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Abstract

It is now widely accepted that a variety of interaction strate-
gies in animals achieve optimal or near optimal performance.
The challenge is in determining the performance criteria be-
ing optimized. A difficulty in overcoming this challenge is
the need for a large body of observational data to delineate
hypotheses, which can be tedious and time consuming, if not
impossible. To alleviate this difficulty, we propose a system
— termed “in-silico behavior discovery” — that will enable
ethologists to simultaneously compare and assess various hy-
potheses with much less observational data. Key to this sys-
tem is the use of Partially Observable Markov Decision Pro-
cesses (POMDPs) to generate an optimal strategy under a
given hypothesis. POMDPs enable the system to take into
account imperfect information about the animals’ dynamics
and their operating environment. Given multiple hypotheses
and a set of preliminary observational data, our system will
compute the optimal strategy under each hypothesis, gener-
ate a set of synthesized data for each optimal strategy, and
then rank the hypotheses based on the similarity between the
set of synthesized data generated under each hypothesis and
the provided observational data. In particular, this paper con-
siders the development of this approach for studying mid-
air collision-avoidance strategies of honeybees. To perform
a feasibility study, we test the system using 100 data sets of
close encounters between two honeybees. Preliminary results
are promising, indicating that the system independently iden-
tifies the same hypothesis (optical flow centering) as discov-
ered by neurobiologists/ethologists.

Introduction
What are the underlying strategies that animals take when
interacting with other animals? This is a fundamental ques-
tion in ethology. Aside from human curiosity, the answer to
such a question may hold the key to significant technological
advances. For instance, understanding how birds avoid col-
lisions may help develop more efficient collision avoidance
techniques for Unmanned Aerial Vehicles (UAVs), while un-
derstanding how cheetahs hunt may help develop better con-
servation management programs.

Although it is now widely accepted that a variety of inter-
action strategies in animals have been shaped to achieve op-
timal or near optimal performance (Breed and Moore 2012;
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Figure 1: In-silico and conventional approaches as consid-
ered for studying honeybee collision avoidance.

Davies and Krebs 2012), determining the exact performance
criteria that are being optimized remains a challenge. Ex-
isting approaches require ethologists to infer the criteria
being optimized from many observations on how the ani-
mals interact. These approaches present two main difficul-
ties. First, the inference is hard to do, because even ex-
tremely different performance criteria may generate similar
observed data under certain scenarios. Second, obtaining ob-
servational data are often difficult; some interactions rarely
occur. For instance, to understand collision avoidance strate-
gies in insects and birds, it is necessary to observe many
near-collision encounters, but such events are rare because
these animals are very adept at avoiding collisions. Etholo-
gists can resort to experiments that deliberately cause close-
encounter events, but such experiments are tedious, time-
consuming, and may not faithfully capture the properties
of the natural environment. Furthermore, such experiments
may not be possible for animals that have become extinct,
such as dinosaurs, in which case ethologists can only rely
on limited historical data, such as fossil tracks.

This paper presents our preliminary work in developing
a system — termed “in-silico behavior discovery” — to en-
able ethologists study animals’ strategies by simultaneously
comparing and assessing various performance criteria on the
basis of limited observational data. The difference between
an approach using our system and conventional approaches
is illustrated in Figure 1.
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Our system takes as many hypotheses as the user choose
to posit, and data from preliminary experiments. Preliminary
data are collision-avoidance encounter scenarios, and each
encounter consists of a set of flight trajectories of all honey-
bees involved in one collision-avoidance scenario. Each hy-
pothesis is a performance criterion that may govern the hon-
eybees’ collision-avoidance strategies. For each hypothesis,
the system generates an optimal collision-avoidance strat-
egy and generates simulated collision-avoidance trajectories
based on that. Given the set of simulated collision-avoidance
trajectories, the system will rank the hypotheses based on the
similarity between the set of simulated trajectories and the
preliminary trajectory data. By being able to generate sim-
ulated data under various hypotheses, the in-silico behavior
discovery system enables ethologists to “extract” more in-
formation from the available data and better focus their sub-
sequent data gathering effort, thereby reducing the size of
exploratory data required to find the right performance cri-
teria that explain the collision avoidance behavior of honey-
bees. This iterative process is illustrated in Figure 1

