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Abstract

Spacecraft missions to small celestial bodies face sensi-
tive, strongly non-Keplerian dynamics that motivate the
employment of automated sampling-based trajectory
planning. However, the scarcity of onboard computing
resources necessitates careful formulation of heuristics
for efficiently searching the reachable sets, which ex-
hibit complex and finely-detailed structure. We exam-
ine a global search heuristic that combines aspects of
simulated annealing and hill-climbing to locate sparse
regions of the planning domain that simultaneously sat-
isfy numerous geometric and timing constraints asso-
ciated with remote sensing objectives for points of in-
terest on the central body surface. Subsequently, we
demonstrate the use of a receding-horizon implementa-
tion of this maneuver-planning strategy to produce mis-
sion profiles that fulfill sets of such goals.

Introduction
Traditional approaches to space mission design are rooted
in Kepler’s discovery that orbiting bodies travel along conic
sections with the central gravitating body positioned at one
focus. The integrability of Keplerian motion allows for any
orbital state to be immediately associated with its conic sec-
tion, an easily-described one-dimensional path through the
six-dimensional orbit state space. These unchanging orbits
can then be pieced together using impulsive thrust maneu-
vers to take a spacecraft from one desired state to another.

In many scenarios, the difference between the actual dy-
namical environment and the ideal Keplerian approximation
is small: in Earth-orbiting missions, these discrepancies may
be accurately modeled via linear perturbations and averag-
ing theory; in preliminary design of interplanetary missions
a “patched conic” approach, where each leg of the journey
is modeled as a Keplerian problem with a different central
body, can be applied effectively.

However, missions geared to the close study of small ce-
lestial bodies such as asteroids and comets — important tar-
gets for planetary science, planetary defense, and eventual
resource exploitation — face constant exposure to strong
perturbations from Keplerian motion, driven by highly non-
spherical gravity fields and proportionally large third-body
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gravitation and solar radiation pressure; in these conditions,
conic sections are no longer an apt basis for even short-term
trajectory design (Russell 2012; Scheeres 2012).

An alternate class of mission design strategies for non-
Keplerian orbit environments exists: though the state space
is no longer filled with conic sections, it nevertheless con-
tains sparse sets of periodic orbits, which are bordered by
stable and unstable manifolds that can be leveraged to travel
between disparate orbit regimes using only miniscule expen-
ditures of control energy (Parker and Anderson 2014). The
complexity of these system dynamics has motivated auto-
mated mission design approaches that apply graph search
techniques to exhaustive pre-computed databases of known
periodic orbits and low-energy transfers (Tsirogiannis 2012;
Trumbauer and Villac 2014).

Yet, the practicalities of small-body missions introduce
further difficulties: a lack of accurate apriori system knowl-
edge, when combined with large navigation uncertainties
and dynamical sensitivity, can rapidly result in highly off-
nominal conditions or even mission failure. Further, the mat-
ter of relating system dynamics to ultimate mission goals
and constraints is equally nontrivial, and poses an increas-
ingly difficult optimization problem when not conducted
in a smaller and more restrictive precomputed dynamical
framework (Noton 1995). The sum of these complications
motivates yet another distinct approach to mission design:
sampling-based planning in the form of an efficient heuris-
tic search of the spacecraft’s complexly structured reachable
set (Komendera, Scheeres, and Bradley 2012).

Applied onboard in a receding-horizon fashion, this tra-
jectory design strategy could allow flexible and opportunis-
tic responses to off-nominal conditions and meet space-
flight autonomy requirements seen as pivotal to enabling
ever more ambitious exploration missions (Wood et al. 2012;
Pavone et al. 2014), in complement to the equally crucial
development of autonomous planners for managing science
instrument operations and other spacecraft subsystems on
such endeavors (Knight et al. 2001).

Dynamical Model
The challenging non-Keplerian environments presented by
the small Martion moon Phobos, subject of many mission
design studies (Wallace et al. 2012), and asteroid Itokawa,
visited by the Hayabusa mission (Scheeres et al. 2006),
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are used to demonstrate the automated planning scheme. A
spacecraft is modeled as a massless point, whose kinematic
state x is described within the rotating, body-fixed frame to
facilitate natural expression of gravitation and science goals.

x =(r, ṙ) = [ x y z ẋ ẏ ż ]
T (1)

The equations of motion evolve the state through time via
rotating-frame accelerations governed by the constant angu-
lar velocity vector ω, by the gravitational acceleration g of
the body’s irregular shape, approximated as a triaxial ellip-
soid, and in the case of Phobos also by the tidal accelera-
tions gM resulting from the different Mars-relative altitudes
of Phobos and the spacecraft (Scheeres 2012).

r̈ =− ω × (ω × r)− 2ω × ṙ+ g (r) + gM (r) (2)
These equations produce trajectories through state space;
next, various measures of objective fulfillment are taken.

