
Complete Decentralized Method for On-Line Multi-Robot
Trajectory Planning in Well-Formed Infrastructures

Michal Čáp and Jiří Vokřínek
ATG, Dept. of Computer Science,

FEL, CTU in Prague, Czech Republic

Alexander Kleiner
iRobot Inc.,

Pasadena, CA, USA

Abstract
We consider a system consisting of multiple mobile robots in
which the user can at any time issue relocation tasks ordering
one of the robots to move from its current location to a given
destination location. In this paper, we deal with the prob-
lem of finding a trajectory for each such relocation task that
avoids collisions with other robots. The chosen robot plans its
trajectory so as to avoid collision with other robots executing
tasks that were issued earlier. We prove that if the destina-
tion of each task is an endpoint in a so-called well-formed
infrastructure, then this mechanism is guaranteed to always
succeed and provide a trajectory for the robot that reaches the
destination without any collisions. The time-complexity of
the approach is only quadratic in the number of robots. We
demonstrate the applicability of the presented method on sev-
eral real-world maps and compare its performance against a
popular reactive approach that attempts to solve the collisions
locally. Besides being dead-lock free, the presented approach
generates trajectories that reach the goal significantly faster
(up to 48% improvement) than the trajectories resulting from
local collision avoidance.

Introduction
Consider a future factory where intermediate products are
moved between workplaces by autonomous robots. The
worker at a particular workplace calls a robot, puts an ob-
ject to a basket mounted on the robot and orders the robot
to autonomously deliver the object to another workspace
where the object will be retrieved by a different worker.
Clearly, an important requirement on such a system is that
each robot must be able to avoid collisions with other robots
autonomously operating in the shared space. The problem
of avoiding collisions between individual robots can be ap-
proached either from a control engineering perspective by
employing reactive collision avoidance or from AI perspec-
tive by planning coordinated trajectories for the robots.

In the reactive approach, the robot follows the short-
est path to its current destination and attempts to resolve
collision situations as they appear. Each robot periodi-
cally observes positions and velocities of other robots in its
neighborhood. If there is a potential future collision, the
robot attempts to avert the collision by adjusting its im-
mediate heading and velocity. A number of methods have

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been proposed (Van den Berg, Lin, and Manocha 2008;
Guy et al. 2009; Lalish and Morgansen 2012) that prescribe
how to compute such collision-avoiding velocity in a recip-
rocal multi-robot setting, with the most prominent one be-
ing ORCA (Van Den Berg et al. 2011). These approaches
are widely used in practice thanks to their computational ef-
ficiency – a collision-avoiding velocity for a robot can be
computed in a fraction of a millisecond (Van Den Berg et al.
2011). However, these approaches resolve collisions only
locally and thus they cannot guarantee that the resulting mo-
tion will be deadlock-free and that the robot will always
reach its destination.

With a planning approach, the system first searches for
a set of globally coordinated collision-free trajectories from
the start position to the destination of each robot. After the
planning has finished, the robots start following their respec-
tive trajectories. If robots are executing the resulting joint
plan precisely (or within some predefined tolerance), it is
guaranteed that the robots will reach their destination while
avoiding collisions with other robots. It is however known
that the problem of finding coordinated trajectories for a
number of mobile objects from the given start configurations
to the given goal configurations is intractable. More pre-
cisely, the coordination of disks amidst polygonal obstacles
is NP-hard (Spirakis and Yap 1984) and the coordination of
rectangles in a bounded room is PSPACE-hard (Hopcroft,
Schwartz, and Sharir 1984).

Even though the problem is relatively straightforward to
formulate as a planning problem in the Cartesian product of
the state spaces of the individual robots, the solutions can
be very difficult to find using standard heuristic search tech-
niques as the joint state-space grows exponentially with in-
creasing number of robots. The complexity can be partly
mitigated using techniques such as ID (Standley 2010) or
M* (Wagner and Choset 2015) that solve independent sub-
conflicts separately, but each such sub-conflict can still be
prohibitively large to solve because the time complexity of
the planning is exponential in the number of robots involved
in the sub-conflict.

Instead, heuristic approaches are often used in practice,
such as prioritized planning (Erdmann and Lozano-Pérez
1987), where the robots are ordered into a sequence and plan
one-by-one such that each robot avoids collisions with the
higher-priority robots. This greedy approach tends to per-

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

324

form well in uncluttered environments, but it is in general
incomplete and often fails in complex environments.

When the geometric constraints are ignored, com-
plete polynomial algorithms can be designed such as
Push&Rotate (de Wilde, ter Mors, and Witteveen 2013) or
Bibox (Surynek 2009). These algorithms solve so-called
“Pebble motion” problem, in which pebbles(robots) move
on a given graph such that each pebble occupies exactly one
vertex and no two pebbles can occupy the same vertex or
travel on the same edge during one timestep. Although this
model can be useful for coordination of identical robots on
coarse graphs1, it is not applicable for trajectory coordina-
tion of robots with fine-grained or otherwise rich motion
models.

Recall that in our factory scenario, a robot can be assigned
a task “online” at any time during the operation of the sys-
tem. If one of the classical batch planners is used, the system
would have to interrupt all the robots and replan their trajec-
tories each time a new task is assigned, which is clearly un-
desirable. Further, although prioritized planning can be run
in a decentralized manner (Velagapudi, Sycara, and Scerri
2010; Čáp et al. 2013), the complete approaches are difficult
to run without a central solver.

