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Abstract

Penetration testing (pentesting) is a well established method
for identifying security weaknesses, by conducting friendly
attacks. Simulated pentesting automates this process, through
designing a model of the system at hand, and using model-
based attack planning to generate the attacks. Classical plan-
ning variants of this idea are being used commercially by the
pentesting industry since 2010. Such models can pinpoint
potentially dangerous combinations of known vulnerabilities,
but ignore the incomplete knowledge characteristic of hack-
ing from the attacker’s point of view. Yet, ideally, the simu-
lation should conduct its attacks the same way a real attacker
would. Hence the ultimate goal is much more ambitious: to
realistically simulate a human hacker. This is a grand vi-
sion indeed; e. g., the classical Turing Test can be viewed
as a sub-problem. Taking a more practical perspective, the
simulated pentesting model space spans a broad range of se-
quential decision making problems. Analyzing prior work
in AI and other relevant areas, we derive a systematization
of this model space, highlighting a multitude of interesting
challenges to AI sequential decision making research.

Introduction
Penetration testing, short pentesting, identifies IT system
security weaknesses by conducting friendly attacks. The
method is well established, and several commercial tools
are available (see e. g. (Burns et al. 2007)). Given the size
of modern systems (like the computer networks of large in-
ternet companies), the dynamics of the security domain, as
well as the costs associated with human pentesting, com-
puter support has shifted into focus since the late 90s. The
most ambitious idea, which we baptize simulated pentest-
ing here, is to completely automate the pentest: Design a
model of the system at hand, and use model-based attack
planning to generate the attacks. The Core Security com-
pany (http://www.coresecurity.com/) employs this idea com-
mercially since 2010, in their Core IMPACT tool, consulted
by the author and using a variant of the author’s Metric-FF
system (Hoffmann 2003) as the base planner.

Historically, the idea of pentesting automation originates
in the consideration of so-called attack graphs (e. g. (Phillips
and Swiler 1998; Lippmann and Ingols 2005)). The different
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approaches in that area differ considerably in scope and pur-
pose, but they all model individual attack actions in terms of
preconditions and postconditions. The application was first
introduced to AI planning by Boddy et al. (2005), resulting
in the inclusion of the CyberSecurity domain in the 2008
International Planning Competition. That domain consid-
ers insider attacks, and incorporates aspects of the physical
world such as looking over someone’s shoulder. The Core
Security model, introduced several years later (Lucangeli,
Sarraute, and Richarte 2010), considers outside attackers –
hackers – instead, and encodes network security at a techni-
cal IT-level where individual “attack actions” correspond to
known exploits of software vulnerabilities.

Our approach in this paper is to start from the Core Se-
curity model and application, motivated by its commercial
success, and primarily taking a technical network security
perspective. We examine where this should be taken in the
future to more comprehensively achieve the goals of simu-
lated pentesting. The author believes that this endeavor has
the potential to become a major driving force and application
for AI sequential decision making research.

In practice, the main added value of Core IMPACT’s at-
tack planning, and arguably of simulated pentesting in gen-
eral, is finding relevant attacks (as opposed to actually exe-
cuting them). The tool guides the attention of human secu-
rity officers, pointing out where, in an overwhelmingly large
system, the most critical security issues may lie. Hence ac-
curacy is a critical asset: Accurate hints are useful, inac-
curate hints are a waste of security officers’ time. Accord-
ing to Core Security practitioners, the ideal tool would point
out the same attacks a real attacker would attempt. In other
words, our vision is to realistically simulate a human hacker.

In its full scope, this vision is daunting. In “socio-
technical attacks” (like “spear-phishing” emails, e. g. (Ja-
gatic et al. 2007)), the classical Turing Test may appear as
a sub-problem, when communicating in a social network
during a reconnaissance phase.1 Even for purely technical
attacks, realistically simulating a hacker arguably is “AI-
complete”, requiring among many other things to model
commonsense knowledge (e. g., for password guessing).

1In fact, Huber et al. (2009) use the ALICE chatbot
(http://alice.pandorabots.com/) for communicating with human
users in a simple Facebook social engineering bot.
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Approaching the problem from a practical point of view,
we herein concentrate on fragments of simulated pentest-
ing supported by existing sequential decision making for-
malisms. We asume that our tool will be used at model-level
only, i. e. the attack plans will not actually be executed so
we are facing an offline problem. Our aim is to systematize
the model space. We identify two major dimensions char-
acterizing that space: (A) how to handle the uncertainty
from the point of view of the attacker, and (B) the degree
of interaction between individual attack components.

Regarding (A), deterministic models like Boddy et al.’s,
the Core Security model, and attack graphs, abstract from
that uncertainty completely (some give actions with “smaller
success probability” a higher cost). An opposite extreme,
suggested by the author and co-workers (Sarraute, Buffet,
and Hoffmann 2012), is a POMDP model explicitly incor-
porating the attacker’s initial knowledge, and the knowledge
gained by observations during attack execution.

Dimension (B) is less immediately visible, revealing itself
only upon closer inspection of the Core Security model as
well as a variety of attack graph formulations. Our conclu-
sion will be that network graph distance, as well as delete-
relaxed action models, are both relevant alternatives to the
full factored action models common in AI planning. Hence,
in our formulation, simulated pentesting ranges all the way
from Dijkstra on an explicit graph to solving a factored
POMDP, with several new special cases in between.