Remote sensing of each point of interest (POI) on the
body surface may occur when four topocentric constraints
are satisfied. To observe the i-th POI, located at ri, the space-
craft must fall within prescribed bounds of azimuth θ, eleva-
tion ϕ, and range ρ relative to that point (shown as colored
regions in figure 3) while the Sun elevation ϕs falls within
prescribed bounds — a timing requirement. Since these con-
straints might only rarely be met simultaneously, they are
each tracked continuously to aid the heuristic search for such
occurrences.

For generic observation parameter a with ideal value a∗,
the quality qa ∈ [0, 1] is a function of its actual, dropoff, and
cutoff deviations: δ(a) = |a− a∗|, δd, and δc respectively.

qa(δ) =

⎧⎪⎨
⎪⎩
0 if δ > δc
δ−δd
δc−δd

if δd < δ < δc
1 if δ < δd

(3)

This produces acceptable bounds [a∗ − δd, a
∗ + δd] outside

of which the quality metric linearly decreases to zero. The
set {qa} then defines the overall quality metric Qi ∈ [0, 1]
using either the product LΠ or n-norm Ln of all qa.

Qi =L(qθ, qϕ, qρ, qϕs
) (4)

L ∈

⎧⎪⎨
⎪⎩LΠ =

jf∏
j

qaj
, Ln =

⎛
⎝ 1

jf

jf∑
j

qnaj

⎞
⎠

1/n
⎫⎪⎬
⎪⎭ (5)

These functions can be used to alter the character of the gra-
dients leading up to the sparse goal-fulfilling regions.

Duration gi of successful observation of the i-th target is
accumulated at a constant rate ġi = 1 while all constraints
are satisfied and the target value gi,cap has not yet been met:

ġi (r, t) =

{
1 if (Qi == 1) and (gi < gi,cap)

0 otherwise
(6)

All mission outcome data are stored within the vector y,
with each POI’s parameters grouped together as gi

y (t) =
[
g1 g2 · · · gng

]
(7)

gi(t) =
[
{q (aj)} Qi Q̂i (x̃) ġi gi (x̃)

]
(8)

where the historical maximum quality Q̂i, which is used to
identify near misses of goal regions, and the accumulated
observation time gi both depend on the trajectory history x̃.

Planning Domain
Despite the starkly atypical orbit environment, the classic
control input paradigm of intermittent impulsive-thrust ma-
neuvers remains most appropriate: a continuous-thrust ap-
proach would further exacerbate the curse of dimensionality
in the search of the mission design space, while also compli-
cating the spacecraft’s ability to simultaneously operate sci-
ence subsystems; a frequent-impulse scheme, i.e. inertial or
body-fixed hovering, would incur excessive fuel costs over
time. Furthermore, both of these alternatives would intro-
duce undue noise into the process of orbit determination and
system parameter estimation.

Thus, the planning domain for a single leg of the mission
is given as (Δt,ΔV), where Δt is the time elapsed since
previous maneuver’s occurrence at tk−1 and ΔV describes a
velocity-space sphere of radius Δvmax centered at ṙ (t).

(Δt,ΔV) = {[Δtmin,Δtfail −Δtcushion]} × · · ·{
Δv ∈ R

3
∣∣ ‖Δv‖ < Δvmax

}
(9)

The margins Δtmin and Δtcushion enforce practicality of
plan implementation by restricting the the temporal proxim-
ity of selected maneuvers to critical events: i.e., a sufficient
duration must elapse to accomodate the planner’s runtime
between maneuvers. This same restriction, with additional
built-in margin-of-error, is applied to the end of the temporal
planning domain to allow sufficient time for action in avoid-
ance of failure scenarios, e.g. impact of the central body. If
failure does not occur within the prediction horizon Δtmax,
which for this investigation is twice the Keplerian approx-
imation of the orbit period at an altitude equivalent to the
central body’s mean radius, then Δtfail = Δtmax.

The state-space dynamics F (Eq. 2) map from this plan-
ning domain to full sets of reachable trajectories X̃ and sub-
sequently to associated mission result sets Y via the mission
dynamics G (Eqns. 3–6; observation metrics given visually
in figure 3). Lastly, an automated planner H must evaluate
these results to assign scores S(t) that determine which ac-
tion within the planning domain will be taken.

