFF(ΠC) (difficulty tie-
breaking). There are some cases in which increasing x helps,
namely ChildSnack, CityCar, Maintenance, ParcPrinter, and
Tetris; there are rare cases where this leads to improved
overall best-possible performance with hCFF compared to
hFF(ΠC). In Maintenance, for example, hCFF has coverage
12 for x = 2, 14 for x = 4, and 15 for x = 8, while the peak
coverage obtained with hFF(ΠC) is 13 for x = 32.

Comparing hCFF to hFF(ΠC
ce), which like hCFF avoids

the worst-case exponential blow-up of ΠC , our data shows
that the more complicated relaxed plan extraction in hCFF

does result in a runtime overhead. For x = ∞, states per
second are typically reduced by factors between 1 and 5.
This pays off only if accounting for cross-context conditions
gives an advantage in informativity, which in the IPC bench-
marks happens rarely. In Maintenance, the peak coverage
obtained with hFF(ΠC

ce) is 11 (compared to 15 with hCFF).
For x = 2, as in the comparison hCFF vs. hFF(ΠC), the com-
parison hCFF vs. hFF(ΠC

ce) is dominated by the tie-breaking
differences. The same is true of hCFF

nc vs. hFF(ΠC
ce).

Conclusion
Our direct formulation of delete relaxation over explicit con-
junctions is nice in being less opaque than compilations,
capturing such partial delete relaxation in terms of separate
regression steps over conjunctive subgoals; and in enabling
polynomial-time relaxed plans for ΠC . On IPC benchmarks,

118

the benefits are visible but minor. It remains to be seen
whether our formulation is fruitful for advanced research,
such as deeper theoretical analyses of the approach.

Acknowledgments
This work was partially supported by the German Research
Foundation (DFG), under grant HO 2169/5-1, and by the
EU FP7 Programme under grant agreement no. 295261
(MEALS).

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja,
R. 2013. Revisiting regression in planning. In Rossi, F.,
ed., Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI’13), 2254–2260. AAAI
Press/IJCAI.
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds. 2012. Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12).
AAAI Press.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 354–357. AAAI Press.
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Bonet et al. (2012), 74–82.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Fickert, M. 2015. Explicit conjunc-
tions w/o compilation: Computing hFF (πc) in polynomial
time (technical report). Technical report, Saarland Uni-
versity. Available at http://fai.cs.uni-saarland.de/hoffmann/
papers/icaps15b-tr.pdf.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI-08), 588–592. Patras, Greece: Wiley.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet et al. (2012), 128–136.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.

119