To familiarize the reader with simulated pentesting, and
to illustrate the extreme ends of the modeling space, we start
by introducing the Core Security and POMDP models. We
then introduce a middle ground between these two extremes,
based on an MDP abstraction of the POMDP model. We
discuss the attack graph literature, as well as some related
models, and systematize our findings in the form of a model
taxonomy. We close the paper with a discussion of research
challenges arising from that systematization, and from the
simulated pentesting application at large.

Classical Planning: The Core Security Model
A detailed description of Core Security’s application design
is out of scope (and would violate confidentiality). But the
core planning model itself has been published (Lucangeli,
Sarraute, and Richarte 2010) and is easily explained. We
will henceforth refer to this model as CoreSec-Classical.
Have a look at the PDDL action schema in Figure 1.
(:action HP OpenView Remote Buffer Overflow Exploit

:parameters (?s - host ?t - host)
:precondition (and (compromised ?s)

(connected ?s ?t)
(has OS ?t Windows)
(has OS edition ?t Professional)
(has OS servicepack ?t Sp2)
(has OS version ?t WinXp)
(has architecture ?t I386)
(has service ?t ovtrcd))

:effect (and (compromised ?t) (increase (time) 10)))

Figure 1: An action schema in CoreSec-Classical. (Slightly
simplified for presentation.)

Each action schema corresponds to an exploit of a known

vulnerability. In our example, the exploit creates a buffer
overflow in an HP OpenView service in a particular configu-
ration of Windows. The object parameters are the source and
target hosts (machines in the network), ?s and ?t. The hacker
must already have gained control over (“compromised”) ?s,
and, when applying the action, gains control over ?t. Other
exploits, i. e. other action schemas in the model, are different
only with respect to the “has *” preconditions, and the effect
on “time” (regarding which: see below). The PDDL prob-
lem files specify host connectivity, i. e. the network graph
whose nodes are the hosts and whose edges are their con-
nections, as well as the host configurations via the “has *”
predicates. One host (modeling the internet) is compromised
in the initial state, and the goal is to compromise one or sev-
eral other hosts. The value of “time” should be minimized.

Towards model space systematization, note the following
simplifying assumptions inherent in CoreSec-Classical:

(i) Known network graph: No uncertainty about the net-
work graph topology.

(ii) Known host configurations: No uncertainty about
the host configurations.

(iii) Static network: Neither host connectivity nor host
configurations are affected by the actions.

(iv) Monotonic actions: The attacker can only gain at-
tack assets (here: compromised hosts; more generally:
anything an attacker may rely on during an intrusion).
Once obtained, an attack asset cannot be lost.

(v) Actions = hops: The non-static precondition and ef-
fect of each action corresponds exactly to a “hop” in
the network graph, compromising a new target host
starting from an already compromised source host.

Assumptions (i) and (ii) pertain to our dimension (A), un-
certainty from the point of view of the attacker. Both can
be relaxed in principle, in the models we propose; our main
focus will be on relaxing (ii) which appears to be more feasi-
ble in practice. Assumptions (iii-v) pertain to our dimension
(B), the degree of interaction between individual attack com-
ponents: These properties of CoreSec-Classical, along with
our observations regarding the attack graph literature below,
motivate the consideration of these restrictions as relevant
special cases of pentesting action models. Note that (v) im-
plies each of (iv) and (iii); we have separated the properties
here to highlight the relevant distinction lines.

Analyzing (i–v) in CoreSec-Classical and its practical
use, consider first dimension (A). Clearly, assumptions (i)
and (ii) are made by the model (this information is speci-
fied in the initial state), although clearly they are not real-
istic from the point of view of an outside attacker. Indeed,
assumption (ii) is not even realistic from the point of view
of Core Security’s pentesting tool: While the network graph
is known, it is impossible to keep track of the configura-
tion of every host in the network, maintained by individ-
ual users. Core IMPACT employs an information gathering
phase, running comprehensive network scans prior to start-
ing the pentests. The most plausible configuration is then
output in the above PDDL format for the planner.2 Core

2The word “plausible” is chosen intentionally here: this config-
uration selection is not based on a formal/probabilistic model.
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IMPACT also selects a success statistic for each exploit,
i. e., a statistic on the fraction of times an exploit typically
works on a host with the observed configuration parameters.
But, rather than using these statistics as probabilities (an ap-
proach we will get to later on), they are used as part of the
“time” effect, which is actually an action cost amalgamating
execution time and success statistic into a single number.

Regarding dimension (B), observe first that the actions
are delete-free, i. e., we have assumption (iv). While this
may be surprising from an AI planning point of view, it is
actually a widely employed assumption in security models,
specifically attack graphs. Intuitively, monotonicity makes
sense when viewing the attack as an accumulation of assets,
like access rights or information (e. g. passwords) that, once
gained, are not typically lost again. (Unless the attack is de-
tected and ends altogether which is outside our models here;
we say a few words on adversarial models further below.)

