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Abstract

We present a mixed-initiative planning and execu-
tion system for human multi-drones interaction dur-
ing search and rescue missions. The proposed system
should allow a single operator to supervise and orches-
trate the operations of a set of UAVs by means of a nat-
ural multimodal communication. In particular, we con-
sider the task of searching for missing persons in a real-
world alpine scenario. In this context, we assume that
the human operator is an alpine rescuer, involved in the
scene and co-located with the drones, hence not fully
dedicated to the robotic platforms, but only able to pro-
vide sparse and sketchy interventions. This scenario re-
quires a framework that supports adjustable autonomy,
from explicit teleoperation to a complete autonomy, and
an effective and natural mixed-initiative interaction be-
tween the human and the robotic team. In this paper,
we illustrate the domain and the overall framework dis-
cussing the system at work in a simulated case study.

Introduction
We present a mixed-initiative system for multiple drones
suitable for search and rescue activities in a real-world
alpine scenario. This work is framed within the SHERPA
project [She, 2013; Marconi et al., 2012]. Differently from
typical human-multidrones interaction scenarios [Cum-
mings et al., 2007; Ollero et al., 2005; Landén, Heintz, and
Doherty, 2012; Bitton and Goldberg, 2008; Malasky et al.,
2005], in this work we assume a human operator that is co-
located with the robots and not fully dedicated to their su-
pervision and control. In this context, the human level of in-
volvement in supporting the robots behavior is not ensured:
as a member of the rescue team involved in the search and
rescue activities, the human operator might be capable to
directly operate the robots, or involved in a specific task,
hence only able to provide sketchy and sparse inputs. This
scenario requires a framework that supports adjustable au-
tonomy, from explicit teleoperation to a complete autonomy
for the robots, and an effective and natural mixed-initiative
interaction between the human and the robots [Murphy et
al., 2000].
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The framework presented in this work should allow a sin-
gle human operator to supervise and orchestrate the oper-
ations of a set of UAVs by means of a natural multimodal
communication (using gestures, speech, joypad, tablet in-
terface, etc.) supported by adjustable autonomy. In the pro-
posed approach, we assume a high-level supervisory system
that can compose and execute structured robotic tasks while
the human rescuer can provide interventions when neces-
sary. These interventions range from abstract task assign-
ments for the multi-drone system (e.g. new areas to explore,
search strategies definition, paths to follow, etc.) to navi-
gation adjustments (e.g. deviations from planned paths or
trajectories) or precise maneuvering of single robots (e.g.
inspection of cluttered environments). More specifically,
the proposed human-robot interaction framework combines
a multimodal interaction module with a layered mixed-
initiative supervisory system. The latter is composed of a
multirobot supervisory system interacting with single robot
supervisors. For each supervisor, the executive control cy-
cle is managed by a BDI (Belief Desire Intention) sys-
tem [Ingrand, Georgeff, and Rao, 1992] that orchestrates
task planning, switching, decomposition, and execution. The
robotic activities are represented as hierarchical tasks which
are continuously instantiated and supervised by the execu-
tive system depending on the environmental events and the
human requests. In this setting, the operator is allowed to
continuously interact with the supervisory systems at dif-
ferent levels of abstraction (from high-level tasks assign-
ment/switching to path/trajectory adjustments) while these
human interventions are interpreted, monitored, and inte-
grated exploiting the planning and execution control loops.
Indeed, following a mixed-initiative planning and execution
approach, these interventions can be associated with sys-
tem reconfigurations which are managed by replanning ac-
tivities [Finzi and Orlandini, 2005; Carbone et al., 2005;
Sellner et al., 2006; Brenner and Nebel, 2009]. However, in
our setting, different planning/replanning engines are strictly
intertwined in order to address mission, path, and control
constraints [Cacace et al., 2015]. In order to evaluate the
effectiveness of the proposed system, we designed a sim-
ulated rescue and search case study where a human operator
interacts with a set of UAVs in order to accomplish typical
searching tasks [NATO, 1988; Bernardini, Fox, and Long,
2014] in an alpine scenario.
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Search and Rescue Mission with UAVs
Following standard guidelines for search and rescue [NAT-
SAR, 2011; CSAR, 2000; NATO, 1988] and theory of op-
timal search [Stone and Kettelle, 1989], we assume the fol-
lowing search phases for the rescue mission: (1) define the
search area for the targets; (2) define sub-areas for assign-
ment of search pattern; (3) assign specific search patterns
to cover each sub-area; (4) define a sequence for the search
patterns execution; (5) execute the chosen sequence of pat-
terns, marking the positions of the victims found. During the
execution of the mission each of these steps can be dynami-
cally rearranged by the human expert depending on the con-
text. In particular, the human experts should be able to refine
the search areas and the associated priority value depending
on the development of the mission and the new information
gathered. Analogously, if the exploration is supported by
UAVs, these areas can be dynamically assigned/reassigned
to robots. For this purpose, we introduce some primitives
to set exploration paths and areas and the associated search
methods (see Table 1). In our setting, a search path is repre-
sented by a set of waypoints p = {(x1, y1), . . . , (xn, ym)}
in the 2D map, instead, a search area is specified by a cen-
ter and a radius a = 〈(x, y), r〉 (more complex search areas
can be easily included). Search areas and paths are also as-
sociated with a priority value Pi depending on the estimated
probability of finding targets in that area. The search areas
can be assigned with an exploration method that instantiates
one of the search patterns suggested by the NATO search and
rescue manual for helicopter search [NATO, 1988] (here ex-
tended to drones as in [Bernardini, Fox, and Long, 2014]):

