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Introduction
Value functions are an essential tool for solving sequential
decision making problems such as Markov decision pro-
cesses (MDPs). Computing the value function for a given
policy (policy evaluation) is not only important for deter-
mining the quality of the policy but also a key step in promi-
nent policy-iteration-type algorithms. In common settings
where a model of the Markov decision process is not avail-
able or too complex to handle directly, an approximation
of the value function is usually estimated from samples of
the process. Linearly parameterized estimates are often pre-
ferred due to their simplicity and strong stability guarantees.
Since the late 1980s, research on policy evaluation in these
scenarios has been dominated by temporal-difference (TD)
methods because of their data-efficiency. However, several
core issues have only been tackled recently, including stabil-
ity guarantees for off-policy estimation where the samples
are not generated by the policy to evaluate. Together with
improving sample efficiency and probabilistic treatment of
uncertainty in the value estimates, these efforts have lead to
numerous new temporal-difference algorithms. These meth-
ods are scattered over the literature and usually only com-
pared to most similar approaches. The article therefore aims
at presenting the state of the art of policy evaluation with
temporal differences and linearly parameterized value func-
tions in discounted MDPs as well as a more comprehensive
comparison of these approaches.

We put the algorithms in a unified framework of function
optimization, with focus on surrogate cost functions and op-
timization strategies, to identify similarities and differences
between the methods. In addition, important extensions of
the base methods such as off-policy estimation and eligibil-
ity traces for better bias-variance trade-off, as well as regu-
larization in high dimensional feature spaces, are discussed.

We further present the results of the first extensive empir-
ical evaluation, comparing temporal-difference algorithms
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for value function estimation. These results shed light on the
strengths and weaknesses of the methods which will hope-
fully not only help practitioners in applying these methods
but also lead to improvements of the algorithms. As an ex-
ample, novel versions of the LSTD and LSPE algorithms
with drastically improved off-policy performance are pre-
sented. For details of these new algorithms, see the full jour-
nal article. In the remainder of this extended abstract, we
first list temporal-difference algorithms categorized accord-
ing to their surrogate loss functions and optimization strate-
gies and subsequently summarize the most important results
of the empirical analysis. 1

Temporal Difference Policy Evaluation
Most temporal difference methods for value function es-
timation can be understood as optimization procedures,
that is, combinations of objective functions and optimiza-
tion strategies. In the following, we first highlight different
choices of loss functions and subsequently categorize algo-
rithms according to their optimization procedures.

The general goal of value function estimation is to min-
imize the mean squared error (MSE) which measures the
average squared distance between the true value func-
tion V π(s) and the linear estimate V̂ (s) = θ̂>φ(s) for
each state s. As Monte-Carlo estimation of V π often has
high variance, surrogate loss functions (MSBE, MSPBE,
MSTDE, NEU, OPE/FPE) are minimized instead which do
not depend on the true value function V π . They measure in
different ways how well the estimate V̂ satisfies the Bell-
man equation V̂ (s)

!
= E[r(st, at) + γV̂ (st+1)|st = s].

Surrogate loss functions are usually easier to estimate from
samples due to smaller variance but come at the price of
additional bias. The following list categorizes temporal-
difference methods according to their objective function:

MSE: Least-squares Monte-Carlo estimation, Kalman TD
learning (KTD), Gaussian process TD learning (GPTD)

MSTDE: Bellman residual minimization (BRM), residual
gradient (RG);

1For the sake of brevity, we omit references in this extended
abstract. All references are available in the full journal article.

2Also at Technische Universität Darmstadt, Karolinenplatz 5,
Darmstadt, Germany.
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MSBE: BRM with double sampling (BRM DS), residual
gradient with double sampling (RG DS);

MSPBE: GTD2, TDC, Least-squares TD-learning
(LSTD);

OPE/FPE: Least-squared policy evaluation (LSPE), fixed-
point Kalman filtering (FPKF), TD learning;

NEU: GTD.
While the loss function mostly determines the quality of the
value function after convergence, the optimization strategy
defines the convergence speed and the computational costs
of an algorithm. There are roughly three classes of strategies.
Gradient-based methods: (TD learning, GTD, GTD2,

TDC, residual gradient) Steps along the stochastic gra-
dient are taken. Algorithms can be employed online and
have per-step-runtime linear in the number of features but
heavily depend on good choices of step lengths.