The main contribution of this paper is COBRA – a novel
decentralized method for collision avoidance in multi-robot
systems with online-assigned tasks to individual robots. We
prove that for robots operating in environments that were de-
signed as a well-formed infrastructures, the method is com-
plete, i.e. all tasks are guaranteed to be successfully car-
ried out without collision. Furthermore, if a time-extended
roadmap planner is used for trajectory planning, the al-
gorithm has polynomial worst-case time-complexity in the
number of robots. The applicability of the approach is
demonstrated using a simulated multi-robot system operat-
ing in real-world environments.

Problem Statement
Consider a 2-d environment (described by a set of obstacle-
free coordinatesW ⊆ R2) and a set of points E ⊂ W rep-
resenting distinguished locations in the environment called
endpoints (modeling e.g. workplaces in a factory). The pair
(W, E) is called and infrastructure. Such an infrastructure is
populated by n mobile robots with circular bodies indexed
1, . . . , n. The radius of the body of robot i is denoted ri,
the maximum speed robot i can move at is denoted by vmax

i .
The robots are assumed to be holonomic, i.e. at every time
step, the robot can select its immediate speed v ∈ (0, vmax

i)
and heading θ ∈ (−π, π) with the acceleration limits be-
ing neglected. During the operation of the system, robots
are assigned relocation tasks denoted s → g requesting the
chosen robot to move from its current position s ∈ E to
the given goal endpoint g ∈ E. We assume that the robot
cannot be interrupted once it starts executing a particular re-
location task and thus a new relocation task can be assigned

1The graph must be coarse enough so that the bodies of two
robots “sitting” on two different vertices will never overlap. The
same has to hold for two robots traveling on different edges of the
graph.

to a robot only after it has reached the destination of the pre-
viously assigned task. The objective is to find a trajectory
for each such relocation task such that the robot will reach
the specified goal without colliding with other robots oper-
ating in the system. Moreover, such trajectories should be
found in a decentralized fashion without a need for a central
component coordinating individual robots.

Notation In the remainder of the paper we will make use
of the notion of a space-time region: When a spatial object,
such as the body of a robot, follows a given trajectory, then
it can be thought of as occupying a certain region in space-
time T := W × [0,∞). A dynamic obstacle ∆ is then a
region in such a space-time T . If (x, y, t) ∈ ∆, then we
know that the spatial position (x, y) is occupied by dynamic
obstacle ∆ at time t. The function

Ri(π) := {(x, y, t) : t ∈ [0,∞) ∧ (x, y) ∈ D(π(t), ri)} ,

where D(x, r) is a closed disk centered at x with radius r,
maps trajectories of a robot i to regions of space-time that
the robot i occupies when its center point follows given tra-
jectory π. As a special case, let Ri(∅) := ∅.

COBRA – General Scheme
In this section we will introduce Continuous Best-Response
Approach (COBRA), a decentralized method for trajectory
coordination in multi-robot systems. In the general formu-
lation of the algorithm, we assume that each of the robots
in the system is able to compute an optimal trajectory for
itself from its current position to a given destination posi-
tion in the presence of moving obstacles without prescrib-
ing how such a trajectory should be computed. In order to
synchronize the information flow and ensure that the robots
plan their trajectory using up-to-date information about the
trajectories of others, robots use a distributed token-passing
mechanism (Ghosh 2010) in which the token is used as a
synchronized shared memory holding current trajectories of
all robots. We identify a token Φ with a set {(ai, πi)}, which
contains at most one tuple for each robot a = 1 . . . , n. Each
such tuple represents the fact that robot a is moving along
trajectory π. At any given time the token can be held by only
one of the robots and only this robot can read and change its
content.

A robot newly added to the system tries to obtain the to-
ken and to register itself with a trajectory that stays at its
initial position forever. After all the robots have been added
to the system, the user can start with assigning relocation
tasks to individual robots.

When a new relocation task is received by robot i, the
robot requests the token Φ. When the token is obtained, the
robot runs a trajectory planner to find a new “best-response”
trajectory to fulfill the relocation task. The trajectory is re-
quired a) to start at the robot’s current position p at time
tnow + tplanning (at the end of the planning window), b)
to reach the goal position g as soon as possible and remain
at g and c) to avoid collisions with all other robots follow-
ing trajectories specified in the token. If such a trajectory
is successfully found, the token is updated with the newly
generated trajectory and released so that other robots can

325

Algorithm 1: COBRA – specification for robot i. The
current time is denoted tnow, the maximum time that
can be spent in trajectory planning is denoted tplanning.