Obviously, a key question is how to generate the collision-
avoidance strategy under a given performance criterion. In
our system, we use the Partially Observable Markov Deci-
sion Processes (POMDPs) framework. One may quickly ar-
gue that it is highly unlikely an insect such as a bee runs a
POMDP solver in its brain. This may be true, but the purpose
of our system is not to mimic honeybee neurology. Rather,
we use the widely accepted idea in biology — i.e., most in-
teraction strategies in animals achieve optimal or near op-
timal performance — to develop a tool that helps etholo-
gists predict and visualize their hypotheses prior to con-
ducting animal experiments to test the hypotheses, thereby
helping them to design more focused and fruitful animal
experiments. In fact, POMDPs allow us to relax the need
to model the exact flight dynamics and perception of the
honeybees. No two animals are exactly alike, even though
they are of the same species. This uniqueness causes varia-
tions in various parameters critical to generate the strategies.
For instance, some honeybees have better vision than oth-
ers, enabling them to sense impending collisions more accu-
rately and hence avoid collisions more often, different hon-
eybees have different wing beat frequencies causing vary-
ing manoeuvrability, etc. Our system frames these variations
as stochastic uncertainties — commonly used modelling in
analysing group behavior — and takes them into account
when computing the optimal collision-avoidance strategy
under a given performance criterion.

We tested the feasibility of our in-silico behavior dis-
covery system using a data set comprising 100 close en-
counter scenarios between two honeybees. The results in-
dicate that the system independently identifies the same hy-
pothesis (optical flow centering) as discovered by neurobi-
ologists/ethologists.

POMDP Background & Related Work
A POMDP model is defined by a tuple
〈S,A,O, T, Z,R, γ, b0〉, where S is a set of states, A
is a set of actions, and O is a set of observations. At
each time step, the POMDP agent is at a state s ∈ S,

performs an action a ∈ A, and perceives an observation
o ∈ O. A POMDP represents the uncertainty in the effect
of performing an action as a conditional probability func-
tion, called the transition function, T = f(s′ | s, a), with
f(s′ | s, a) representing the probability the agent moves
from state s to s′ after performing action a. Uncertainty in
sensing is represented as a conditional probability function
Z = g(o | s′, a), where g(o | s′, a) represents the probability
the agent perceives observation o ∈ O after performing
action a and ending at state s′.

At each step, a POMDP agent receives a rewardR(s, a), if
it takes action a from state s. The agent’s goal is to choose a
sequence of actions that will maximize its expected total re-
ward, while the agent’s initial belief is denoted as b0. When
the sequence of actions may have infinitely many steps, we
specify a discount factor γ ∈ (0, 1), so that the total reward
is finite and the problem is well defined.

The solution of a POMDP problem is an optimal policy
that maximizes the agent’s expected total reward. A policy
π : B → A assigns an action a to each belief b ∈ B, and in-
duces a value function V (b, π) which specifies the expected
total reward of executing policy π from belief b. The value
function is computed as

V (b, π) = E[
∞∑
t=0

γtR(st, at)|b, π] (1)

To execute a policy π, a POMDP agent executes an action
selection and a belief update repeatedly. Suppose the agent’s
current belief is b. Then, it selects the action referred to by
a = π(b), performs action a and receives an observation
o according to the observation function Z. Afterwards, the
agent updates b to a new belief b′ given by

b′(s′) = τ(b, a, o)

= ηZ(s′, a, o)

∫
s∈S

T (s, a, s′)ds (2)

where η is a normalization constant.
A more detailed review of the POMDP framework is

available in (Kaelbling, Littman, and Cassandra 1998).
Although computing the optimal policy is computation-

ally intractable (Papadimitriou and Tsitsiklis 1987), results
over the past decade have shown that approximating opti-
mality provides speed (Pineau, Gordon, and Thrun 2003;
Smith and Simmons 2005; Kurniawati, Hsu, and Lee 2008;
Silver and Veness 2010), a POMDP can start becoming
practical for various real world problems (Bai et al. 2012;
Horowitz and Burdick 2013; Koval, Pollard, and Srinivasa
2014; Williams and Young 2007).

To the best of our knowledge, the in-silico behavior dis-
covery system is the first one that applies planning under
uncertainty to help ethologists reduce the number of nec-
essary observational data. This work significantly expands
on (Wang et al. 2013). It uses POMDP to generate a near-
optimal collision avoidance strategies of honeybees under a
given hypothesis, and lets biologists observe the simulated
trajectories, manually. In contrast, this work proposes a sys-
tem that takes multiple hypotheses at once and provides a
ranking of how likely the hypotheses generate the observa-
tional data.
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Figure 2: The inputs, outputs, and main components of the
proposed in-silico behavior discovery system.