Host connectivity and configurations are given in the
PDDL initial state, and are not affected by the actions, so
we have assumption (iii). This is a limiting assumption, as
an attacker may change configuration parameters on a host
in order to enable another exploit and thus access rights es-
calation. But that is not the most frequent attack pattern,
and one can capture it by modeling different host configu-
rations and access rights as different hosts. So assumption
(iii) is benign. In the specific setting of CoreSec-Classical,
though, (iii) entails (v): Once static predicates are removed,
we end up with a grounded encoding where every action has
one positive (“compromised”) precondition and one positive
(“compromised”) effect. Consider the graphG whose nodes
are all facts and whose edges (p, q) correspond to actions
with precondition p and effect q. Then G is like the net-
work graph, except that the edges now correspond to hops
from host to host, so the number and cost of edges between
connected hosts varies depending on the number of applica-
ble exploits. If the planning goal consists of a single fact,
i. e. there is a single goal host which is a realistic pentest-
ing scenario, then optimal planning is equivalent to finding
a shortest path from the initial host to the goal host in G.3
In that sense, CoreSec-Classical is merely a declarative way
of representing the graph G. We will henceforth refer to this
simple setting as an explicit network graph model.

Given this, it may be surprising that Core Security uses
a PDDL model and solver at all. The main added values
on their side (apart from being able to handle multiple goal
hosts if desired) are reduced development cost and time us-
ing an off-the-shelf tool, effortless extensibility to more gen-
eral action models, as well as a few extra features on top of
Metric-FF to find not one solution, but several ones for the
human to consider (“optimality” relative to a crude model
like this is relevant, but not reliable, in practice).

Towards Accuracy: POMDP Models
Approaching simulated pentesting from an academic rather
than practical perspective, the author and co-workers (Sar-

3For a fixed-size goal, optimal planning is still tractable (Bylan-
der 1994). Else, optimal planning is equivalent to the Steiner Tree
Problem on G (Keyder and Geffner 2009).

raute, Buffet, and Hoffmann 2011; 2012) explored the op-
posite end of the modeling spectrum. Our driving ques-
tion was, what problem is Core Security actually trying to
solve? CoreSec-Classical clearly is a pragmatic proxy for
a more complex problem. How to formulate that problem
accurately, using standard formalisms?

Our key design decision is to model the attacker’s in-
complete knowledge about the network as an uncertainty
of state: A probability distribution over possible network
graphs and host configurations. An initial probability dis-
tribution encodes the knowledge prior to the attack, and ob-
servations (from explicit sensing actions and observed ac-
tion outcomes) during attack execution refine that knowl-
edge. This naturally leads to a POMDP model. Different
variants of POMDPs (see e. g. (Monahan 1982; Kaelbling,
Littman, and Cassandra 1998)) may be suitable. In what
follows, we mainly focus on the construction of states and
the behavior of actions, basic aspects that would plausibly be
shared by any POMDP model of simulated pentesting. We
assume a Factored POMDP perspective (e. g. (Hansen and
Feng 2000)), which is natural and ties in well with the other
models discussed herein. We distinguish the most direct ex-
tension of CoreSec-Classical, which we refer to as CoreSec-
POMDP, from more general POMDP pentesting models.4

CoreSec-POMDP still (i) assumes that the network graph
is known, and (v) limits actions to network graph hops;
hence (as (v) implies (iii) and (iv)) the only assumption not
made anymore is (ii). It makes two new assumptions rele-
vant only for models incorporating uncertainty:

(vi) Succeed-or-nothing: Each exploit has only two pos-
sible outcomes, succeed or fail. The latter outcome
has an empty effect.

(vii) Configuration-deterministic actions: The outcome
of every action (exploit as well as sensing) depends
deterministically on the network configuration.

The rationale behind (vi) is that, if an exploit fails, then the
attack status does not change - the attacker does not gain
anything, but does not lose anything either. This is an ab-
straction as some exploits may have detrimental side effects,
like crashing the target host. The rationale behind (vii) is
that an exploit succeeds iff the target host has the required
configuration. If we execute the same exploit twice in the
same configuration, then the outcome will be the same. This
is an abstraction as for some exploits the outcome may de-
pend on the processes presently running on the target host,
or on other details beyond any reasonable state model. Such
dependencies are infrequent though, so, like assumption
(iii), assumption (vii) is benign. For future reference, ob-
serve that assumptions (iii) and (vii) together imply that re-
peating an action leads to the same state so is redundant.

States s describe the network configuration, as well as
the status of the attack. In CoreSec-POMDP, states are de-
scribed with the same “connected”, “has *” and “compro-
mised” predicates as before. More general formulations may

4Our current model (Sarraute, Buffet, and Hoffmann 2012) is
like CoreSec-POMDP except that we allow detrimental side effects
crashing the target host, and that the model is ground/enumerative
based on SARSOP (Kurniawati, Hsu, and Lee 2008).
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add whatever other kinds of attack assets (software installed,
passwords obtained), and/or dynamic properties (crashed
machines), are deemed relevant. The initial belief b0, in
general, contains any (factored description of a) probabil-
ity distribution over valuations to the state predicates. In
CoreSec-POMDP, we make assumption (i) so b0 fixes the
network graph and contains a probability distribution only
over the host configurations, i. e., the “has *” predicates.

Exploits and sensing actions may in general take arbitrary
forms, i. e., come with arbitrary transition and observation
probabilities. In models making assumptions (vi) and (vii),
exploits can be described exactly as in Figure 1, i. e., with a
conjunctive precondition and effect, interpreted as follows.
Consider a transition from s via a to s′, where a is an exploit
action. Distinguish whether (1) a’s precondition holds in
s, and s′ is the outcome of a’s effect applied to s; or (2)
a’s precondition does not hold in s, and s = s′. Then the
transition probability P (s′|s, a) is 1 in cases (1) and (2), and
is 0 elsewhere. The observations are “success” in case (1),
“fail” in case (2), and none elsewhere.