1 On registered to the system at position s
2 Φ← request token ;
3 π ← π(t) such that ∀t ∈ [0,∞) : π(t) = s ;
4 Φ← Φ ∪ {(i, π)} ;
5 release token Φ ;
6 On new relocation task s→ g assigned
7 Φ← request token ;
8 assert g is not a destination of another robot;
9 Φ← (Φ \ {(i, π′) : (i, π′) ∈ Φ}) ;

10 ∆←
⋃

(j,πj)∈Φ

Rj(πj);

11 tdep ← tnow + tplanning ;
12 π ← Best-traji(s,tdep,g,∆) ;
13 if π = ∅ then
14 report failure
15 Φ← Φ ∪ {(i, π)} ;
16 release token Φ ;
17 start following π at tdep ;
18 Function Best-traji(s,ts,g,∆)
19 return trajectory π for robot i that reaches g in

minimal time such that
20 a) π(ts) = s,
21 b) ∃tg ∀t′ ∈ [tg,∞) : π(t′) = g,
22 c) Ri(π) ∩∆ = 0 if it exists,
23 otherwise return ∅;

acquire it. Then, the robot starts following the found tra-
jectory. Once the robot successfully reaches the destination,
it can accept new relocation tasks. The pseudocode of the
COBRA algorithm is listed in Algorithm 1.

Theoretical Analysis
In this section we will derive a sufficient condition under
which is the presented mechanism complete, i.e. it guar-
antees that all relocation tasks will be successfully carried
out without collision. First, observe that in general a robot
may fail to find a collision-free trajectory to its destination as
illustrated in Figure 1. There is, however, a class of infras-
tructures, which we call well-formed infrastructures, where
each trajectory planning is guaranteed to succeed and conse-
quently all relocation tasks will be carried out without colli-
sion.

Informally, a well-formed infrastructure has its endpoints
distributed in such a way that any robot standing on an end-
point cannot completely prevent other robots from moving
between any other two endpoints. In a well-formed infras-
tructure, a robot is always able to find a collision-free trajec-
tory to any other unoccupied endpoint by waiting for other
robots to reach their destination endpoint, and then by fol-
lowing a path around the occupied endpoints, which is in a
well-formed infrastructure guaranteed to exist.

In the following, we will describe the idea more for-

Figure 1: Scenario in which robot 2 fails to find a trajec-
tory for a relocation task s2 → g2. First, robot 1 plans
a trajectory for relocation task s1 → g1. It will travel at
straight line connecting the two points at maximum speed.
Robot 2 can travel at the same maximum speed as robot 1
and plans second from s2 to g2. However, it cannot reach
the exchange point in time and thus none of the available
trajectories reaches g2 without collision with robot 1. The
trajectory planning by robot 2 fails.

mally. First, let us introduce the necessary notation. Let
D(x, r) be a closed disk centered at x with radius r. Then,
intrX := {x : D(x, r) ⊆ X} is an r-interior of a set X ⊆
R2 and extrX := ∪

x∈X
D(x, r) is an r-exterior of a set

X ∈ R2. A path is a continuous function p(α) : [0, 1]→ R2

which represents a curve in R2. A trajectory is a function
π(t) : [0,∞) → R2 which represents a movement of a
point in R2 and time. Given a set X ⊆ R2, we say that
a path p is X-avoiding iff ∀α : p(α) /∈ X . Similarly, a
trajectory π is X-avoiding iff ∀t : π(t) /∈ X . The trajec-
tories πi and πj of robots i and j are said to be collision-
free iff ∀t : |πi(t)− πj(t)| ≥ ri + rj . A trajectory π is
g-terminal iff ∃tg ∀t ∈ [tg,∞) : π(t) = g. Token Φ is
called a) E-terminal iff ∀(a, π) ∈ Φ : π is g-terminal and
g ∈ E, and b) collision-free iff ∀(a, π), (a′, π′) ∈ Φ : a 6=
a′ ⇒ π and π′ are collision-free.

Definition 1. An infrastructure (W, E) is called well-
formed for circular robots having body radii r1, . . . , rn if
any two endpoints a, b ∈ E can be connected by a path

in workspace intr

(
W \ ∪

e∈E\{a,b}
D(e, r)

)
, where r =

max{r1, . . . , rn}.
In other words, there must exists a path between any two

endpoints with at least r-clearance with respect to the static
obstacles and at least 2r-clearance to any other endpoint.
Figure 2 illustrates the concept of a well-formed infrastruc-
ture.

The notion of well-formed infrastructures follows the
structure typically witnessed in man-made environments
that are intuitively designed to allow efficient transit of mul-
tiple people or vehicles. In such environments, the endpoint
locations, where people or vehicles need to stop for longer
time, are separated from the transit area, which is reserved
for travel between these locations.

If we take the road network as an example, the endpoints
would be the parking places and the system of roads is built
in such a way that any two parking places are reachable with-
out crossing any other parking place. Similar structure can
be witnessed in offices and factories. The endpoints would
be all locations, where people may need to spend longer pe-

326

(a) Well-formed in-
frastructure: The
workspace W and
endpoints {e1, e2, e3, e4}
for robots having radius
r form a well-formed
infrastructure.

(b) Infrastructure that is
not well-formed: The
workspaceW and endpoints
{e1, e2, e3} do not form a
well-formed infrastructure
because there is no path
from e1 to e2 with 2r-
clearance to e3 for a robot
having radius r.

Figure 2: Well-formed infrastructure example and non-
example

riods of time, e.g. surroundings of the work desks or ma-
chines. As we know from our everyday experience, work
desks and machines are typically given enough free room
around them so that a person working at a desk or a machine
does not obstruct people moving between other desks or ma-
chines. Indeed, we can see that real-world environments are
often designed as well-formed infrastructures.