An in-silico behavior discovery system is advanced for
studying the collision avoidance strategies of honeybees Fig-
ure 2. This takes as input the animals’ flight dynamics and
perception models, a set of hypotheses on the performance
criteria used by honeybees to avoid mid-air collision, and a
set of collision avoidance trajectories of honeybees. These
trajectories are usually small in number and act as prelim-
inary observational data. The system computes the optimal
collision avoidance strategy for each hypothesis. It outputs a
set of simulated trajectories under each strategy, along with
a ranking on which hypotheses are more likely to explain
the preliminary data. The ranking is based on the similarity
between the simulated trajectories of the hypotheses and the
preliminary data. The system consists of three main mod-
ules:
• Strategy Generator, which computes the optimal strat-

egy under each hypothesis.
• Simulator, which generates the simulated trajectories

under each strategy that has been computed by the Strat-
egy Generator module.
• Hypothesis Ranking, which identifies the hypotheses that

are more likely to explain the observational data. For
each hypothesis, the strategy generator and the simula-
tor modules generate the simulated trajectories under the
hypothesis. Once the sets of simulated trajectories have
been generated for all hypotheses, the hypothesis rank-
ing module will rank the hypotheses based on the sim-
ilarity between the simulated trajectories and the obser-
vational data.

The details of each module are described in the following
sub-sections.

Strategy Generator and Simulator
The strategy generator module is essentially a POMDP plan-
ner that generates an optimal collision avoidance strategy
under hypothesized performance criteria used by honeybees
to avoid mid-air collisions in various head-on encounters.
Since this paper focuses only on head-on encounters, the
number of honeybees involved in each encounter is only
two. In this work, we also assume that the bees do not com-
municate/negotiate when avoiding collision. This assump-
tion is in-line with the prevailing view in the relatively open
question of whether bees actually negotiate for avoiding col-
lision. Furthermore, it simplifies our POMDP model in the
sense that it suffices to model each bee independently as a
single POMDP agent, rather than all bees at once as a multi-
agent system.

The POMDP framework is used to model a honeybee
“agent” that tries to avoid collisions with another honey-
bee, assuming the agent optimizes the hypothesized perfor-
mance criteria. The flying dynamics and perception mod-
els become the transition and observation functions of the
POMDP model, while each hypothesis is represented as a
reward function of the POMDP model. POMDPs enable
the system to take into account variations in the honey-
bees’ flight dynamics, for instance due to their weight and
wingspan, or variations in the honeybees’ perceptive capaci-
ties, and captures the agent’s uncertainty about the behavior
of the other bee.

One may argue that even the best POMDP planner today
will not achieve the optimal solution to our problem within
reasonable time. This is true, but a near optimal solution
is often sufficient. Aside from results in ethology that indi-
cate animals often use near optimal strategies too (Breed and
Moore 2012; Davies and Krebs 2012), our system can help
focus subsequent animal experiments as long as the strategy
is sufficient to correctly identify which hypotheses are more
likely to be correct, based on the similarity of the simulated
trajectories under the hypotheses and the trajectories from
real data. In many cases, we can correctly identify such hy-
potheses without computing the optimal collision-avoidance
strategies, as we will show in our Results section.

Another critique of using the POMDP framework is that
POMDPs require Markov assumption that is unlikely to be
true in bees’ motion. However, POMDPs are Markovian in
the belief space. Since beliefs are sufficient statistics of the
entire history, a POMDP agent, and hence our simulated
bees, selects the best actions by considering the entire his-
tory of actions and observations. POMDP does require the
transition function to be Markovian. However, this can of-
ten be satisfied by suitable design of the state and action
space. In this work, we assume bees are kinematic — a com-
monly used simplification in modelling complex motion —
where the next position and velocity are determined by the
current position, velocity, and acceleration. More details on
this model are discussed in subsequent paragraphs.

Our POMDP model is an adaptation of the POMDP
model (Bai et al. 2012) designed for the Traffic Alert and
Collision Avoidance System (TCAS) — a collision avoid-
ance system mandatory for all large commercial aircraft.
One would argue that this model is not suitable because the
flight dynamics and perception model of aircraft are totally
different than those of honeybees. Indeed their dynamics and
perception are different. However, the model in (Bai et al.
2012) is a highly abstracted flight dynamics and perception
model of aircraft, such that if we apply the same level of ab-
straction to the flight dynamics (simplified to its kinematic
model) and perception of honeybees (simplified to visibility
sensors), we would get a similar model, albeit with different
parameters. We adjust the parameters based on the literature
and data on the flight dynamics and perception capabilities
of honeybees.

We describe the POMDP model here together with the
required parameter adjustment. Although our POMDP will
only control one of the honeybees involved in the close-
encounter scenarios, the position, heading, and velocity of
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the two honeybees determine the collision avoidance strat-
egy. Therefore, the state space S consists of the joint flight
state spaces of the two honeybees involved. A flight state of
a honeybee is specified as (x, y, z, θ, u, v), where (x, y, z) is
the 3D position of the bee, θ is the bee’s heading angle with
respect to the positive direction ofX axis, u is the bee’s hor-
izontal speed, and v is the bee’s vertical speed.