In CoreSec-POMDP, we restrict to exactly the same ex-
ploit descriptions as in CoreSec-Classical, but interpreted in
this fashion. This is still an explicit network graph model, in
the sense that the state-changing actions have a single non-
static positive “compromised” precondition, and a single
positive “compromised” effect. In other words, the model
is still exclusively concerned with hops from host to host in
the network. In particular, the model is still monotonic, as
is any model with more general attack assets that cannot be
lost. If we incorporate detrimental side effects, like exploits
that under particular conditions crash the target host, then
we are in the case of more general Factored POMDPs.

As an example of a sensing (reconnaissance) action, fit-
ting assumption (vii) and thus CoreSec-POMDP, consider
the OS (operating system) detection action in Figure 2.
(:action OS Detect

:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:observe (and

(when (has OS ?t Windows2000) (“win”))
(when (has OS ?t Windows2003) (“win”))
(when (has OS ?t WindowsXPsp2) (“winXP”))
(when (has OS ?t WindowsXPsp3) (“winXP”)))

Figure 2: An OS detection action. (Using a hypothetical
PDDL-like syntax, in line with Figure 1.)

This sensing action allows to distinguish earlier Windows
versions from WindowsXP. The sensing is imprecise, as
many network reconnaissance actions are, but not in terms of
different possible outcomes for the same configuration (the
action is state-deterministic), but rather in terms of the infor-
mation returned. The typical output is a list of possible con-
figuration parameters, modeled here by returning the same
observation for Windows2000 and Windows2003, as well
as for different service packs of WindowsXP.

An attack is now a policy for the POMDP, choosing ac-
tions based on past observations and actions. We will dis-
cuss optimization criteria in detail below, along with our
model taxonomy. To say a few words right now, observe
that infinite looping behaviors are not useful in pentesting.

There is only a finite number of things to achieve (hosts to
compromise), and it is natural to assume that every action
has a strictly positive cost. A practical pentest terminates
either when reaching the goal, or when the attacker decides
to give up. It is, therefore, natural to assume an absorbing
terminal state and frame pentesting as a Stochastic Short-
est Path problem. In our current POMDP model, we maxi-
mize non-discounted reward, with non-negative rewards for
newly compromised hosts and strictly negative rewards for
actions; a “give-up” action leads to an absorbing state.

The POMDP approach is nice in that it captures many
relevant properties of real-world hacking, as far as a discrete
transition system formulation allows. On the other hand,
the computational issues with POMDPs are widely known.
In our experiments (Sarraute, Buffet, and Hoffmann 2012),
models for more than one host were infeasible and we in-
stead devised a decomposition approach using POMDPs on
single-host problems only. Also, the model itself is not easy
to come by. How to design the “initial belief”? Ideally, we
need to capture the knowledge of (different kinds of) real-
world hackers. One approach could be to use the outcome
of common network reconnaissance scanning scripts, simi-
lar to Core IMPACT’s information gathering phase. We be-
lieve this is promising, and will refer to it below, but overall
the question of how to obtain b0 is still wide open.

The MDP Middle Ground
MDPs are a natural candidate for a middle ground between
classical planning and POMDPs. To the author’s knowledge,
there is no published work on the use of MDPs as simulated
pentesting models in our sense. The single exception is a
STAIRS starting researcher symposium paper (Durkota and
Lisý 2014), which formulates a variant of attack graphs as
MDPs; we get back to this further below. In what follows,
we discuss MDP simulated pentesting models in the light of
the distinction lines (i–vii) identified above.

The basic idea is to formulate the attacker’s uncertainty in
terms of action outcomes, hiding the details – the host con-
figurations – that actually govern these outcomes. This can
be understood as an abstraction of the POMDP model we
just discussed. The actions are as before, minus the sensing.
The possible outcomes of exploits are as before, except that
each outcome o of action a is assigned a probability p(a, o)
that does not depend on host configuration predicates.

In principle, none of (i–vii) are necessary in this context.
If we do start from a POMDP model with assumptions (i)
known network graph, (iii) static network, (vi) succeed-or-
nothing, and (vii) configuration-deterministic actions, then
the action outcome probabilities p(a, o) can be obtained in a
very natural manner from commonly used success statistics.

Under assumption (vii), the outcome of an exploit de-
pends only on the network configuration. So whether or not
outcome o of action a occurs can be characterized in terms
of a condition φ(a, o) on the configuration predicates. Un-
der assumption (iii), that part of the POMDP state is static.
Given this, it is natural to define the probability p(a, o) as
the probability of φ(a, o) being true in the POMDP initial
belief b0. This still is an abstraction (see our discussion be-
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(:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))

(increase (time) 10)))
Figure 3: The exploit model from Figure 1, abstracted into
a probabilistic-outcomes model. The “has *” configuration
preconditions are replaced by the success probability 0.3,
the probability that these preconditions hold on hosts with
the same information-gathering profile.

low), but a more benign one than in the general case where
φ(a, o) could be affected during execution.