• Sector Search (SS): that covers the center of the search
area and permits a view of the search area from many
angles (Figure 1, A).

• Parallel Track Search (PTS): used for a uniform search
coverage if the search area is large and the approximate
location of the survivor is known (Figure 1, B).

• Creeping Line Search (CLS): used when the search area
is narrow and the probable location of the survivor can
be on either side of the search track (Figure 1, C).

• Expanding Square Search (ESS): used when the search
area is small and the position of the survivor is known
within a close limit (Figure 1, D).

In our setting, we assume that each pattern can be instan-
tiated by assigning an area of search and a specific step of
expansion (or an angle in the case of SS). We introduce
a cost function Ca(a, sp, u) that estimates the cost of the
search pattern sp applied to the search area a for the drone
u, analogously a cost function Cp(p, u) is to assess the cost
of a search path p for the drone u. In this context, once
a set of search areas A = {a1, . . . , an} and search paths
P = {p1, . . . , pm} have been specified by the human ex-
pert (step (1) and (2)), that human operator should interact
with the autonomous system in order to assign and instanti-
ate the exploration tasks to the drones (step (3) and (4)) and
then monitoring and orchestrating the execution (step (5)).
Notice that these search assignments may be rearranged de-
pending on the current state of the mission and the drones

along with their capabilities.

Figure 1: Exploration strategies for two drones searching the
environments.

HRI Architecture
The human operator should interact with the robots in a sim-
ple and intuitive manner, focusing the cognitive effort on rel-
evant and critical activities (e.g. visual inspection, precise
maneuvering, etc.) while relying on the robotic autonomous
system for routinized operations and behaviors (task de-
composition, path planning, waypoint navigation, obstacle
avoidance, etc.). In this context, the robotic architecture
must be capable of managing different control modes: Au-
tonomous, i.e. the robot can plan and execute a complex
task without the human support; Manual, i.e. each robot can
be directly teleoperated by a human; Mixed-Initiative, i.e.
the user can execute some operations, while the autonomous
system reacts or reconfigures itself accordingly. For this pur-
pose, we designed a modular architecture suitable for su-
pervising and orchestrating the activities of both groups of
robots and single robots. The operator should be capable of
interacting with the system using different modalities (joy-
pad, gestures, speech, tablet, etc.) at different levels of ab-
straction (task, activity, path, trajectory, motion, etc.). These
continuous human interventions should be suitably and re-
actively integrated in the robotics control loops providing a
natural and intuitive interaction.

The architecture of the HRI system presented in this paper
is depicted in Figure 2; in the following we illustrate each
component.