The action space A represents the control parameters of
only one of the honeybees. It is a joint product of vertical
acceleration a and turn rate ω. Since most practical POMDP
solvers (Kurniawati, Hsu, and Lee 2008; Silver and Veness
2010) today only perform well when the action space is
small, we use bang-bang controller, restricting the acceler-
ation a to be {−am, 0, am} and the turning rate ω to be
{−ωm, 0, ωm}, where am and ωm are the maximum ver-
tical acceleration and the maximum turn rate, respectively.
Although the control inputs are continuous, restricting their
values to extreme cases is reasonable because under the dan-
ger of near mid-air collisions, a bee is likely to maximize
its manoeuvring in order to escape to a safe position as fast
as possible. And control theory has shown that maximum-
minimum (bang-bang) control yields time-optimal solutions
under many scenarios (Latombe 1991). We assume that
the other bee —whose action is beyond the control of the
POMDP agent— has the same possible control parameters
as the POMDP agent. However, which control it uses at any
given time is unknown and is modelled as a uniform distri-
bution over the possible control parameters.

The transition function represents an extremely simplified
flight dynamics. Each bee is treated as a point mass. And
given a control (a, ω), the next flight state of an animal after
a small time duration ∆t is given by

xt+1 = xt + ut∆tcosθ, θt+1 = θt + ω∆t,
yt+1 = yt + ut∆tsinθ, ut+1 = ut,
zt+1 = zt + vt∆t, vt+1 = vt + a∆t.

Although a honeybee’s perception is heavily based on op-
tical flow (Si, Srinivasan, and Zhang 2003; Srinivasan 2011),
to study the collision avoidance behavior, we can abstract its
perception to the level of where it thinks the other bee is, i.e.,
the perception after all sensing data has been processed into
information about its environment. Therefore, we can model
the bee’s observation space in terms of a sensor that has a
limited field of view and a limited range.

θe
θa

4 3 2 1
8 7 6

5
12 11 10

9
16 15 14

13

Figure 3: The observation model. The black dot is the posi-
tion of the agent; the solid arrow is the agent’s flying direc-
tion. The red dot is the position of the incoming honeybee.
Due to bearing and elevation errors, our agent may perceive
the other bee to be at any position within the shaded area.

The observation spaceO is a discretization of the sensor’s
field of view. The discretization is done on the elevation and
azimuth angles such that it results in 16 equally spaced bins
along the elevation and azimuth angles. Figure 3 illustrates
this discretization. The observation space O is then these
bins plus the observation NO-DETECTION, resulting in 17
observations in total.

As long as the incoming animal comes into the agent’s
sensor range (denoted as DR) and into the visible space, it
appears in a certain observation grid, with some uncertainty.
The observation function models the uncertainty in bearing
and elevation, as well as false positives and false negatives.

The parameters for the observation model are:
• Range limit, parameterized as DR.
• Azimuth limit, parameterized as θa.
• Elevation limit, parameterized as θe.
• Bearing error standard deviation, parameterized as σb.
• Elevation error standard deviation, parameterized as σe.
• False positive probability, parameterized as pfp.
• False negative probability, parameterized as pfn.
The reward function will be different for different hy-

potheses of the performance criteria used by the honeybees
in avoiding collision.

A POMDP simulator is used, in the sense that it takes
the POMDP model and policy as inputs, and then generates
the collision avoidance trajectories of the bee under various
head-on encounter scenarios. The scenarios we use in the
simulator are similar to the encounter scenarios in the real
trajectories. Recall that a collision-avoidance trajectory is a
set of flight trajectories of all the honeybees involved in the
encounter scenario. In this work, only two honeybees are in-
volved in each scenario, as we focus on head-on encounters.
Our simulator uses similar encounter scenarios as the real
data, in the sense that we only simulate the collision avoid-
ance strategies of one of the two honeybees, while the other
bee follows the flight trajectory of the real data. Therefore,
each set of collision-avoidance trajectories generated by our
simulator will have a one-to-one mapping with the set of
real collision-avoidance trajectories that has been given to
the system. For statistical significance, in general, our sys-
tem generates multiple sets of simulated trajectories.

Hypotheses Ranking
The key in this module is the metric used to identify the sim-
ilarity between a set of simulated collision-avoidance trajec-
tories and a set of real collision-avoidance trajectories. Re-
call that each set of simulated collision avoidance trajecto-
ries has a one-to-one mapping with the set of real collision-
avoidance trajectories. Let us denote this mapping by g. Sup-
pose A is a set of simulated collision-avoidance trajectories
and B is the set of real collision-avoidance trajectories given
as input to the system. We define the similarity sim(A ,B)
between A and B as a 3-tuple 〈F ,M,C〉, where:

• The notation F is the average distance between the
flight path of the simulated trajectories and that of the
real trajectories. Suppose L is the number of trajecto-
ries in A . Then, F (A ,B) = 1