Completeness in Well-formed Infrastructures In this
section, we show that if robots are operating in a well-
formed infrastructure and use COBRA for trajectory coor-
dination, they will successfully carry out all assigned relo-
cation tasks without collisions. Our analysis assumes the
following setup of the multi-robot system. First, the robots
must operate in a well-formed infrastructure (W, E). When
the system is initialized, each robot is located at a distinct
endpoint of the infrastructure. After the initialization is
finished, robots start accepting relocation tasks from some
higher-level component, which ensures that each destination
is an endpoint of the infrastructure and two robots will never
have simultaneously assigned relocation task with the same
destination. Each robot uses a complete trajectory planner
and any trajectory generated for a robot, will be precisely
followed by the robot.

Proposition 2. If token Φ acquired during handling of a new
task s → g assigned to robot i (on line 7 in Algorithm 1) is
E-terminal and collision-free, then the subsequent trajectory
planning succeeds and returns a trajectory that is g-terminal
and collision-free with respect to other trajectories in Φ.

Proof. Because (W, E) is a well-formed infrastructure and
s, g ∈ E, there exists a extr (E \ {s, g})-avoiding path p
going from s to g. All trajectories in Φ are E-terminal, which
implies that eventually they reach one of the endpoints and
stay at that endpoint. Consequently, there exists a time point
t after which all the robots reach their destination endpoints
and stay there. A g-terminal and collision-free trajectory for
robot i can be constructed as follows:

• In time interval t ∈ [ts,max(ts, t)] : π(t) = s. The tra-
jectory cannot be in collision with any other trajectory in
Φ during this interval: From the assumption that new re-
location tasks can be assigned only after the previous relo-
cation task has been completed, we have ∀t ∈ [tnow,∞) :
π(t) = g′. From the assumption that the start position of
a new relocation task smust be the same as the goal of the
robots previous task g′, we know ∀t > tnow : π(t) = s.
Since Φ is collision-free, all trajectories of robots other
than j from Φ must be avoiding s with ri + rj clearance,
where rj is the radius of the other robot in Φ. Therefore,
in time interval [ts,max(ts, t)], robot i will be collision-
free with respect to other trajectories stored in Φ.
• In time interval t ∈ [t,∞] :π follows path p until the goal

position g is reached. The trajectory cannot be in collision
with any trajectory in Φ during this interval: After time t,
all robots are at their respective goal positions G, which
satisfy: a) G ⊆ E, b) s /∈ G, otherwise some of the tra-
jectories would have to be in collision with π, which con-
tradicts the finding from the previous point, and c) g /∈ G
because we assume that two robots cannot have simulta-
neously relocation tasks with the same destination. We
know that the path p avoids regions ext2r (E \ {s, g})
and thus the trajectory cannot be in collision with any
other trajectory in Φ during the interval [t,∞).

Such a trajectory can always be constructed and thus any
single-robot complete trajectory planning method must find
it.

Proposition 3. Every time Φ is acquired by a robot during
new relocation task handling (line 7 in Algorithm 1), Φ is
E-terminal and collision-free.

Proof. By induction on Φ. Take an arbitrary sequence of
individual robots acquiring the token Φ and updating it. Let
the induction assumption be: Whenever Φ is acquired by a
robot to handle a new relocation task, Φ is E-terminal and
collision-free.

Base case: When the last robot registers itself, all robots
have a trajectory in Φ that remains at their start positions for-
ever. Since the start position are assumed to be distinct and
at least 2r apart, then the Φ is collision-avoiding. Further, Φ
is trivially E-terminal because after the last robot registers,
all robots stay at their initial position, which is an endpoint.

Inductive step: From the inductive assumption, we know
that Φ acquired at line 7 in Algorithm 1 is E-terminal and
collision-free. Using Proposition 2, we see that for any relo-
cation task s→ g, the algorithm will find a trajectory π that
is g-terminal and collision-free with respect to other trajec-
tories in Φ. From our assumption, the destination g ∈ E. By
adding trajectory π to Φ at line 15 in Algorithm 1, the token
Φ remains E-terminal and collision-free.

Theorem 4. If a team of robots operates in a well-formed
infrastructure (W, E) and the COBRA algorithm is used to
coordinate relocation tasks between the endpoints of the in-
frastructure, then all relocation tasks will be successfully
carried out without collision.

327

Proof. By contradiction. Assume that a) there can be a re-
location task s → g assigned to robot i that is not carried
out successfully or b) two robot collide at some time point
during the operation of the system.

Case A: A relocation task s→ g assigned to a robot i has
not been successfully completed. We assume that robots are
able to perfectly follow any given trajectory π. Therefore
either π is not g-terminal or robot i collided with another
robot during the execution of the trajectory. From Propo-
sition 2 and 3 we know that the Best-traji routine will
always return a g-satisfactory trajectory. The possibility that
the robot collided while carrying out a relocation task is cov-
ered by Case B and is shown to be impossible. Thus, the
relocation task s → g assigned to robot i will be completed
successfully.