Under assumption (i), φ(a, o) concerns only the host con-
figuration. Under assumption (vi), as a can only succeed
or fail, the only probability we need to define is the success
probability p(a) of a in b0. Recall now the idea to define b0
through the outcome of comprehensive network scanning as
in Core IMPACT’s information gathering phase. Then the
success probability of a in b0 corresponds (modulo the pre-
cise definition of b0 in this context, which is an open ques-
tion) to Core IMPACT’s aforementioned success statistic,
measuring the fraction of times an exploit typically succeeds
on a target host with the observed configuration parameters.
In other words, the probabilities we need are already there!
We simply use Core Security’s success statistics, a source of
action cost in CoreSec-Classical, as success probabilities in-
stead. (Such probabilities have been explored in preliminary
work at Core Security already, in an “attack-tree” approach
(Sarraute, Richarte, and Obes 2011), see next section.)

In the resulting MDP model, an initial state s0 encodes the
outset of the attack, and we wish to find a (closed partial)
policy for s0. The state predicates consist of the network
graph and whatever dynamic properties are being modified
by the exploits. Any action conditions on host configura-
tion predicates are removed; by (iii), action effects on these
are not present. For illustration, our previous exploit model
from Figure 1 thus changes to the one shown in Figure 3.

If the MDP includes only actions like that in Figure 3,
i. e., if we start from the CoreSec-POMDP model, then we
obtain an MDP making assumption (v) actions = hops. As
(v) implies (iv), with (i,iii,vi,vii) already made above, only
(ii) remains relaxed. The state predicates are the same as
before minus “has *”, i. e., we only have “connected” and
“compromised” of which the former is static. We refer to
this direct abstraction of CoreSec-POMDP, respectively di-
rect extension of CoreSec-Classical, as CoreSec-MDP.

With respect to the POMDP model, as we have seen, the
MDP approach dramatically simplifies finding the probabil-
ities. It of course reduces computational complexity. The
prize we pay is a loss of accuracy, incurred by what can
be viewed as the loss of ability to gather knowledge. Say
that, as described above, we set p(a) to the likelihood of a’s
configuration preconditions holding in b0. Then, in b0, the
success probabilities in the POMDP and MDP are the same.
However, in the POMDP, as we make observations, we re-
fine our knowledge about the network and hence the success
prospects of exploits. In the MDP, p(a) never changes.

One consequence of this is an independence assumption.
In the POMDP model, executing exploit a yields informa-

tion about other exploits a′ relying on similar configuration
properties. If we already know that a succeeds, chances are
higher that a′ succeeds as well, and vice versa. By contrast,
p(a) and p(a′) are separate in the MDP model, and handled
like independent probabilities.

Another, more dire, consequence is that the MDP trivial-
izes goal probability. Consider the exploit from Figure 3,
and say that the target host ?t does not actually have the
configuration required for this particular exploit to work.
Nevertheless, if we apply the exploit arbitrarily often, the
chance of breaking into ?t eventually is 1. This turns the
exploit into a kind of dice throw, “waiting for the right out-
come”. Such behavior certainly feels stark and unintuitive;
more precisely, it contradicts our assumptions (iii) and (vii).

Given that (vii) exploit outcomes depend only on the net-
work configuration, and (iii) this configuration is static, as
pointed out previously there is no point in trying the same
exploit twice on the same target. While (iii) and (vii) are ab-
stractions, they do capture the most typical behavior (which
is why contradicting them feels stark and unintuitive). As-
suming (iii) and (vii) as given, a straightforward solution to
the “waiting for the right outcome” issue is the:

(viii) Apply-once constraint: Allow to apply each
exploit, on each target host, at most once.

In principle, we can impose (viii) at PDDL level, e. g. in-
troducing a flag “(attemptValid HP OpenView ?t)” into the
precondition and delete list in Figure 3. To distinguish mod-
els that are monotonic except for the apply-once constraint,
we will view this constraint as part of the model semantics,
not of the action descriptions themselves. (The understand-
ing being that, to preserve the Markov property, the subset
of still-available actions is part of the state.)

Attack Graphs and Other Models
With the above details in mind, let’s take a step back and
consider related models for pentesting computer support.

Attack graphs, first introduced by Philipps and Swiler
(1998), are the model most closely related to a planning-
based formulation of pentesting. Attacks are broken down
into atomic components, often referred to as actions, de-
scribed by conjunctive preconditions and postconditions
over relevant properties of the system under attack. In
other words, the action model is basically STRIPS. The at-
tack graph represents some form of analysis of threats that
arise through possible action combinations, i. e., reachabil-
ity given these actions. This is, again, much as in STRIPS
planning, except that many works aim to find, not just one
attack plan, but an overview of all possible (or most rele-
vant) attack plans, for the consideration of human security
officers. Due in part to this attack-overview ambition, attack
graphs come in many different variants, and the term “attack
graph” is heavily overloaded. From our point of view here,
the most relevant distinction lines are as follows.

In several early works (e. g. (Schneier 1999; Templeton
and Levitt 2000)), the attack graph is the action model it-
self, presented to the human as an abstracted overview of
(atomic) threats. With impetus from researchers with a
model checking background, it was then proposed to instead
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reason about combinations of atomic threats, where the “at-
tack graph” (sometimes “full” attack graph) is the state space
(e. g. (Ritchey and Ammann 2000; Sheyner et al. 2002)).
Then, quite early on in the history of attack graphs, it was
suggested that monotonic formulations – positive postcon-
ditions only – are a natural and useful abstraction of at-
tacks (Templeton and Levitt 2000; Ammann, Wijesekera,
and Kaushik 2002). Given this, the “attack graph” became
what the AI planning community calls a relaxed planning
graph.5 Indeed, Amman et al. (2002) reinvented relaxed
planning graph generation, as well as relaxed plan extrac-
tion, as in the FF system (Hoffmann and Nebel 2001). The
idea of monotonic attacks was widely adopted (e. g. (Jajodia,
Noel, and O’Berry 2005; Ou, Boyer, and McQueen 2006;
Noel et al. 2009; Ghosh and Ghosh 2009)). Many works can,
from an AI planning perspective, be understood as variants
of, and analyses on, relaxed planning graphs in a practical
security modeling and support context.