L

∑L
i=1 F (Ai, Bi) where
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F (Ai, Bi) denotes the Fréchet Distance between the
curve traversed by the simulated bee in Ai ∈ A and
the curve traversed by the corresponding bee in Bi =
g(Ai) ∈ B. In our system, each curve traversed by a
bee is represented as a polygonal curve because, the tra-
jectory generated by our simulator assumes discrete time
(a property inherited from the POMDP framework).
The Fréchet Distance computes the distance between
two curves, taking into account their course. A com-
monly used intuition to explain Fréchet Distance is
based on an analogy of a person walking his dog. The
person walks on one curve and the dog on the other
curve. The Fréchet Distance is then the shortest leash
that allows the dog and its owner to walk along their re-
spective curves, from one end to the other, without back-
tracking (Chambers et al. 2008; 2010). Formally,

F (Ai, Bi) = min
α[0,1]→[0,N ]
β[0,1]→[0,M ]

(
max
t∈[0,1]

dist
(
Ai(α(t)), Bi(β(t))

))

where dist is the underlying distance metric in the hon-
eybees’ flight space. In our case, it is the Euclidean dis-
tance in R3.N andM are the number of segments in the
polygonal curves Ai and Bi respectively. The function
α is continuous with α(0) = 0 and α(1) = N while β
is continuous with β(0) = 0 and β(1) = M . These two
functions are possible parameterizations of Ai and Bi.
• The notation M denotes the average absolute differ-

ence in Minimum Encounter Distance (MED). MED
of a collision-avoidance trajectory computes the small-
est Euclidean distance between the two honeybees, e.g.,
for a collision-avoidance trajectory Ai, MED(Ai) =
minTt=1 dist(Ai(t), A

′
i(t)) where T is the smallest last

timestamp among the trajectories of the two honeybees,
Ai(t) and A′i(t) are the trajectories of bee-1 and bee-2
in Ai at time t respectively, and dist is the Euclidean
distance between the two positions. MED measures how
close two honeybees can be during one encounter. Small
M is a necessary condition for a simulated trajectory to
resemble the real trajectory, in the sense that if the simu-
lated trajectories of the incoming and the outgoing bees
are similar to the observed trajectories, then the mini-
mum encounter distance between the simulated incom-
ing and outgoing bees should be similar to that of the
observed trajectories.
• The notation C denotes the absolute difference in the

Collision Rate. The Collision rate is defined as the per-
centage of the collision that occur. Small C is a nec-
essary condition for a simulated trajectory to resemble
the real trajectory, in the sense that if the simulated and
the real bees have similar capabilities in avoiding colli-
sions, then assuming the trajectories and environments
are similar, the collision rate of the simulated and real
bees should be similar.

For statistical analysis, in general, our system generates
multiple sets of simulated collision-avoidance trajectories
for each hypothesis. The goodness of the hypothesis in ex-
plaining the input data is then defined as the average 3-

tuple metric over all sets of simulated trajectories gener-
ated by the system. Suppose the system generates K sets of
simulated trajectories, e.g., A1,A2, . . . ,AK for hypothesis
H1. Then the goodness of H1 in explaining the input data
is a 3-tuple where the first element is 1

K

∑K
i=1 F (Ai,B),

the second element is 1
K

∑K
i=1M(Ai,B), and the third

element is 1
K

∑K
i=1 C(Ai,B) where B is the set of real

collision-avoidance trajectories that the system received as
inputs. The order in the tuple acts as prioritization. The sys-
tem assigns a higher rank to the hypothesis whose good-
ness value has the smaller first element. If the goodnesses
of two hypotheses have a similar first element, i.e., they are
the same with more than 95% confident based on student
t-test hypothesis testing, then the second element becomes
the determining factor, and so on. Now, this ranking sys-
tem may not be totally ordered, containing conflict on the
the ordering. When such a conflict is found, we apply the
Kemeny-Young voting method (Kemeny 1959; Young 1988;
Levin and Nalebuff 1995) to enforce a total ordering of the
resulting ranking.

Note that although in this paper, there are only two hon-
eybees involved in each collision-avoidance trajectory, it is
straightforward to extend the aforementioned similarity met-
ric and ranking strategy to handle encounter scenarios where
many more honeybees are involved.

System Verification
To verify the system, we will use the system to rank several
hypotheses in which the performance criterion closest to the
correct one is known.