Least-squares methods: (LSTD, LSPE, FPKF, BRM)
These methods compute the minimum of their quadratic
and convex loss function directly and converge much
faster than gradient-based methods. However, they have
quadratic runtime complexity.

Bayesian approaches: (KTD, GPTD) Bayesian ap-
proaches minimize the MSE but mitigate the issue
of high variance by incorporating prior beliefs which
introduce a bias. Their optimization strategy directly
originates from belief updates and usually has quadratic
runtime complexity.

Empirical Comparison
While there have been several impressive theoretical anal-
yses of temporal-difference methods, which lead to guar-
antees and better understanding of them, many question
remained open. For example, it has been shown that the
MSPBE minimum can be arbitrarily far away from the de-
sired MSE minimum, while the distance between MSBE and
MSE minimum (its bias) can be bounded. However, how rel-
evant is this bound in practice? Which surrogate objective
has usually lower bias? The article therefore presents a sys-
tematic experimental study that aims at empirically answer-
ing these questions.

To this end, twelve benchmark problems have been se-
lected, including classic benchmarks, tasks with continuous
and discrete state spaces, on- and off-policy scenarios, as
well as problems of different size. The performance of all al-
gorithms (including eligibility traces, if available) has been
evaluated on these benchmarks in terms of the different ob-
jective functions. In addition, the effect of algorithm param-
eters across all benchmarks has been investigated in exten-
sive parameter studies. The following list summarizes the
main results:
• Empirically, the magnitudes of objective biases, that

is, the distance of surrogate objective minima to the
MSE optimum, are: bias(MSTDE) ≥ bias(MSBE) ≥
bias(MSPBE) = bias(NEU) = bias(OPE/FPE).

• Optimizing for the MSBE objective instead of the
MSTDE objective by using double samples introduces

high variance in the estimate. Particularly, Bellman resid-
ual minimization requires stronger regularization which
results in slower convergence than relying on one sample
per transition.

• Interpolating between the MSPBE/MSTDE surrogate ob-
jectives and the MSE cost function with eligibility traces
can improve the performance of policy evaluation.

• Normalization of features for the linear parameterization
of the value-function estimate is crucial for the prediction
quality of gradient-based temporal-difference methods.

• The GTD algorithm consistently performs worse than
its successors GTD2 and TDC. The TDC method finds
the surrogate objective minimum faster than the other
gradient-based algorithms GTD, GTD2 and TD learning.

• By optimizing algorithm parameters, the TDC algorithm
performs always at least as good as TD-learning, but
comes at the price of optimizing an additional hyper-
parameter. Often, hyper-parameter optimization yields
very small values for the second learning rate, in which
case TDC reduces to TD-learning.

• In general, the LSTD and LSPE algorithms produce the
predictions with lowest errors for sufficiently many ob-
servations.

• In practice, LSTD and LSPE algorithms perform well
with off-policy samples only if transition reweighting
(proposed in the journal article) is used. The variance of
LSTD with standard reweighting makes the algorithm un-
usable in practice.

• For a modest number of features, least-squares methods
are superior to gradient-based approaches both in terms
of data-efficiency and even CPU-time to reach the same
error level. For a very large number of features (e.g.,
≥ 20,000), gradient-based methods should be preferred as
least-squares approaches become prohibitively time- and
memory-consuming.

Conclusion
The article presents a concise survey of temporal difference
methods for linear value function estimation including re-
cent trends such as regularization and feature generation to
deal with high-dimensional feature spaces. It also presents
the results of the first comprehensive empirical comparison
that provides evidence for several important questions re-
garding algorithm stability, parameter choices and surrogate
loss functions. The article could therefore be a helpful guide
for practitioners to choose the most suitable algorithm for
the problem at hand. It further aids researchers to identify
possible opportunities for improvements, as shown by the
new sample reweighting strategy for LSTD and LSPE pro-
posed and empirically validated in the journal article.
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