A close relative of attack graphs are attack trees
(e. g. (Schneier 1999; Mauw and Oostdijk 2005; Sarraute,
Richarte, and Obes 2011)). Indeed the literature does not
clearly distinguish these terms and, like “attack graph”, “at-
tack tree” is heavily overloaded. In a nutshell, attack trees
arose from early attack graph variants meaning the action
descriptions themselves. This developed into what has re-
cently been coined “Graphical Security Models” (Kordy
et al. 2013): Directed acyclic AND/OR graphs organizing
known possible attacks into a top-down refinement hierarchy
over attack actions and sub-actions, annotated with costs,
success probabilities, etc. The intention is for the user to
write this hierarchy, and for the computer support to ana-
lyze how costs and probabilities propagate through the hier-
archy.6 In comparison to attack graphs and planning formu-
lations, this has computational (and potentially other) ad-
vantages, but cannot find unexpected attacks, arising from
unforeseen combinations of atomic actions.

The reader may wonder whether simulated pentesting
may be viewed as a special case of model checking. To the
extent that model checking safety properties is “the same as”
planning, that is true. A major difference to the usual focus
in model checking is that verifying correctness is of limited
relevance. We cannot conclude “proved safety” if no attack
exists according to the model. The model is intended to cap-
ture potential vulnerabilities at a high level, not to exactly
reflect the system under scrutiny, nor an over-approximation
thereof. Neither would be feasible given the overwhelming
size and dynamics of modern computer networks.

Finally, a few words are in order regarding game theory.
Why model only the attacker, not also the defender? The au-
thor is far from wishing to claim a conclusive answer to that
question. Our answer here basically is “in order to focus on
simpler things first”. That said, model accuracy may be an

5This observation was made earlier on by Lucangeli et al.
(2010). Boddy et al. (2005) also mention it, though not as clearly.

6Many attack tree models are equivalent to AI formula evalu-
ation (e. g. (Greiner 1991; Greiner et al. 2006)). This appears to
remain unnoticed by both communities. To our knowledge, the
only authors pointing it out are Lisý and Pı́bil (2013).
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Figure 4: Our model taxonomy, overview. Within each
class, the underlying formalism name is given at the top
(known formalisms blue, new formalisms red). The underly-
ing assumptions are given in the middle; recommended (but
not strictly necessary) ones are put into square brackets “[]”.
A corresponding concrete pentesting-related model, if any
such model exists, is named at the bottom.

issue. It is already very difficult to come up with a useful
model of the attacker’s point of view, never mind futures of
interaction with a defender. It is also not clear that a sin-
gle network intrusion (an “attack”) is naturally viewed as a
game. After all, once the defender actually notices an on-
going intrusion, the “game” is basically over. Pentesting is
traditionally viewed as a means to strengthen the defenses,
not as an interleaved interaction with attackers.7

A Model Taxonomy
Coming back to the AI sequential decision making perspec-
tive, we now systematize our observations in the form of a
model taxonomy, multiplying the most relevant distinction
lines on dimensions (A) and (B). This serves to provide an
overview, and to identify new interesting formalism special
cases. We briefly analyze these special cases, and discuss
some relations to known problems. Consider Figure 4.

Dimension (A), y-axis, simply corresponds to our three
alternate models of uncertainty. In dimension (B), x-axis,
the leftmost class pertains to explicit network graph models,
where each action corresponds to an edge between a pair
of hosts, and the goal is to reach a single target host. The
middle class pertains to monotonic actions in the sense of
delete-relaxed STRIPS. The rightmost class pertains to gen-
eral action descriptions, not making that restriction.

Assumption (i) known network graph is recommended
given the complexity of modeling and reasoning about net-
work graph topology probabilities. Assumptions (iii) static
networks and (vii) configuration-deterministic actions are
recommended as they are benign, i. e., uncritical in this ap-
plication. Monotonic actions necessarily assume (iii) as

7Note the differences to the GameSec workshop series, and se-
curity games (e. g. (Tambe 2011)) concerned with physical infras-
tructures and defenses: There are many useful applications of game
theory in security at large. The question is whether such applica-
tions exist for network security simulated pentesting in particular.
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changes to the network would naturally include effects over-
writing the previous configuration. Recall that (iii) and (vii)
together imply that repeating the same action is not useful,
entailing the apply-once constraint (viii). Regarding the ac-
tion outcome uncertainty models, recall that under assump-
tions (i), (iii), and (vii), and especially when (vi) is also
made, outcome probabilities can be obtained from simple
statistics running exploits against hosts with particular ob-
servable configuration parameters.

The bottom row of deterministic models, and the right-
most column of general action models, are standard for-
malisms (actually, classes of standard formalism variants)
so there is not much need for discussion. Matters are more
interesting for the new classes, to the top left.