Case B: Robots i and j collide. Since we assume perfect
execution of trajectories, it must be the case that there is πi
and πj that are not collision-free. Since the collision relation
is symmetrical, w.l.o.g., it can be assumed that πj was added
to Φ later than πi. This implies that πi was in the token Φ
when πj was generated within Best-trajj routine. How-
ever, this would imply that the trajectory planning returned
a trajectory that is not collision-free with respect to trajec-
tories in Φ, which is a contradiction with constraints used
during the trajectory planning. Thus, robots i and j do not
collide.

We can see that neither case A nor case B can be achieved
and thus all relocation tasks are carried out without any col-
lision.

COBRA with a Time-extended Roadmap
Planner

In the previous section we have presented the general
scheme of COBRA that assumes that every robot is able
to find an optimal best-response trajectory for itself using
an arbitrary complete algorithm. In practice, such a plan-
ning would be often done via graph search in a discretized
representation of the static workspace. In this section, we
will analyze the properties of COBRA when all robots use
a roadmap-based planner to plan their best-response trajec-
tory.

The function Best-traji(s,ts,g,∆) used on line 12
in Algorithm 1 returns an optimal trajectory for a particu-
lar robot i from s to g starting at time ts that avoids space-
time regions ∆ occupied by other robots. We will now as-
sume that the robots use a time-extended roadmap planner
to compute such a trajectory. The planner takes a graph
representation of the static workspace and extends it with
a discretized time dimension. The resulting time-extended
roadmap is subsequently searched using Dijkstra’s shortest-
path algorithm (possibly with some admissible heuristic).
The time-extended roadmap planner can be implemented as
follows. Let us have a “roadmap” graph G = (V,L) repre-
senting an arbitrary discretization of the static workspaceW ,
where V ⊆ W represent the discretized positions from W
and L ⊆ V × V represents possible straight-line transitions
between the vertices. The time-extended graph G = (V , L)
for robot i with time step δt starting at position s at time ts

is recursively defined as follows:

(s, ts) /∈ ∆⇒ (s, ts) ∈ V (1)
and

∀(v, t) ∈ V ∧ (v1, v2) ∈ L :

t′ =

⌈
|v2 − v1|
δt · vmaxi

⌉
δt ∧ line ((v1, t), (v2, t

′)) ∩∆ = ∅ (2)

⇒
(v2, t

′) ∈ V ∧ ((v1, t), (v2, t
′)) ∈ L,

where d·e represents ceiling, |·| is the Euclidean norm,
and line(x, y) represents the set of points lying on the
line x → y. It is important to realize that because we
force each space-time edge to end a time that is a multi-
ple of δt, some of the edges may in fact be traveled at a
slower speed than vmax

i . The best-response trajectory is
then constructed by finding the shortest path in G starting
from the vertex (s, ts) to a goal vertex (g, tg) that satisfies
line ((g, tg), (g,∞)) ∩∆ = ∅.

Roadmap for Well-formed Infrastructure
The notion of a well-formed infrastructure can be ex-
tended to discretized representations of the robots’ common
workspace as follows.

Definition 5. A graph G = (V,L) is a roadmap for a well-
formed infrastructure (W, E) and robots with radii r1, . . . rn
if E ⊆ V and any two different endpoints a, b ∈ E can be
connected by a path p = l1, . . . , lk in graph G such that

∀
i=1,...,k

line(li) ⊆ intr

(
W \ ∪

e∈E\{a,b}
D(e, r)

)
,

where r = max{r1, . . . , rn}.
Analogically to the well-formed infrastructure, we require

that the roadmap contains a path that connects any two end-
points with at least r clearance to static obstacles and 2r
clearance to other endpoints.

Theoretical Analysis
In this section, we will show that COBRA with a time-
extended roadmap planner operating on a roadmap for well-
formed infrastructure is complete and the trajectory for any
relocation task will be computed in time quadratic to the
number of robots present in the system. In the following, we
will assume that G = (V,L) is a roadmap for a well-formed
infrastructure (W, E).

Theorem 6. If G = (V,L) is a roadmap for a well-formed
infrastructure (W, E) and COBRA with a time-extended
roadmap planner is used to coordinate relocation tasks be-
tween the endpoints of the infrastructure, then all relocation
tasks will be successfully carried out without collision.

Proof. The line of argumentation used to prove the com-
pleteness of COBRA with an arbitrary complete trajectory
planner (Theorem 4) is also applicable for COBRA with
time-extended roadmap planner (TERP) – we only need to

328

show that Proposition 2 holds when TERP is used to find
the best-response trajectory. The original argument can be
adapted as follows: If the robot acquires an E-terminal to-
ken, there is a time-point t, when all robots in Φ reach their
destinations and stay there. A best response trajectory for a
relocation task s→ g can always be constructed by waiting
at the robot’s start endpoint until

⌈
t
δt

⌉
δt (the first discrete

time-point, when all robots from Φ reach their terminal end-
point) and then by following the shortest path from s to g on
roadmap G.

Complexity
In this section we derive the computational complexity of the
COBRA algorithm when the time-extended roadmap plan-
ner is used for finding the best-response trajectory. We will
focus on the complexity of trajectory planning for a single
relocation task and show that if a robot acquires a token with
trajectories of other robots, all the robots in the token will
reach their respective destination endpoints in a relative time
that is bounded by a factor linearly dependent on the num-
ber of robots. Therefore, the state space that needs to be
searched during the trajectory planning is linear in the num-
ber of robots.

