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Abstract

We investigate the use of a simple, discriminative
reranking approach to plan recognition in an abduc-
tive setting. In contrast to recent work, which attempts
to model abductive plan recognition using various for-
malisms that integrate logic and graphical models (such
as Markov Logic Networks or Bayesian Logic Pro-
grams), we instead advocate a simpler, more flexible
approach in which plans found through an abductive
beam-search are discriminatively scored based on ar-
bitrary features. We show that this approach performs
well even with relatively few positive training examples,
and we obtain state-of-the-art results on two abductive
plan recognition datasets, outperforming more compli-
cated systems.

Introduction

Logical abduction has long been recognized as an attrac-
tive approach to plan recognition, since it provides a for-
mal means of allowing an agent to make assumptions about
its observations in an effort to explain them. Consequently,
many earlier plan recognition systems were primarily ab-
ductive (for example that of Ng and Mooney (1992)). While
the abductive approach is very powerful, one of its draw-
backs is that the ability to make assumptions results in there
being many valid abductive proofs for any set of observa-
tions, and no clear method for distinguishing the good from
the bad. Early abductive systems dealt with this issue either
by formulating various heuristics for choosing among candi-
date proofs (Ng and Mooney 1992), or by manually defining
costs and weights on atoms and axioms, and attempting to
find a least-cost proof (Hobbs et al. 1993). Another problem
with the classical formulation is that it does not easily han-
dle uncertainty in the axioms or plan-recipes. Recently, there
have been a number of proposals to deal with these issues
(primarily in the plan recognition domain) by adapting for-
malisms that integrate logic and probability, such as Markov
Logic Networks, to be abductive (Singla and Mooney 2011;
Raghavan and Mooney 2011). In addition to naturally han-
dling uncertainty, these approaches provide a principled way
of selecting one abductive explanation from others, since we
can, for instance, select the most probable explanation. In
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what follows, we argue that there is a simpler, discrimina-
tive approach to addressing these two issues, and we show
that this approach outperforms these more complicated sys-
tems on two datasets commonly used to evaluate abductive
systems.

Review of Abduction for Plan Recognition

Formally, given a knowledge base of first-order formulae 7',
and a conjunction of (existentially quantified) observations
O, an abductive proof is a set of atomic assumptions A that
is consistent with 7T, and that together with 7" implies O (Ng
and Mooney 1992). In plan recognition, the A we seek gen-
erally includes the instantiation of one or more logical predi-
cates that correspond to high-level actions. To take an exam-
ple from the dataset of Ng and Mooney (described below), if
we observe, as in Figure 1, actions O corresponding to Bill
going to the liquor store and pointing a gun at the owner, we
seek a set of atomic assumptions A to adequately explain O
(given the background knowledge in 7). A might include,
for instance, that Bill is engaging in the high-level action of
robbing, and that he goes to the liquor store for this purpose.
Examples of the sort of background knowledge (contained
in T') that we might appeal to also appear in Figure 1.
Abduction can also be used for the recognition of plans
not explicitly defined in first-order logic. For instance, if we
have a Hierarchical Task Network (HTN) (Erol, Hendler,
and Nau 1994) with a high-level robbery task that is re-
fined by an armed-robbery method, then for the purposes of
abductive plan recognition we can view the decomposition
of armed-robbery into its first subtask, which might involve
going to the place to be robbed, as being specified by the
horn-clause axiom V, , armed-rob(z,y) — go(x,y), and
so on for the other subtasks and their decompositions. Thus,
abduction in the HTN framework amounts to “proving” the
observed primitive actions in terms of higher-level tasks, us-
ing the axioms as just described, and subject to precondi-
tion satisfaction. (Indeed, the preconditions can be viewed
as a tractable approximation of the consistency-checking
technically required for abduction.) Because a proof of this
form implies a particular plan, there is a natural correspon-
dence between logical atoms and instantiated actions, and
we will often speak of a “proof” and a “plan” interchange-
ably. Throughout, we will think of plans and proofs as di-
rected acyclic graphs (DAGs), where there is a directed



‘ rob_place(r,liquor-store)

robbing(r) —_— ‘ go(r,bill,liquor-store) ‘

robber(r,bill) =/ point(r,bill,gun1)

rob_gun(r,gunl

Axioms

robbing(r) A robber(r, 2) A rob_place(r,y) — go(r, x,y)
robbing(r) A robber(r, x) A rob_gun(r, z) — point(r, z, z)

Figure 1: A simplified robbery plan DAG and the (implic-
itly universally quantified) axioms it uses; observations are
white and assumptions grey

edge between instantiated antecedent and instantiated con-
sequent. We show a very simplified such DAG representing
a (non-HTN) first-order logic representation of the robbery
plan mentioned above in Figure 1, along with the axioms
(which are implicitly universally quantified) used in its com-
position. There, white-shaded atoms are observed, and grey-
shaded atoms are assumed. Together, the grey-shaded atoms
constitute an abductive proof of the observed, white atoms.

In Figure 1, every observed atom is explained (i.e., not
assumed). In general, however, observations may also be as-
sumed, and non-observations may also be explained; that is,
there may be internal, non-observed nodes in the DAG that
are explained by other assumed nodes.