(tk,x (tk) + ΔV) F−→ X̃ (t)
G−→ Y(t) H−→ S(t) (10)

The reachability map M used to inform trajectory planning
can thus be described in condensed form as below, with the
time horizon variably truncated to maximize score.

M : (Δtŝ,ΔV; tk−1,xk−1) −→ S (11)

As an illustrative example, we select an initial position r
at the first Lagrange point of the Mars-Phobos system, where
their gravitational pulls precisely null out the acceleration of
their co-rotating frame. Figure 1 plots a level surface within
the map (0,ΔV) −→ Q̂max, which bounds a subdomain
of maneuvers whose resultant trajectories come close to ful-
filling remote sensing requirements of one or more targets.
True goal regions, where Q̂max = 1, compose only a small
fraction of the displayed region.

Heuristic Search
The nonintegrability of the dynamical model necessitates a
sampling-based approach for charting the reachability map
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Figure 1: Occurrences of large Q̂max in planning domain.

M . A heuristic-based mesh refinement strategy is used to
drastically improve the efficiency of this process relative to
a simple grid search (Komendera, Scheeres, and Bradley
2012; Surovik and Scheeres 2015).

Given no apriori knowledge of map content, the first set of
sampled maneuvers Δvi ∈ ΔV is distributed evenly and nu-
merically propagated over time horizon Δtmax through as-
sociated trajectories x̃i(t) ∈ X̃ (t) to mission results yi(t) ∈
Y(t) and score trajectories s(t) ∈ S(t) which are lastly
reduced to their maximal values and associated lifespans
(ŝ,Δtŝ). Next, Delaunay Triangulation is used to build this
small sample of points in M into a mesh, i.e. a set of tetrahe-
dral “simplex” volume elements each bounded by four ver-
tices, to allow inference of its continuous structure.

The search heuristic then operates on the mesh, assign-
ing each j-th simplex a weight Wj based upon the extent to
which the numerically propagated results of its vertices indi-
cate that it contains relevant missing detail. Each simplex’s
largest interior sphere is computed and its center and ra-
dius are used to define a 3D normal distribution from which
an additional maneuver is sampled each time the simplex’s
ID is drawn from a W -weighted random sample. Weights
are assigned such that the random sampling of simplex IDs
functions similarly to a sampling of the control domain via
a volumetrically-specified probability density function.

Wj =Vj

(
mean

j
{Δt}

)(
max

j

{
s+ Q̂max

})28τ

(12)

The first factor of the weight function, simplex volume
V , accounts for uneven sample distribution while the sec-
ond, the mean trajectory lifespan, scales sample probabil-
ity density in accordance with the varying temporal depth
of M . A final factor leverages the observation quality met-
ric Q̂ to simulate a smooth gradient, whose shape depends
on the choice of quality scalarizing function L, leading up
to the potentially sparse plateaus of large s toward which
the search is biased. This factor is raised to an exponent that
varies with the search progress parameter τ , which increases
from 0 to 1 as the sampling process iterates, progressively
amplifying the bias toward high-scoring areas in a manner
akin to simulated annealing.

Result: Monte Carlo mean results of heuristic searches of
a planning domain at Itokawa are plotted below in figure 2
for three varieties of L, in addition to a heuristic that does
not exploit quality gradients Q̂ and a standard grid search.
Searches were seeded with 400 vertices before undergoing
50 progressively smaller refinement iterations, resulting in a
final resolution of 2000 vertices within 30 seconds of run-
time on a 2.2 GHz Intel Core 2 CPU.

All gradient-augmented heuristics performed well, ex-
hibiting minor trade-offs between speed and score-
attainment upper bound, associated with gradient sharpness.
The gradient-free heuristic fared less favorably but nonethe-
less outperformed a standard grid search. Also plotted is a
metric of sparseness for each augmented score, illustrating
how favorable scores compose a vanishingly small fraction
of the domain’s total volume. This indicates that final gains
in performance are very hard-won, and shows how gradient-
agumented heuristics smooth out the search for these gains.

Figure 2: Left: Monte Carlo mean performance of search
heuristics. Right: Sparseness of high-scoring regions.

Receding-Horizon Planner
The preceding demonstration shows how an automated plan-
ner can select an advantageous maneuver that completes a
single science objective during a single planning cycle. To
complete an entire mission that consists of many such objec-
tives, a receding-horizon implementation of this scheme is
applied (Surovik and Scheeres 2014), as has frequently been
deemed appropriate for aerospace vehicle motion planning
scenarios in highly dynamic environments (Lee, Longo,
and Kerrigan 2012; Morgan, Chung, and Hadaegh 2014;
Goerzer, Kong, and Mettler 2010).