Multimodal Interaction. The multimodal module allows
the operator to interact with the robots using speech, ges-
tures, joypad, tablet, etc.. The integration of different modal-
ities permits a natural, flexible, and robust communication
between the human and the system. The speech modality is
used to control the robot both in mixed-initiative and manual
control. We focused on instructions concerning movement,
selection, and exploration commands (a subset of these can
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Figure 2: The overall HRI architecture.

be found in Table 2 and Table 1). Gesture-based communi-
cation (e.g. pointing, directional signals, etc.) may be used to
complete navigational commands with deictic communica-
tion (e.g. go-there) during proximity interaction with the co-
located drones. Joypad-based control is mostly used to man-
ually teleoperate the robots or to adjust the execution of spe-
cific tasks. For instance, the operator is allowed to modify
the robot speed, orientation or elevation through the joypad,
without changing the robot task. A display/tablet allows the
operator to keep the states of the robot, its current task and
textual/graphical feedback on the environment and the oper-
ative state. Some informations, like quick notifications, may
be sent to headphones, while more complex data have to be
displayed. For example, a suitable map of the environment
is used to select the areas and path to explore and the way-
points to reach (see Figure 6). Informations coming from the
different channels have to be integrated to produce a single
interpretation for a task, command, or query; for this pur-
pose, we rely on a multimodal interaction framework based
on a late fusion approach [Rossi et al., 2013].

Multi Robot Supervisory System. The Multi Robot Su-
pervisory System (MRS) is to delegate tasks to the Single
Robot Supervisory System (SRS) and monitor their execu-
tion with respect to multi-robot integrity, resource, and mis-
sion constraints. In particular, in our context the MRS should
complete and delegate the abstract, incomplete, and sketchy
tasks provided by the operator. For example, the operator
may only specify a set of areas to be explored without spe-
cific assignments for the single drones or assign a task that
cannot be accomplished by a drone, given its current state
and equipment. In particular, for each robot the MRS should
track the pose, the tasks, subtasks, and actions under exe-
cution and power/battery information. Particular tasks are
also associated with additional information, like the path fol-
lowed or the particular region a robot is monitoring. On the
other hand, the robots have to make decisions alone with-
out continuously asking confirmations or details to the hu-
man. For this reason, the system should be able to delegate
and monitor simple, but abstract commands, like ScanArea
and SearchPath, which are then decomposed in detailed
subtasks. Complex delegation system for UAVs are pro-
vided in the literature (e.g. [Landén, Heintz, and Doherty,

2012]), since in this work our focus is on mixed-initiative
human-robot interaction, we will rely on a simple, but reac-
tive MRS managed by a BDI (Belief Desire Intention ex-
ecutive system) [Rao and Georgeff, 1991] executive sys-
tem (see Figure 3, upper layer), implemented by a PRS [In-
grand, Georgeff, and Rao, 1992] engine, that interacts with
a hierarchical task planner [Erol, Hendler, and Nau, 1994;
Montreuil et al., 2007]. Notice that the BDI paradigm is par-
ticularly suited for our mixed-initiative system because it
provides a flexible, reactive, and adaptive executive engine
that is also intuitive for the human.

Single Robot Supervisory System. The SRS can contin-
uously receive tasks from both the MRS and the Operator.
The interaction with the latter is mediated by the Mixed Ini-
tiative Control (MIC) module that supervises the coherence
of the human behavior with respect to the robotic behavior at
different levels of abstraction (multi/single-agent task, path,
trajectory); moreover, it manages the communication be-
tween the robots and the human (e.g. task accepted/refused,
task accomplished, failures notifications, human decision re-
quest, etc.). This communication should be suitably filtered
depending on the task and the human operative state, for this
purpose the deployment of a multimodal dialogue manager
is envisaged [Lucignano et al., 2013], however, in this work
we will assume a simpler approach where the notifications
are provided to the user in a rule-based fashion (depend-
ing on the task and the current state of the operator). The
SRS (see Figure 3, second and third layer) is subdivided into
two layers: the High-level Supervisory Control layer (HLS)
which is responsible for user interaction, goal management,
task/path planning and execution monitoring, while the Low-
level Supervisory Control (LLS) layer that manages the low-
level execution of the action primitives. Analogously to the
MRS, also the HLS is orchestrated by a BDI-based execu-
tive system interacting with a hierarchical task planner for
task decomposition. In this case, the executive system inter-
acts also with a path planner to instantiate navigation com-
mands and search strategies. (more details are provided in
the section about mixed-initiave planning and execution).
The executive engine provides goal management, task de-
composition tracking the current high-level environmental
and executive state. Moreover, it manages any interrupts of
the active plan. In this setting, the operator can interact at any
time by sending new goals or interrupting the current action
execution. Once a complete plan is generated, its execution
is managed by the Plan Supervisor. The low-level Primitive
Supervisor receives from the Plan Supervisor a list of mi-
cro actions associated with a sequence of waypoints, each
tagged with constraints, i.e.: minimal distance from obsta-
cles and maximum velocity. These constraints along with
the micro operation are then used by the Control Manager
to select the right controller (e.g. trading-off velocity and
precision). Given the controller and the waypoints, the Tra-
jectory Planner can then generate and monitor the control
trajectory.
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Figure 3: Multi Robot and Single Robot Supervisory Sys-
tems.