Let’s consider first the case of an explicit network graph
model with uncertainty over action outcomes. CoreSec-
MDP is a concrete model from this class. Formulated more
generically, we are facing an MDP whose states are sub-
sets of compromised network graph nodes, and whose prob-
abilistic transitions correspond to network graph edges. We
baptize this the Canadian Hacker Problem (CHP) here be-
cause it is reminiscent of the stochastic Canadian Traveller
Problem (CTP) (e. g. (Papadimitriou and Yannakakis 1991;
Eyerich, Keller, and Helmert 2010)). Each exploit a pertains
to a hop from host ?s to ?t. Due to the apply-once constraint,
the “edge” a may be attempted at most once, so we can per-
ceive the edge as “blocked” with probability 1−p(a). Hence
the input to CHP can be viewed as a graphG with initial and
goal hosts, where edges have weights and blocking proba-
bilities. There are two differences to common formulations
of CPT. First, in order to “learn” whether or not an edge is
blocked, we need to execute the move, i. e., attempt the cor-
responding exploit (instead of only visiting the edge’s start
node). Second, whereas in the CTP at any point in time we
“are at” one unique graph node (location), in CHP at any
point in time we “have” a subset of graph nodes (compro-
mised hosts). Therefore, there is no need to “drive back”
when an edge is found to be blocked during execution.

Stochastic CTP is usually formulated as a deterministic
POMDP; one could use such a formulation for CHP as well
by considering edge blocking information a partially ob-
servable part of the state. We find the MDP formulation
preferable as it makes the trivial nature of the “sensing”
here more explicit. This changes for the CoreSec-POMDP
model, which corresponds to a deterministic-POMDP gener-
alization of CHP that we baptize Partially Observable CHP
(PO-CHP). Instead of just the compromised nodes, we now
also have (static) configuration predicates. Instead of an ex-
plicit blocking probability, each graph edge has a conjunc-
tive precondition over the configuration predicates, and we
are given a probability distribution (the initial belief b0) over
these predicates. In addition to the graph edge moves (the
exploits) themselves, we have sensing actions providing par-
tial information about that probability distribution. Overall,
this can be viewed as a variant of stochastic CTP, with sens-
ing actions, no need to “drive back”, and a complex repre-
sentation of inter-dependent blocking probabilities.

Attack-Asset MDPs form a sub-class of goal-directed fac-
tored MDPs arising as a minimal extension of delete-relaxed

STRIPS. The state variables P (a finite set of Boolean
propositions), initial state s0 ⊆ P , and goal G ⊆ P are
exactly as in STRIPS. The action descriptions a are as in
delete-relaxed STRIPS with action costs, except that, in ad-
dition to the precondition pre(a) ⊆ P , add list add(a) ⊆ P ,
and non-negative action cost c(a), we also have the success
probability p(a). Each action a has two possible outcomes,
success with probability p(a) where add(a) becomes true,
or failure with probability 1−p(a) where the effect is empty.
The available actions are part of the state, and when a is ap-
plied it is not available anymore afterwards. There is, to
the author’s knowledge, no published work on this prob-
lem class except for the aforementioned STAIRS paper by
Durkota and Lisý (2014). They give a very similar syntax
(calling it an “attack graph”), and outline a few first algo-
rithm ideas for finite-horizon expected reward optimization.

Attack-Asset POMDPs, finally, are the generalization of
CoreSec-POMDP which allows exploits to have arbitrary
conjunctive non-static preconditions, and arbitrary conjunc-
tive positive effects in case of success. Viewed relative to
Attack-Asset MDPs, this means that the state variables, ini-
tial state, goal, and exploit-action descriptions remain the
same. The state variables are no longer fully observable.
Exploit actions succeed if their precondition holds, returning
observation “succeed”, and fail if their precondition does not
hold, returning observation “fail”. In addition, deterministic
sensing actions are introduced; these may, e. g., be described
in terms of conditional observations as in Figure 2.

A third dimension, not represented in Figure 4, is of
course the optimization criterion: What is the attacker try-
ing to achieve? The options for answering this question, at
least those we have considered so far, are all well known.
Which options make sense depends on our position in the
taxonomy, and on additional assumptions. So this “third di-
mension” is not fully orthogonal to the other ones.

For the deterministic models, multi-criteria optimization
(separating execution time from success statistic) may be
interesting. Simple criteria we could apply to all proba-
bilistic models result from annotating rewards (to the goal,
or in more complex forms), and maximizing either finite-
horizon expected reward or cumulative discounted expected
reward. Both are valid options. Notable issues are that simu-
lated pentesting is not an online problem (we cannot actually
execute the attack, we are analyzing the threat of potential
attacks), and a finite horizon makes little application sense
(unless the horizon is so large as to encompass all finite runs,
cf. below). As each intrusion happens within a compara-
tively small time frame, discounting is unintuitive. Finally,
it is unclear how human users would set the “rewards”, and
the outcome of the simulated pentest will crucially depend
on this setting. Goal-directed formulations might be easier
to handle, requiring only to specify the target hosts/assets.
Indeed, this is commercial practice with CoreSec-classical.