Assumptions and Notation: Let f(π) denote the time
when trajectory π reaches its destination, i.e. f(π) :=
min t s.t. t′ ≥ t : π(t′) = g, g ∈ E. Further, let A(Φ, t)
denote the set of “active” trajectories from token Φ at time
t defined as A(Φ, t) := {π : (·, π) ∈ Φ s.t. f(π) ≥ t}. The
latest time when all trajectories in token Φ reach their desti-
nation endpoints is given by function F (Φ) := max

(·,π)∈Φ
f(π).

Further, let r denote the duration of the longest possible in-
dividually optimal trajectory between two endpoints by any
of the robots:

r = max
e1,e2∈E

length of shortest path from e1 to e2 in G
min
i=1...n

vmaxi

.

Lemma 7. At any time point t we have F (A(Φ, t)) ≤ t +
|A(Φ, t)| r.

Proof. Observe that the token only changes during new task
handling. Let us consider an arbitrary sequence of tasks be-
ing handled by different robots at time-point τ1, τ2 Ini-
tially, at time t = 0 the token is empty and the inequal-
ity holds trivially: F (∅) ≤ 0. We will inductively show
that the inequality holds after the token update during each
such task handling, which implies that it also holds for the
time period until the next update of the token. Now, let us
take kth-task handling by robot i with current trajectory πi,
that at time τk obtains token Φk−1. By induction hypoth-
esis we have F (A(Φk−1, τk)) ≤ τk +

∣∣A(Φk−1, τk)
∣∣ r.

We know that πi /∈ A(Φk−1, τk), because the robot can
only accept new tasks after it has finished the previous
one and thus f(πi) < τk. Further, we know that 1)
∀π ∈ Φk−1 \ A(Φk−1, τk) ∀t > τk : π(t) ∈ E and
2) ∀π ∈ A(Φk−1, τk) ∀t > F (A(Φk−1, τk)) π(t) ∈ E,
i.e. “inactive” trajectories are on the endpoints immediately,

while active trajectories will reach their endpoints and stay
there after F (A(Φk−1, τk). Then, the robot finds its new
trajectory π?i , which can be in the worst-case constructed
by waiting at the current endpoint and then following the
shortest endpoint-avoiding path (which is in infrastructures
guaranteed to exist and its duration is bounded by r) to
the destination endpoint. Such a path reaches the destina-
tion in τk ≤ f(π?i) ≤ F (A(Φk−1, τk) + r. Then, the
robot updates token Φk ← Φk−1 \ {πi} ∪ {π?i }. We know
that πi /∈ A(Φk−1, τk), but π?i ∈ A(Φk, τk) and thus∣∣A(Φk, τk)

∣∣ =
∣∣A(Φk−1, τk)

∣∣+ 1. By rearrangement

F (A(Φk−1, τk)) ≤ τk +
∣∣A(Φk−1, τk)

∣∣ r
F (A(Φk, τk)) ≤ F (A(Φk−1, τk)) + r

F (A(Φk, τk)) ≤ τk +
∣∣A(Φk−1, τk)

∣∣ r + r

F (A(Φk, τk)) ≤ τk +
∣∣A(Φk−1, τk) + 1

∣∣ r
F (A(Φk, τk)) ≤ τk +

∣∣A(Φk, τk)
∣∣ r

.

Lemma 8. During each relocation task handling of robot i
at time t, there is a trajectory π that reaches the destination
of the relocation task in time f(π) ≤ t+ nr.

Proof. It is known that F (A(Φ, t)) ≤ t+ |A(Φ, t)| r. Token
Φ is updated in such a way that it contains at most one record
for each robot. Assume that robot i handles a new relocation
task. Before planning, robot i removes its trajectory from
token Φ and thus we have |Φ| ≤ n−1. Since |A(Φ, t)| ⊆ Φ,
we have |A(Φ, t)| ≤ n − 1 and using Lemma 7, we get
F (A(Φ, t)) ≤ t+(n−1)r, i.e. all other robots will be at their
respective destination endpoint at latest time t + (n − 1)r.
In the worst case, trajectory π can be constructed by waiting
at robot’s i current endpoint until time t+ (n− 1)r and then
following the shortest path to its destination endpoint, which
can take at most r. Trajectory π thus reaches the destination
endpoint latest at time t+ (n− 1)r + r = t+ nr.

Theorem. The worst-case asymptotic complexity of a single
relocation task handling using COBRA with time-extended
roadmap planning is O(n2v2(1

δt)
2r(d+ r)), where n is the

number of robots in the system, v is the number of vertices
in the roadmap graph, δt is the time-discretization step, r is
the maximum duration of a single relocation when the inter-
actions between robot are ignored, and d is the duration of
longest space-time edge in time-extended roadmap.