Mixed Initiative Planning and Execution
In the architecture presented above, the human is allowed
to continuously interact with the system at different levels
of abstraction. The system supports smoothly sliding from
fully autonomous control to fully teleoperated control and
vice versa; this interaction is integrated into a continuous
planning and execution process that reconfigures the robots
activities according to the human intentions and the opera-
tive state. In the following, we provide some details about
this process.

Figure 4: Example of a hierachical plan where the MRS task
decomposition is then refined by the SRSs.

Task level interaction. At the higher level of abstraction,
the operator can specify the high-level tasks the robot has to
perform. Each task is hierarchically represented and can be
decomposed into a set of operations and commands that are
sent to the lower-level supervisory system. The executive cy-
cle of both the MRS and SRS are managed by a PRS engine

[Ingrand, Georgeff, and Rao, 1992] that provides goal man-
agement and task decomposition; moreover it tracks the cur-
rent high-level environmental and the executive state han-
dling any interrupts of the active plan. The operator is inte-
grated in this loop and can interact at any time by sending
new goals, changing tasks, or interrupting the current action
execution. Depending on the task, the executive system can
also call a Hierarchical Task Planner to complete or optimize
the task decomposition process. In particular, we rely on the
Human Aware Task Planner (HATP) framework [Montreuil
et al., 2007], a SHOP-like Hierachical planner [Nau et al.,
2001] that can explicitly represent the human interventions.
Note that the hierarchical planning paradigm - in combina-
tion with the BDI framework - is particularly suited for this
domain since it allows the user to monitor and modify the
plan at different abstraction levels (task, activity, path, tra-
jectory, motion, etc.) supporting both situation awareness
and an intuitive interaction with the generated plan struc-
ture. In our setting, the HATP planner is mainly invoked
for the resolution of abstract tasks like, e.g. ExploreMap,
ScanAreas(A), SearchPath(P ), etc. (a list of possible
tasks/subtasks in our domain can be found in Table 1). Each
task can be further specified with the explicit assignment of
the parameters, e.g. the robot r and the area a to be scanned
can be explicitly provided (i.e. ScanArea(r, a)) along with
the p search pattern (i.e. ScanArea(r, a, p)). Notice that, if
the UAV is not explicitly defined by the operator, the MRS
system should generate the assignments trying to maximize
the overall mission reward (see Figure 4); otherwise, the task
can be directly provided to the SRS of a specific robot, in
this case the MSR should only check for constraints vio-
lations. In the HATP, each operation Aa

k for a robot a can
associated with a duration Da

k and a cost function Cctxt
k . For

instance, in our scenario, the estimated cost of scanning an
area a with the search pattern sn for a robot u, evaluated in
the current context, is the sum of the cost of reaching the
area Cr(u, a) and the cost of scanning it Ca(a, sp, u) mi-
nus the reward gathered for the area exploration which is
proportional to the associated priority Pa. As far as multi-
robot constraints are concerned, HATP allows us to define
specific social rules associated with a cost for their violation
〈Sk, P

ctxt
k 〉. In our domain, we only penalize plans where

robots explore the same areas or paths and unbalanced dis-
tributions of the search effort for the available drones. There-
fore, each plan P is associated with a cost:

Cost(P ) = Σai∈PC
ctxt
ai

+ Σsk∈PP
ctxt
sk

,

where ai is an action of the plan P , sk is a social rule. In
this context, the planner should provide a feasible plan P
associated with the minimal cost obtained before a specific
timeout. Indeed, the executive system invokes the planner
providing a latency; if a solution cannot be generated within
the planning latency a default task is executed to recover
from the plan failure. In our case, the timeout is defined
by context- and task-based rules, for instance if a robot is
landed or hovering the planning latency can be extended (up
to 5 sec. in our tests), instead, during the flight it can be
reduced (max 1 sec. in our tests), otherwise, if the mission
time or the energy is below a suitable threshold only a re-
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Task Description
SetSearchArea Add/delete/modify a search area
SetSearchPath Add/delete/modify a search path
SetSearchPattern Change the exploration method
SearchPath Search along the path
ScanArea Scan the area with a pattern
ExploreMap Explore the map
GoTo Move towards a direction or an area
AbortMission abort the overall mission

Table 1: List of mission level tasks.

Command Description
Up Take off or increase of the altitude
Land Move the robot to the ground
Down Decrease the altitude
Left Move the robot to the left
Right Move the robot to the right
Forward Move the robot ahead
Backward Move the robot to the back
Away Move the robot away from the target
Closer Move the robot towards the target
Faster Increase the speed of the robot
Slower Decrease the speed of the robot
Go Move the robot to a specific position
Rotate Rotate the robot with a specific angle
Switch On/Off Turn on/off the UAV engines
Brake The robot brakes

Table 2: List of navigation commands.

active recovery behavior is allowed. More complex policies
can be easily introduced and assessed.

Path and Trajectory level interaction. The primitive
tasks introduced above (e.g. Explore(a, u, p), GoTo(a),
etc.) are associated with drone movements to be suitably
planned and executed. We deploy an RRT ∗ algorithm
[Karaman and Frazzoli, 2011] for the generation of obstacle-
free paths in the 3D space. Given the waypoints and con-
straints (proximity of the obstacles) provided by the path
planner, a trajectory planner generates a trajectory in terms
of position, velocity, acceleration, and jerk. The trajectory
is generated exploiting a 4-th order spline concatenation
method that preserves continuous acceleration. In the pro-
posed architecture, this trajectory can be directly modified
by the human interventions, i.e. the trajectory planner can be
continuously invoked to adjust the current trajectory. Indeed,
in the mixed-initiative mode, autonomous and human contri-
butions are composed to obtain only one position command.
This way, the human interventions can move the robot away
from the planned trajectory. However, when the human in-
tervention is released the autonomous mode is enabled and
the robot is gradually brought towards the planned trajec-
tory without the need of replanning. More specifically, we
assume that, in the mixed initiative mode, the operator can
control the robot in velocity. In this setting, the human gen-
erates a relative position command hC(t) = (xmt , ymt , zmt )
that is added to the aC = (xt, yt, zt) which is generated by
the trajectory planner. The hC function is calculated as fol-
lows:

hC(t) =
{
hC(t− 1) + human(t) if mixed = ON

hC(t− 1) + Λ(t) otherwise

Figure 5: Spherical envelope for trajectory adjustments with-
out replanning.

where human(t) represents the control reference generated
by the human operator (through the joypad, gestures, voice,
etc.) at time t while Λ(t) is a linear function that increases or
decreases the value of hC(t). It is used to drive the hC(t) to-
wards the one provided by the autonomous control when the
joypad is released (see [Cacace, Finzi, and Lippiello, 2014]
for an analogous approach). Moreover, we assume that the
human operator can move the robot within a spherical re-
gion centered in the current planned position (see Figure 5).
This sphere represents the context-dependent workspace of
the user operator. A replanning process (analogous to the
one used for obstacle avoidance) is started when the human
operator moves the robot out of this sphere. In this case, the
autonomous system generates another path and trajectory to
reach the next waypoint. Additional details can be found in
[Cacace, Finzi, and Lippiello, 2014]. Note that path and tra-
jectory replanning can also elicit task replanning if the con-
ditions associated with the execution of the current tasks are
not valid anymore (e.g. preconditions, energy, resource, and
time constraints); these consistency conditions are contin-
uously assessed by the PRS executive systems (single and
multi-robot).