Collision-Avoidance Trajectories of Real Honeybees
To verify the applicability of our system, we use 100 sets
of collision-avoidance trajectories as preliminary data.The
data are gathered from experiments conducted at the Neu-
roscience of Vision and Aerial Robotics Laboratory in the
Queensland Brain Institute. These data are the results of ex-
perimental recording of 100 head-on encounters of two hon-
eybees flying along a 3-dimensional tunnel. Figure 4 illus-
trates the experimental setup to gather the data. The tunnel
dimensions are 930mm × 120mm × 100mm. The roof of
the tunnel is transparent. The left, right, and bottom wall
of the tunnel are covered with checkerboard patterns, where
each square is of size 2.2cm × 2.2cm. The left and right
patterns are colored black/white, while the bottom pattern
is red/white, to aid the detection of the honeybees, which
are generally dark in color. These patterns aid the honey-
bees’ navigation through the tunnel. The tunnel is placed
with its entrance near a beehive, and a sugar water feeder is
placed inside the tunnel at its far end. To record a collision-
avoidance trajectory, a bee is first released from the hive to
the tunnel. This bee will fly towards the feeder, collect the
food, and then fly back to the hive. When the bee starts to fly
back to the hive, another bee is released from the hive to the
tunnel and flies towards the feeder. We denote the bee flying
towards the feeder as the incoming bee and the bee flying
towards the hive as the outgoing bee.
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Figure 4: Illustration of experimental design and setup for gathering collision-avoidance trajectories of real honeybees. These
trajectories are used as an input (Initial Trajectory Data) to our system. (a) The tunnel. (b) The inner part of the tunnel. (c) A
collision-avoidance trajectory gathered from this experiment.

The trajectories of the honeybees are recorded using two
cameras —one positioned above the tunnel, looking down,
and another camera positioned at the far end of the tunnel,
looking axially into the tunnel. The stereo cameras capture
the bees’ flight at 25 frames per second. Based on the po-
sitioning and the resolution of the two stereo cameras, the
estimated precision of the reconstructed 3D trajectories is
approximately 2mm× 2mm× 2mm.

Figure 4(c) shows the coordinate frame and one exam-
ple of a collision-avoidance trajectories reconstructed in 3D.
The possible coordinate values are −30 ≤ X ≤ 900,
−60 ≤ Y ≤ 60, and −50 ≤ Z ≤ 50. Each collision-
avoidance trajectory consists of the trajectories of the two
honeybees, represented as a sequence of positions of the two
honeybees. Each element of the sequence follows the fol-
lowing format (x1, y1, z1, x2, y2, z2), where (x1, y1, z1) is
the position of the outgoing honeybees and (x2, y2, z2) is
the position of the incoming bee.

Hypotheses
To verify our system, we use six hypotheses as the input
to our system. These hypotheses are selected in a way that
we know exactly which hypotheses are closer to the cor-
rect performance criteria. Each hypothesis is represented as
a reward function in the POMDP problem. It is essentially a
summation of the component cost and reward. We will dis-
cuss the detailed values of all component costs and reward in
the Simulation Setup section. The hypotheses, summarized
in Table 1, are:

• HBasic is the basic collision avoidance hypothesis. In
this hypothesis, the reward function is the summation of
collision cost and movement cost.
• HBasicDest is the hypothesis that the honeybees do not

forget their goal of reaching the feeder or the hive, even
though they have to avoid mid-air collision with another
bee. In this hypothesis, we provide a high reward when
the bee reaches its destination. The reward function is
then the summation of the collision cost, the movement
cost, and the reward for reaching the goal. This behav-
ior is evident from the 100 collision-avoidance trajecto-
ries that were recorded. All trajectories indicate that the
honeybees fly toward both ends of the tunnel, instead of
wandering around within the tunnel or turning back be-
fore reaching their goals.

• HLR is the hypothesis that the honeybees tend to per-
form horizontal centering. This is related to the optical
flow matching nature of honeybee visual flight control
(Si, Srinivasan, and Zhang 2003; Srinivasan et al. 1996).
By optical flow we mean the observed visual gradient in
time due to the relative motion (of the honeybee) and the
objects in the scene. It has been shown that a honeybee
navigates by matching the optical flow of the left and
right eyes, which suggests that a honeybee has a mech-
anism and tendency to perform horizontal centering, but
not one for vertical centering. This behavior is also vis-
ible in our 100 sets of honeybees’ collision-avoidance
trajectories. If we project all data points from the tra-
jectories onto XY-plane, we find that the mean of all Y
values is 1.13, with a standard deviation 12.49. A plot of
this projection is shown in Figure 5.
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Figure 5: Data points of the 100 encounters are projected to
XY-plane. Red points are projected data points from incom-
ing honeybees, while blue points are projected data points
from outgoing honeybees.