Proof. Suppose that robot i handles a relocation task s→ g.
Let v denote the number of vertices of the roadmap graph.
In the worst case, the time-extended graph can contain all
vertices from the roadmap G for each time step. The best-
response trajectory is the shortest path from the initial vertex
(s, ts), where ts = t + tplanning to a goal vertex (g, tg).
The search algorithm will only need to examine the sub-
graph for the time interval [ts, tg], which contains at most⌈

(tg−ts)
δt

⌉
v vertices. We know tg ≤ t+nr (from Lemma 8)

and ts > t (because ts = t + tplanning and tplanning > 0)

329

Hall

Warehouse

Office

Figure 3: Test environments. The infrastructure endpoints
depicted in red, the roadmap graph shown in gray.

and thus this subgraph will have at most
⌈
nr
δt

⌉
v
∼
= nrv

δt ver-
tices for δt � nr. This graph first needs to be constructed
and then searched. Construction: During the construction of
the space-time subgraph for robot i, each edge ε has to be
checked for collisions with moving obstacles ∆ composed
of n space-time regions, each representing the disc body of
another robot j moving along trajectory πj (itself composed
of line segments). Deciding whether ε collides with Rj(πj)
can be done in time linear to the number of time steps edge ε
spans, since for each time step τ , a sub-segment correspond-
ing to time step τ can be extracted both from ε and πj and
the collision-free property ∀t : ε(t) − πj(t) ≤ rj + ri can
be well-formedated by solving the corresponding quadratic
equation. One edge can be checked in time O(dδtn), where
d is the duration of the edge. There is at most nrδt v

2 edges
in the space-time subgraph and thus it can be constructed
in time O(n2v2(1

δt)
2dr). Search: The worst-case time-

complexity of Dijkstra’s shortest path algorithm is O(N2) ,
whereN is the number vertices of the searched graph, which
is in our case N = nrv

δt . The time-complexity of search is

therefore O
((

nrv
δt

)2)
= O(n2v2(1

δt)
2r2). By combining

construction and search, we get O(n2v2(1
δt)

2r(d+ r)).

Empirical Analysis
In this section we compare the performance of COBRA and
ORCA, a state-of-the art decentralized approach for on-line

collision avoidance in large multi-robot teams. The two
algorithms are compared in three real-world environments
shown in Figure 3. The test environments are well-formed
infrastructures. The execution of a multi-robot system is
simulated using a multi-robot simulator2. During each sim-
ulation, the given number of robots is created and each of
them is successively assigned 4 relocation tasks to a ran-
domly chosen unassigned endpoint. When the simulation
is started, all the robots are initialized and the first reloca-
tion task with random destination endpoint is issued. To
avoid the initial unnatural situation in which all robots would
need to plan simultaneously, the initial task is issued with a
random delay within the interval [0, 30 s]. Once the robot
reaches the destination of its task, a new random destination
is generated and the process is repeated until the required
number of relocation tasks have been generated. For each
such simulation, we observe whether all robots successfully
carried out all assigned tasks and the time needed to reach
the destination of each relocation task. Further, we com-
pute the prolongation introduced by collision avoidance as
p = tA− t′, where tA is a duration of a particular task when
an algorithm A is used for trajectory coordination, and t′ is
the time the robot needs to reach the destination without col-
lision avoidance simply by following the shortest path at the
roadmap at maximum speed.

The robots are modeled as circular bodies with radius
r=50 cm that can travel at maximum speed vmax=1 m/s. The
relative size of a robot and the environment in which the
robots operate is depicted in Figure 3, where the red circles
indicate the size of a robot. The roadmaps are constructed
as 8-connected grid with additional vertices and edges added
near the walls to maintain connectivity in narrow passages.
The non-diagonal edges of the base grid are 130 cm long,
the diagonal edges are 183 cm long.

The planning window used by COBRA is tplanning = 3 s
long, yet on average single planning required only around
0.7 s even on the most challenging instances. The time-
extended roadmap uses discretization δt=650 that conve-
niently splits travel on the non–diagonal edges into 2 time
steps and diagonal edges into 3 time steps.

The reactive technique ORCA (Van Den Berg et al.
2011) is a control-engineering approach typically used in
a closed-loop such that at each time instant it selects a
collision-avoiding velocity vector from the continuous space
of robot’s velocities that is the closest to the robot’s desired
velocity. In our implementation, at each time instant the al-
gorithm computes a shortest path from the robots current
position to its goal on the same roadmap graph as is used for
trajectory planning by COBRA. The desired velocity vec-
tor then points at this shortest path at the maximum speed.
When using ORCA, we often witnessed dead-lock situations
during which the robots either moved at extremely slow ve-
locities or even stopped completely. If any of the robots
did not reach its destination in the runtime limit of 10 mins
(avg. task duration is less than 33 s), we considered the run
as failed.

2The simulator and the test instances are available for download
at http://github.com/mcapino/cobra-icaps2015.

330

Figure 4: Results. The bars represent standard deviation.

Results Figure 4 shows the performance of COBRA and
ORCA in the three test environments. The top row of plots
shows the success rate of each algorithm on instances with
increasing number of robots. In accordance with our theo-
retical results, we can see that the COBRA algorithm reli-
ably leads all robots to their assigned destinations without
collisions. When we tried to realize collision-free operation
using ORCA, the algorithm led in some cases the robots into
a dead-lock. The problem was exhibited more often in envi-
ronments with narrow passages as we can see in the success
rate plot for the Office environment.