In Table 2, we can find some examples of commands
that the operator can provide to the system in a multimodal
manner (joypad, speech, gestures, etc.) to interact with the
robots or to directly controlling them. Note that these com-
mands can be sketchy and context-dependent, for instance,
if the robot is in idle state the Up is for take off, otherwise it
will increase the UAV altitude. The navigational commands
(left, right, forward, backward) are robot dependent (e.g.
left moves the robot to the left side of its camera) and can
be abstract (the actual movement can be instantiated by the
system) or more specific (e.g. left 1m). The faster/slower
commands change the robot speed during the execution of a
command (they have no effect if the robot is idle); each invo-
cation of these commands will increase/decrease the actual
speed to a given percentage up to a limit value. The go com-
mand moves the robot towards a specific location associated
either to coordinates stored on the map or to a symbolic lo-
cation (either already provided in the map or marked by the
operator during the mission execution).
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Figure 6: Specification of search paths and areas in a sim-
ulated environment (tablet interface). The red segments are
possible paths followed by missed hikers, darker areas are
associated with a higher priority value.

Simulation and Evaluation
A simulated alpine scenario has been defined with different
configurations in order to evaluate the system performance.
In this section, we illustrate the scenario and some initial
tests we carried out in order to assess the system at work dur-
ing a typical search and rescue mission in the three modali-
ties: manual control, mixed initiative, and fully autonomous.
In this setting, we started to consider only joypad and tablet
based interactions.

Platform. We assume a set of simulated quadrotors with
the specification of the Asctec Pelican (flight time 20 min.,
max. airspeed 16 m/s, max. climb rate 8 m/s, max. pay-
load 650 g, etc.) equipped with standard sensors. The over-
all software system has been developed in ROS under linux
uduntu 12.04. The environment has been simulated using the
Unity3D game engine.

Environment. The simulated scene, depicted in Figure 6,
includes several situations in which an hiker might have
lost its way. We considered both summer and winter fea-
tures. The scene comprises missed hikers and some asso-
ciated items, either lost by the hikers or irrelevant objects.
These objects can help the operator in the search operations
(clues), but also divert him/her away from the right direction.

Test and scenario description. The performance of the
system has been evaluated considering three control modal-
ities. In the first test the system works in the autonomous
mode, lacking any interaction with the operator. In the sec-
ond test case, the operator may only use the joypad, while
the high-level supervisory system is disabled both at the
multi-robot and at the single robot level. In this scenario,
when one of the robots is not directly operated it waits in the
hovering state. In the third case, the operator is supported by
the overall system and can work in the mixed initiative con-
trol mode. The main aim here is to illustrate the mixed ini-

Figure 7: Simulated environment: starting point (base) for
the two drones in our tests.

Figure 8: User interface during the simulated mission in the
mixed initiative mode. The camera streaming of the con-
trolled drone is full screen, the other drone camera and the
environmental map are the smaller windows on the right.
Text messages for the two drones are illustrated at the bot-
tom.

tiative framework at work in a typical rescue scenario com-
paring its performance with respect to the ones obtained in
the other two modalities. In Figure 6, we illustrate the map
provided to the user at the beginning of each test: it repre-
sents the search environment where paths, areas, and likeli-
hood values of finding survivors are represented. The inter-
face employed for the tests is depicted in Figure 8, here the
video streaming of the controlled robot is full screen, while
smaller windows show the video streaming of the other robot
and the environmental map with the robots positions. Mes-
sages from each robot are also provided though the interface;
the information available to the user during the tests depends
on the control mode as illustrated in Table 3.

Each test starts with the robots positioned in a fixed point
and should end in that position (see Figure 7). During the
tests, we assumed a perfect positioning system and a per-
fect object/human detection system when the target is in the
camera field of view (50-degree) within a range of 30m.