• HUD is the hypothesis that the honeybees tend to per-
form vertical centering. This is actually an incorrect hy-
pothesis we set to verify that the system can delineate
bad hypotheses. The honeybees are actually biased to
fly in the upper half of the tunnel because they are at-
tracted to light. The transparent roof and solid bottom
means more light is coming from the top. This behavior
is evident from the 100 recorded collision-avoidance tra-
jectories of honeybees. If we project all data points from
the trajectories onto the XZ-plane, we find that 80% of
the data points lies in the upper side of the tunnel. In
fact, the Z values of all the data points have a mean of
12.89, a median of 15.67 and a standard deviation of
16.76, which again confirms the biased distribution to-
ward the ceiling of the tunnel. A plot of this projection
is shown in Figure 6.
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Table 1: Hypotheses with the Corresponding Component Cost/Reward Functions

Penalties or Rewards Hypotheses
HBasic HBasicDest HLRUD HLR HUD HLRDest

Collision Cost X X X X X X
Movement Cost X X X X X X
LR-Penalty — — X X — X
UD-Penalty — — X — X —
Destination Reward — X — — — X
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Figure 6: Data points of the 100 encounters, projected on to
XZ-plane. Red points are projected data points from incom-
ing honeybees, while blue points are projected data points
from outgoing honeybees.

• HLRUD is the combination of the previous two hypothe-
ses: HLR and HUD. The reward function is the summa-
tion of collision cost, movement cost, the penalty cost
for moving near the left and right walls, and the penalty
cost for moving near the top and bottom walls.
• HLRDest is the combination of HLR and HBasicDest,

i.e., the reward function is the summation of collision
cost, movement cost, the penalty cost for moving near
the left and right walls, and the reward for reaching the
goal. This hypothesis is the closest to the correct perfor-
mance criteria, based on the existing literature.

Simulation Setup
We use POMCP (Silver and Veness 2010) to generate near
optimal solutions to the POMDP problem that represents
each of the hypotheses. POMCP is an online POMDP solver,
which means it will plan for the best action to perform at
each step, execute that action, and then re-plan. The on-line
computation of POMCP helps to alleviate the problem with
long planning horizon problem of this application — since
bees can see relatively far, the collision-avoidance manoeu-
vring may happen far before the close encounter scenario
actually happens. In our experiments, POMCP was run with
8,192 particles.

For each hypothesis, we generate 36 sets of collision-
avoidance trajectories. Each of these sets of trajectories con-
sists of 100 collision-avoidance trajectories, resulting in a
total of 3,600 simulated collision-avoidance trajectory for
each hypothesis. Each trajectory corresponds to exactly one
of the encounter scenarios in the initial trajectory data gath-
ered from the experiments with real honeybees. In each of
the simulated collision-avoidance trajectories, our system
generates the outgoing honeybee’s trajectory based on the
POMDP policy and sets the incoming bee to move follow-
ing the incoming bee in the corresponding real collision-
avoidance trajectory. All experiments are carried out on a

Linux platform with a 3.6GHz Intel Xeon E5-1620 and
16GB RAM.

Now, we need to set the parameters for the POMDP prob-
lems. To this end, we derive the parameters based on the ex-
perimental setup used to generate the initial trajectory data
(described in the previous subsection) and from the statisti-
cal analysis of the data.

For the control parameters, we take the median over the
velocity and acceleration of honeybees in our data and set
u = 300mm/s, am = 562.5mm/s2, and ωm = 375deg/s.

For the observation model, since honeybees can see far
and the length of the tunnel is less than one meter, we set
the range limit to DR to be infinite, to model the fact that
the range limit of the bee’s vision will not hinder its ability
to see the other bee. The viewing angle of the honeybees re-
main limited. We set the azimuth limit θa to be 60 degrees
and the elevation limit θe to be 60 degrees. The bearing error
standard deviation σb and the elevation error standard eleva-
tion σe are both set to be 1 degree. We assume that the false
positive probability pfp and the false negative probability
pfn are both 0.01.

Following the definition used by ethologists, a state s =
(x1, y1, z1, θ1, u1, v1, x2, y2, z2, θ2, u2, v2) ∈ S is a colli-
sion state whenever the centre-to-centre distance between
two parallel body axes is smaller than the wing span of
the bee. Based on the ethologists’ observations on average
wingspan of a honeybee, we set this centre-to-centre dis-
tance to be 12mm. And we define a state to be in colli-
sion when the two honeybees are within a cross-section dis-
tance (in Y Z-plane) of 12mm and an axial distance (in X-
direction) of 5mm, i.e.,

√
(y1 − y2)2 + (z1 − z2)2 ≤ 12

and ‖x1 − x2‖ ≤ 5.
As for the reward functions, we assign the following com-

ponent costs and rewards as follows:
• Collision cost: −10, 000.
• Movement cost: −10.
• LR-Penalty:

RLR(s) =

{
0 if |y1| ≤ 12,

−20× |y1|−1260−12 otherwise.

• UD-Penalty:

RUD(s) =

{
0 if |z1| ≤ 12,

−20× |z1|−1250−12 otherwise.