The bottom row of plots shows the average prolongation
of a relocation task when either COBRA and ORCA is used
for collision avoidance. The total prolongation introduced
by COBRA is composed of two components: planning time
and travel time. When a new task is used, the robot waits
for tplanning = 3 s in order to plan a collision-free trajec-
tory to the destination of its new task. Only then, the found
trajectory is traveled by the robot until the desired destina-
tion is reached. The robots controlled by ORCA start mov-
ing immediately because they follow a precomputed policy
towards the destination of the current task or a collision-
avoiding velocity if a possible collision is detected. Recall
that ORCA performs optimization in the continuous space
of robot’s instantaneous velocities, whereas COBRA plans
a global trajectory on a roadmap graph with a discretized
time dimension. In the case of simple conflicts, ORCA can
take advantage of its ability to optimize in the continuous
space and generates motions where the robots closely pass
each other, whereas COBRA has to stick to the underlying
discretization, which does not always allow such close eva-
sions. However, when the conflicts become more intricate,
the advantages of global planning starts to outweigh the po-
tential loss introduced by space-time discretization. The ex-
act influence of planning in a discretized space-time can be
best observed by looking at the data point for instances with
1 robot – these instances do not involve any collision avoid-

ance and thus the prolongation can be attributed purely to the
discretization of space-time in which the robot plans. Fur-
ther, we can observe that the local collision avoidance is less
predictable, which is exhibited by the larger variation.

Conclusion
We proposed a novel method for on-line multi-robot tra-
jectory planning called Continuous Best-response Approach
(COBRA) and both formally and experimentally analyzed
its properties. We have shown that the algorithm has a
unique set of features – its time complexity is low polyno-
mial (quadratic in the number of robots) and yet it achieves
completeness in a class of environments called well-formed
infrastructures that encompass most human-made environ-
ments that have been intuitively designed for efficient trans-
port. Further, our technique is directly applicable to systems
with dynamically issued task and can be implemented in a
decentralized fashion on heterogeneous robots. We exper-
imentally compared COBRA with a popular reactive tech-
nique ORCA in three real-world maps using simulation. The
results show that COBRA is more reliable than ORCA and
in more challenging scenarios, the planning approach gener-
ates trajectories that are up to 48 % faster than ORCA.

Acknowledgements
This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS13/143/OHK3/2T/13 and by the Ministry of Educa-
tion, Youth and Sports of Czech Republic within the grant
no. LD12044. Access to computing and storage facilities
owned by parties and projects contributing to the National
Grid Infrastructure MetaCentrum, provided under the pro-
gram "Projects of Large Infrastructure for Research, Devel-
opment, and Innovations" (LM2010005), is greatly appreci-
ated.

331

References
de Wilde, B.; ter Mors, A. W.; and Witteveen, C. 2013.
Push and rotate: cooperative multi-agent path planning. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 87–94. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Erdmann, M., and Lozano-Pérez, T. 1987. On multiple
moving objects. Algorithmica 2:1419–1424.
Ghosh, S. 2010. Distributed systems: an algorithmic ap-
proach. CRC press.
Guy, S. J.; Chhugani, J.; Kim, C.; Satish, N.; Lin, M.;
Manocha, D.; and Dubey, P. 2009. Clearpath: Highly par-
allel collision avoidance for multi-agent simulation. In Pro-
ceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’09, 177–187. New
York, NY, USA: ACM.
Hopcroft, J.; Schwartz, J.; and Sharir, M. 1984. On the
complexity of motion planning for multiple independent ob-
jects; pspace- hardness of the "warehouseman’s problem".
The International Journal of Robotics Research 3(4):76–88.
Lalish, E., and Morgansen, K. A. 2012. Distributed reactive
collision avoidance. Autonomous Robots 32(3):207–226.
Spirakis, P. G., and Yap, C.-K. 1984. Strong np-hardness of
moving many discs. Inf. Process. Lett. 19(1):55–59.
Standley, T. S. 2010. Finding optimal solutions to coopera-
tive pathfinding problems. In Fox, M., and Poole, D., eds.,
AAAI. AAAI Press.
Surynek, P. 2009. A novel approach to path planning for
multiple robots in bi-connected graphs. In Proceedings of
the 2009 IEEE international conference on Robotics and Au-
tomation, ICRA’09, 928–934. Piscataway, NJ, USA: IEEE
Press.
Van Den Berg, J.; Guy, S.; Lin, M.; and Manocha, D. 2011.
Reciprocal n-body collision avoidance. Robotics Research
3–19.
Van den Berg, J.; Lin, M.; and Manocha, D. 2008. Recipro-
cal velocity obstacles for real-time multi-agent navigation.
In Robotics and Automation, 2008. ICRA 2008. IEEE Inter-
national Conference on, 1928–1935. IEEE.
Čáp, M.; Novák, P.; Selecký, M.; Faigl, J.; and Vokřínek,
J. 2013. Asynchronous decentralized prioritized planning
for coordination in multi-robot system. In Intelligent Robots
and Systems (IROS), 2013.
Velagapudi, P.; Sycara, K. P.; and Scerri, P. 2010. Decentral-
ized prioritized planning in large multirobot teams. In IROS,
4603–4609. IEEE.
Wagner, G., and Choset, H. 2015. Subdimensional ex-
pansion for multirobot path planning. Artificial Intelligence
219:1 – 24.

332