In the autonomous case, we assume that the mission is
planned by the MSR-level task planner at the start and then
reactively adjusted by the autonomous system during the ex-
ploration, depending of the detected objects. When a rel-
evant object is detected, the robot is to replan in order to
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Test Type Autonomous Manual Mixed-Initiative
Information
available

- Num. of survivor
- Loc. of areas

- Num. of survivor
- Loc. of areas

- Num. of survivor
- Loc. of areas

Messages
Shown - None

- Time elapsed
- Battery warning
- Survivor conf.

- Salient object
- Survivor alert
- Exploration start/end
- Time elapsed
- Failure request.

Control - Autonomous - Teleoperated - Mixed-Initiative

Table 3: Information available to the user during the tests.

explore the surrounding area with a predefined scan path.
Analogously, when the battery power falls below a suitable
threshold, the robot should replan in order to come back to
the initial position.

In the teleoperated mode, the robots are directly con-
trolled through a tablet and a joypad used to define direction,
speed, orientation of the robot and of the camera. During the
tests, the user receives only two messages: the confirmation
of the effective survivor sighting and a warning about the
battery level, if it drops below a fixed threshold.

In the mixed initiative scenario, the user can interact with
the MRS and SRS during the mission using the tablet and the
joypad. The graphical information provided by the tablet in-
terface is similar to the one of the teleoperated case, but ad-
ditional textual information is provided (see Table 3). Analo-
gously to the autonomous mode, also in this case the mission
is planned in advance, but the human is allowed to provide
interventions at the plan and the trajectory level. On the other
hand, the system alerts the operator when salient clues are
detected by a robot. The operator can then inspect the clues
and decide whether to check the area. The operator can al-
ways inspect the current operative and environmental state:
including robots position, speed, state, task, plan. These no-
tices can be supplied through different channels, like audio
notifications or messages on a tablet. In this setting we de-
cided for the text notification on the tablet.

Test set-up. In our tests, we considered the scenario de-
picted in Figure 6 to be explored by 2 robot. The mission
goal is to find 15 persons within 10 minutes. The testing
area is a simulated environment of 160× 140 m2 with 9 ar-
eas to be explored and 9 paths. 9 clues (one for victims) and
21 irrelevant objects (distractors) are randomly distributed
on the environment. We defined 3 different dispositions of
survivors and objects within the scene. In the first case (test
A), all the targets are located inside the areas and paths with
a uniform distribution. In the second (test B) and third case
(test C), the 66% and 13% of the targets is located inside the
areas/paths with a uniform distribution, while the remaining
are uniformly positioned in the rest of the scene. Each tar-
get can be associated with 1 clue which is positioned within
a range of 20m. In the teleoperation and mixed-initiative
modes, each modality has been executed 12 times, by 4 users
(3 tests for each mode after 2 session of training).

Results. In Figure 9, we illustrate the percentage of sur-
vivors found in the three control modalities with respect to
the different test cases (A, B, C). As expected, the teleop-

Figure 9: Percentage of success in target detection with re-
spect to the control modalities.

Targets Min Max Mean Std t-test
Mixed-Initiative 12 14 12.00 0.84 0.1009915Autonomous 11 12 11.25 0.5
Survivors Min Max Mean Std t-test
Mixed-Initiative 12 14 12.00 0.84 0.0001655Teleoperation 6 8 7 0.71

Table 4: Mixed-initiative mode vs. automous and teleoper-
ated mode (test A).

erated mode is not effective, indeed not only the parallel
search of the two drones cannot be exploited in this case,
but also the lack of task/path guidance reduces the over-
all situation awareness, hence the number of correct de-
tections is significantly lower than in the other modes. On
the other hand, since we assume a reliable human/object
detection system, the autonomous mode is very effective
when the initial hypothesis is accurate. In this case, the two
robots can find about 80% of survivors, scanning all the ar-
eas. However, the success rate rapidly drops when the initial
hypothesis becomes less accurate; indeed, the autonomous
system is not flexible enough to diverge from the planned
activities. Instead, the mixed-initiative mode seems more
effective than the autonomous mode for each of the test
cases and this advantage seems emphasized when the initial
hypothesis becomes wrong. Indeed, in the worst case, the
mixed-initiative mode behaves significantly better (57.78%)
than the autonomous (32.25%) and the teleoperated ones
(24.12%). The significance of these results is illustrated in
the Tables 4, 5 and 6 where we compare the mixed-initiative,
autonomous, and teleoperated results for each of the 3 tests
cases. The comparison of the mixed-initiative performance
in the three testing scenarios can be found in Table 7.