• Destination reward: +10, 000.
The numbers are set based on the ethologists intuition on
how important a particular criteria is.
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Table 2: Hypotheses with corresponding rankings, where 1 indicates the most promising hypothesis. The observational bee data
has a collision rate of 0.030 and an averaged MED of 30.61. Each metric value is the absolute difference of the corresponding
metric values between the hypothesis and Bee. The value is in the format of mean and 95% confidence interval. The units for
F and M are mm.

Goodness of the hypotheses
Hypotheses Average(F ) Average(M) Average(C) Ranking
HBasic 147.19± 0.833 33.02± 0.250 0.023± 0.0023 6
HUD 149.19± 1.142 26.83± 0.266 0.021± 0.0036 5
HLRUD 126.59± 1.057 12.11± 0.279 0.001± 0.0065 4
HLR 121.22± 0.784 13.29± 0.260 0.006± 0.0042 3
HBasicDest 115.47± 0.594 15.79± 0.257 0.002± 0.0049 2
HLRDest 115.27± 0.678 11.49± 0.254 0.007± 0.0056 1

One may argue that when ethologists have little under-
standing on the underlying animal behavior, setting the
above values are impossible. Indeed setting the correct value
is impossible. However, note that different cost and re-
ward values can construct different hypothesis. And, one
of the benefits of the system is exactly that the ethologists
can simultaneously assess various hypotheses. Therefore,
when ethologists have little understanding, they can con-
struct many hypotheses with different cost and reward val-
ues, and then use our behavior discovery system to identify
hypotheses that are more likely to explain the input data.

Results
Table 2 shows each component of the goodness of each hy-
potheses along with their 95% confidence intervals. It also
shows the ranking of the hypotheses, where 1 means best.

The results indicate that the in-silico behavior discovery
system can identify the best hypothesis, i.e., the hypothesis
that represents the performance criteria closest to that of a
honeybee avoiding mid-air collision, which is maintaining
its position to be at the center horizontally and reaching its
destination (HLRDest).

The results show that the ranking does indicate the known
behavior of the honeybees. For instance, HLR is ranked
higher than HLRUD and HLRUD is ranked higher than
HUD, which means that the system can identify that hori-
zontal centering is a criteria the honeybees try to achieve,
but vertical centering is not, which conform to the widely
known results as discussed in the Hypotheses subsection.

Furthermore, HBasicDest is ranked higher than HBasic,
which indicates that the system does identify that honey-
bees tend to remain focus on reaching its destination even in
head-on encounter scenarios, which conforms to the widely
known results as discussed in the Hypotheses subsection.

Summary and Future Work
This paper presents an application of planning under uncer-
tainty to help ethologists study the underlying performance
criteria that animals try to optimize in an interaction. The
main difficulty faced by ethologists is the need to gather
a large body of observational data to delineate hypotheses,
which can be tedious and time consuming, if not impossible.
This paper introduces a system — termed “in-silico behav-

ior discovery” — that enables ethologists to simultaneously
compare and assess various hypotheses with much less ob-
servational data. Key to this system is the use of POMDPs to
generate optimal strategies for various postulated hypothe-
ses. Preliminary results indicate that, given various hypothe-
sized performance criteria used by honeybees, our system
can correctly identify and rank criteria according to how
well their predictions fit the observed data. These results in-
dicate that the system is feasible and may help ethologists in
designing subsequent experiments or analysis that are much
more focused, such that with a much smaller data set, they
can reveal the underlying strategies in various animals’ in-
teraction. Such understanding may be beneficial to inspire
the development of various technological advances.

Nature, additionally, involves a multi-objective optimiza-
tion. Another strength of this approach is to help tease out
the mixing of these objectives. For example, honeybee flight
is regulated not only by optical flow, but also by overall il-
lumination (i.e., phototaxis). As seen between the Central
Tendency and Left/Right Central Tendency hypothesis test,
the method can help clarify the weighting of the mixing (be-
tween optical flow and phototaxis). Another advantage of
this approach is that it reduces the amount of experiments
where one has to hold other secondary conditions (e.g., tem-
perature, food sources, etc.) stationary, thus saving time and
further aiding discovery of the underlying behaviours.

Many avenues for future work are possible. First, we want
to control the behavior of both honeybees. This extension
enables us to understand the possible “negotiation” or rule
of thumb for manoeuvring that honeybees may use. Second,
we would like to understand the capability of our system to
model encounter scenarios that involve more than two hon-
eybees. Third, we would like to refine the transition and per-
ception model of the POMDP problem in our system, so that
it reflects the unique characteristics of honeybees, such as
the waggle dances it may perform to communicate with an-
other honeybees. Finally, we are also interested in extending
this system for other types of animal interaction, such as the
hunting behavior of cheetahs and dinosaurs.
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