One natural option is to minimize non-discounted ex-
pected cost-to-goal, in a Stochastic Shortest Path (SSP) for-
mulation. Goal states are absorbing. All our problem classes
may contain dead-ends, which reflects the fact that, under
highly adverse circumstances, the attacker cannot reach the
target. But a real-world attacker, of course, always has the
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option to give up. We can include such an action into any of
our models, leading to an absorbing state with an empty pre-
condition but at a high cost. In CHP, PO-CHP, and Attack-
Asset (PO)MDPs, every run is finite due to the (implicit or
explicit) apply-once constraint. So, when including a give-
up action, every run reaches an absorbing state in finite time,
and we have an SSP (in fact, a simple special case thereof).
For more general (PO)MDP models, to ensure improper
policies incur infinite cost, it suffices to assume strictly posi-
tive action costs, a very reasonable assumption in pentesting.

Expected cost-to-goal also has disadvantages. Setting the
give-up cost is akin to setting the goal reward, incurring the
same modeling difficulty. While this could potentially be
avoided by different handling of dead-ends (e. g. (Kolobov,
Mausam, and Weld 2012; Teichteil-Königsbuch 2012)), it is
not clear anyway that expected cost-to-goal – “What is the
minimal expected cost for an attacker to reach the critical
data?” – is the question security teams are most interested
in. A more natural approach seems to characterize differ-
ent kinds of attackers through different cost budgets, and to
maximize goal probability given such a budget.

This optimization criterion is, again, known. Kolobov et
al. (2011) define a very general class MAXPROB of MDPs
based on this criterion, and design algorithms suitable for
solving these. Our case here is simpler in that we can as-
sume to be facing, again, a finite-runs SSP. We maximize
non-discounted reward where reaching the goal gives reward
1, and all other rewards are 0. The remaining budget b is
part of the state, and an action is applicable only if its cost
does not exceed b. Goal states and states with no applicable
actions are absorbing. In CHP, PO-CHP, and Attack-Asset
(PO)MDPs, every run ends in an absorbing state after a fi-
nite number of steps, simply by the apply-once constraint.
In general, the same is true when assuming strictly positive
action costs, as we will eventually run out of budget.

Research Challenges
Many promising research opportunities are given by the new
formalism special cases in Figure 4. These are substantially
more restricted than general Factored (PO)MDP models. At
the same time, these restricted sub-classes have a clear prac-
tical motivation. Can we exploit the restrictions for design-
ing effective algorithms and, with that, practically feasible
yet more accurate simulated pentesting tools?

To say a few words on Attack-Asset MDPs in particu-
lar: They are extremely close to classical planning, yet al-
ready a rich pentesting model compared to those in practical
use, and straightforwardly obtained from these latter mod-
els by using success statistics as probabilities instead of a
source of action costs. Consider determinization techniques,
justly criticized for trivializing probabilistic problems by ig-
noring the intricacies of multiple action outcomes. Well, we
got only two outcomes now, of which one is “nothing hap-
pens”.8 In the all-outcomes determinization, we can omit the
(empty) failed outcomes, so every probabilistic action yields

8More precisely, nothing happens except we cannot use the
same action again, which is why we are not, although almost, in
what Keyder and Geffner (2008) call “self-loop MDPs”.

a single deterministic action. Even better, these determinis-
tic actions have no delete effects! Determinized plans and
inadmissible determinization heuristics correspond to stan-
dard relaxed plan heuristics. We can compute lower bounds
on expected cost through admissible approximations of h+.
A state is a dead end iff there is no determinized plan. Defin-
ing a “landmark” to be a set of action outcomes of which
any goal-reaching MDP execution must use at least one, the
landmarks are exactly the disjunctive delete-relaxation ac-
tion landmarks of the determinization.

Our model systematization misses non-deterministic
planning, which could serve as a trade-off in between the
classical and MDP models. Interesting questions also arise
regarding the relationship between different model sub-
classes. For example, are there feasible ways of making the
MDP approximation of the POMDP model more accurate?
One could maintain partial configuration information, like
deleting a flag in case an exploit relying on a particular con-
figuration property fails, thereby excluding other exploits
relying on the same property. Can we design this kind of
method in a way giving a guarantee – optimism, pessimism,
or an error bound – on the success probability relative to the
POMDP after the same action outcome sequence?

Given its purpose of guiding human security officers, sim-
ulated pentesting comes with a variety of challenges beyond
finding single attack plans. As reflected widely in the at-
tack graph literature, we should provide a collection of at-
tack plans, and these should be diverse so as to cover a range
of potentially dangerous intrusions. Plan diversity has been
considered, but has not received extensive attention, and the
specifics of the pentesting application constitute new chal-
lenges and opportunities. There are possible connections
to software testing, as system/vulnerabilities coverage may
be a suitable meta-criterion for the pentesting process as a
whole. What security officers ultimately want is a situa-
tion report, overviewing the most relevant past and current
threats, along with the past and possible counter-measures.

In summary, simulated penetration testing challenges AI
sequential decision making at all levels, from classical plan-
ning, via Canadian Traveller problems and MDPs, to fac-
tored POMDPs. The challenge regards both algorithms and
models, the former especially concerning the exploitation of
special-case problem structure, the latter especially concern-
ing the identification of formalism sub-classes, as well as
the design of practical and accurate probability distributions.
A challenge not even touched in the present paper yet are
socio-technical attacks, including things like reconnaissance
in social networks, whose simulation poses formidable chal-
lenges even when disregarding the unrealistic (and ethically
questionable) prospect of releasing Turing Test chatbots into
Facebook. At large, the author believes that simulated pen-
testing has the potential to become a major application and
research challenge for AI sequential decision making.
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