In the mixed-initiative mode, we also analyzed the human
interventions for the different cases. In Table 8 we can ob-

Targets Min Max Mean Std t-test
Mixed-Initiative 11 12 11.40 0.55 0.034469Autonomous 7 13 9.20 2.28
Survivors Min Max Mean Std t-test
Mixed-Initiative 11 12 11.40 0.55

<.0001Teleoperation 4 7 5.8 1.3

Table 5: Mixed-initiative mode vs. automous and teleoper-
ated mode (test B).
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Targets Min Max Mean Std t-test
Mixed-Initiative 7 9 7.80 0.84

<.0001Autonomous 2 3 2.6 0.55
Survivors Min Max Mean Std t-test
Mixed-Initiative 7 9 7.80 0.84

<.0001Teleoperation 3 5 3.6 0.89

Table 6: Mixed-initiative mode vs. automous and teleoper-
ated mode (test C).

Targets Min Max Mean Std t-test
Mixed-Initiative (test A) 13.2 12 12.00 0.84 0.0019205Mixed-Initiative (test B) 11 12 11.40 0.55
Survivors Min Max Mean Std t-test
Mixed-Initiative (test B) 11 12 11.40 0.55

<.0001Mixed-Initiative (test C) 7 9 7.80 0.84
Survivors Min Max Mean Std t-test
Mixed-Initiative (test A) 13.2 12 12.00 0.84 0.000459Mixed-Initiative (test C) 7 9 7.80 0.84

Table 7: Mixed-Initiative performance w.r.t. the accuracy of
the initial hypothesis.

serve that, as expected, the percentage of the time spent in
teleoperation (joypad usage) increases with the complexity
of the domain, indeed, when the initial hypotheses are wrong
the user should intensify the interventions diverging from
the planned activities. This is directly correlated with the in-
crement of the low-level interventions (e.g. trajectory cor-
rections or teleoprated search) and task replanning episodes.
The latter can be directly invoked by the user or indirectly
elicited by external events (e.g. object detection) or con-
straint violations (e.g. low energy, resource conflicts, etc.).
Note that the high-level interventions seem more sparse be-
cause are usually associated with strategic decisions (e.g.
new areas to be explored). Notice also that since the oper-
ator can easily provide direct adjustments during the mixed-
initiative mode without provoking replanning, the time spent
in teleoperation remains high for each of the cases analysed
in Table 8.

Test A Test B Test C

Joypad usage (%) Mean 30.67% 43.07% 53.04%
Std 1.53 2.64 2.34

Low Level Int. Mean 5.4 6.4 6.8
Std 1.34 2.19 1.92

Task Replanning Mean 10.0 12.0 13.8
Std 0.83 1.87 3.49

Table 8: Human interventions and task replanning episodes
during the 3 test scenarios in the mixed initiative mode.

Conclusion
In this paper we presented a mixed-initiative planning and
execution system for human multi-drones interaction dur-
ing search and rescue missions in an alpine environment.
The peculiar aspect of the domain is the presence of a hu-
man operator which is not fully dedicated to the drones con-
trol, but operative in the rescue scenario, hence only able
to provide sketchy and sparse input to the robots. This in-
teractive scenario requires a flexible mixed-initiative frame-

work that supports multimodal HRI and sliding autonomy.
The proposed system allows the user to interact with the
robotic team at different levels of abstraction, from abstract
multirobot task assignment to direct teleoperation of specific
robots. The main aim of the paper was the presentation of the
novel domain along with the overall framework focusing on
planning and execution capabilities. A simulation environ-
ment has been also developed to assess the effectiveness of
the proposed mixed-initiative system. In the initial tests pre-
sented in this paper we illustrated the system at work during
a typical mission comparing its performance with respect to
the obtained employing direct teleoperation and a simple au-
tonomous system. An extensive evaluation of the proposed
framework is left as a future work.
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