Mission progress may be straightforwardly described
with the mission objective function sm(t), a normalized
measure of fulfillment of the set of ng science goals:

sm(t) =

ng∑
i

gi(t)
/ ng∑

i

gi,cap (13)
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During each k-th planning cycle, a maximal increase
sm(t) − sm(tk−1) is desired. However, two additional sub-
tleties must be accounted for in order to ensure effectiveness
of the receding-horizon scheme: the timing of maneuvers,
i.e. the selection of trajectory lifespan Δt in the planning
domain, and the augmentation of the objective function to
account for long-term consequences. The implementations
of these two points are closely interconnected.

First, the mission score increase is combined with a hori-
zon promise function ph(x(t)), similar in purpose to a cost-
to-go function, which defines a state-space field associat-
ing each prospective final state of a sampled trajectory with
the likelihood that it will produce a favorable velocity-space
planning domain ΔV for the next planning cycle. While the
mission score time series plateaus when the spacecraft tra-
jectory departs an observation region, the planning horizon’s
objective function s(t) = sm(t)−sm(tk−1)+ph(x(t)) gives
unique maxima ŝ that can be used unambiguously identify
designate the optimal trajectory lifespan Δtŝ, subject to the
bounds of practicality given in Eq. 9.

This process decouples the temporal and velocity-space
planning operations, greatly lightening the computational
burden by pruning one dimension of the search space. The
matter of avoiding over-pruning of favorable solutions is
synonymous with the selection of an effective ph. The for-
mulation presently employed,

ph (x) =q
(
δ (r, 0) ,max

i
{ri + ρi + δd (ρi)} , resc

)
(14)

enforces a preference for arc termination at altitudes in the
range associated with the observation regions, helping to en-
sure that they do not appear vanishingly small in M . Each
planning cycle thus uses a heuristic search to identify an
available action and trajectory lifespan (Δt,Δv) that max-
imize s ∈ S (t; ΔV), providing a balance of short-term
progress with long-term prospects. Repeated application of
this scheme produces mission profiles that fulfill all goals.

Result: Figures 3 and 4 show body-frame and inertial-
frame views of one such mission profile obtained via
these methods for each observation mission. Additionally,
a Monte Carlo analysis revealed the planning scheme to
always fulfill 95% of objectives at Phobos without ever
experiencing three successive planning horizons devoid of
progress; when instead using ph = 0, only 75% of trials met
this success rate. Total propulsion costs of about 50 m/s for
the sample mission were in line with the cost-per-day found
by previous studies for far more restricted operations that did
not approach the surface as closely (Wallace et al. 2012).

Conclusions
Despite the complex structure of reachable sets for
spacecraft in strongly non-Keplerian orbit environments,
sampling-based planning appears an effective tool for pur-
suing elusive opportunities to conduct science operations.
Augmentation of a the objective function with a gradient-
smoothing component allowed an adaptive mesh refinement
strategy to effectively transition from coarse global search to
fine local optimization via a simple mechanism akin to sim-
ulated annealing, producing a compelling advantage over a

Figure 3: Typical mission solutions, shown in rotating body-
fixed frame, for Phobos (left) and Itokawa (right). Numbered
orange circles indicate maneuvers. Colored diamonds bound
trajectory segments that permit observations.

Figure 4: Inertial-frame view of above solution; sun-side lo-
cation of diamonds (observation segments) illustrates fulfill-
ment of timing-based surface lighting requirements.

simple grid search. The low computational demands of the
demonstrative case suggest ample room for growth of com-
plexity in the dynamical and mission goal models while still
maintaining a footprint appropriate for onboard implemen-
tation.

Future Work
Alternate formulations of the horizon promise function
ph (x) will be applied to potentially enhance planner per-
formance by mapping and exploiting dynamical sensitivity,
e.g. via Fast Lyapunov Indicators, to improve reachability
prospects. The description of performance will also be ex-
tended beyond mere mission success by incorporating fuel
cost and mission duration into the score functions.

Moreover, as the use of receding-horizon control was mo-
tivated not only by the complexity of the mission planning
domain but also by the considerable levels of uncertainty
to be expected in estimates of the spacecraft state and of
dynamical model parameters at previously unvisited small-
body systems, robustness to these sources of error will be
a vital final aspect for demonstrating basic viability of this
planning paradigm for autonomous onboard mission design
applications. Incorporation of this aspect will be imperative
before exhaustive tuning and characterization of algorithm
performance can be effectively conducted.
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