A Discriminative Approach

Whereas statistical relational formalisms such as Markov
Logic Networks and Bayesian Logic Programs are useful for
specifying distributions over random variables that are de-
scribed by first-order relationships (Richardson and Domin-
gos 2006; Kersting and De Raedt 2001), we argue that this
is unnecessary for doing effective plan recognition. Rather,
we hypothesize that (structural) features of the plan or proof
itself (and perhaps features of the knowledge base too) are
sufficient to discriminate better plans from worse. To con-
tinue our robbery example, whereas a statistical relational
approach might, given observations about Bill pointing a
gun, predict that the high-level goal is robbing because the
marginal probability of this event is high given the observa-
tions, we suggest that it may instead be sufficient to merely
score the plan DAG itself for plausibility. That is, perhaps
we can learn to discriminate between plan DAGs by merely
looking at their properties, such as how connected certain
observations are in the DAG (a feature highlighted by Ng
and Mooney (1992) and elaborated on below), or whether
a pair of subgoals (like pointing a weapon and taking cash)
appear together in the DAG. Such an approach allows us to
avoid modeling unnecessary parts of the (potentially com-
plicated) domain in question, and to focus our modeling on
the discriminative task we care about. Moreover, if our fea-
tures are sensitive to the axioms used in obtaining a partic-
ular proof, we can additionally learn that certain axioms are
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more reliable than others, thus handling uncertainty in the
domain as well.

Review of Reranking

Reranking is a technique popular in natural-language pro-
cessing, which typically involves training a discriminative
model to select from among the top K structured predic-
tions made by a generative model. For instance, if we have
a probabilistic parser that can produce the K most probable
parse trees for a given sentence, we can train a discriminative
model to select the best parse from among these candidates,
and use this as our final prediction. This technique is useful
because we typically require some local, factorized model
to generate predictions in a structured space, but reranking
allows our final predictions to also depend on global fea-
tures of the predicted structures (Collins and Koo 2005). We
can apply this idea to abductive plan recognition by employ-
ing a (heuristic) beam-search through the proof space as our
“generative model” for abductive proofs, and then training
a reranker to discriminatively score the returned candidate
proofs. This approach can be quite effective if our search
is able to reliably generate a (not-too-large) superset of the
correct proof(s) for a given recognition problem. (We return
to this issue below.)

Reranking Model

To train a reranker, it is necessary to specify a loss function
to be minimized over the training set. One popular approach
is MaxEnt reranking (Charniak and Johnson 2005), which
models the conditional probability of a particular candidate
being the best candidate with a MaxEnt (i.e., multinomial
logistic regression) model. More formally, given a set ) of
candidate proofs/plans for a set of observations O, we can
model the conditional probability that y€) is the best proof

.
in the set as p(y | V) = Ey,i);péxwp(ﬁ%)(y/))’
omitted the conditioning on the observations O for brevity.
Above, ¢ maps proof/plan DAGs (such as that depicted in
Figure 1) into feature space (i.e., to R?, where d is the num-
ber of features), and w is a (learned) weight vector. The fea-
tures extracted by ¢ are elaborated on below.

Given training data D = (yM) YD) (y(N) P
consisting of N correct plans paired with a set of candidate
plans generated by our search algorithm (which we assume
to contain the correct plan) for a particular set of observa-
tions O, we can then train w so as to minimize the negative
log-likelihood:

where we have

N
—Inp(D|w) ==Y [wio@EV)-In Y exp(w o))
i=1 y'ey@®
Q)]
The gradient for Equation (1) takes a familiar form (see Rie-
zler et al. (2002) for the derivations), and this convex func-
tion can be minimized using an off-the-shelf minimizer.
Because there is no guarantee that all the sets of plans
Y@ are of the same size, we see that minimizing Equation
(1) will cause our learned w to be biased in favor of mini-
mizing the scores of the incorrect proofs/plans in the biggest
sets. This is particularly problematic when using a search



procedure to generate our candidate plans, since owing to
constraints (such as preconditions) in the domain, certain
observations may generate many more candidate plans than
others. To avoid this bias, we modify Equation (1) to instead
be a weighted sum over training examples. In particular, we
max; <<y [P

weight each example by ~(*) = Y| , giving the
modified objective

N . .

ST | Wy +in S exp(wTey)) | +AwTw,

i=1 y ey(@®

@3]
where we have also added on an /5 regularization term to
prevent overfitting. Since the v(*) are all positive, Formula
(2) is a positive weighted sum of convex functions, and so is
still convex.

Assuming we have access to a training set consisting of
lists of observations paired with the full plan that generated
them, the procedure for training is, for each list of obser-
vations, to use a beam-search to generate a set of candidate
plans assumed to include the correct plan, and then to train
the reranker over these sets using Formula (2). For predic-
tion, a set of candidate plans is generated by the same search
for a new list of observations, and we predict the candidate
plan scored most highly by the trained reranker.

One nice thing about this set-up is that it effectively makes
use of negative training examples, which are cheap to gen-
erate. That is, we can generally create many negative train-
ing examples in our search by simply expanding our beam-
width. While having too many negative training examples
can cause classifiers to classify almost everything negatively,
we do not have this problem in our case because we will al-
ways be selecting the plan scored most highly from the can-
didate set.

Experimental Evaluation

We evaluate our approach on two datasets commonly used
to evaluate abductive plan recognition systems, to facilitate
comparison with other systems.

Datasets

The first dataset we consider is that originally used by Ng
and Mooney to evaluate their ACCEL plan recognition sys-
tem. This dataset contains logical representations of “sto-
ries” involving agents and their actions, and the high-level
plans (such as robbing) that give rise to these actions must be
predicted. Our robbery example above is a simplified adap-
tation of one rather short such story. The dataset includes a
background knowledge base of approximately 180 axioms
(some of which are recursive), a 25-plan training set, and a
25-plan test set (Ng and Mooney 1992).

The second dataset we consider is the Monroe corpus.
This corpus consists of 5000 hierarchical plans relating to
emergency response artificially generated by a modified
HTN planner. Unlike the plans in the previous dataset, which
can be arbitrary DAGs, these HTN-type plans are all trees.
The plans in the corpus involve 10 top-level goal schemas
and 38 sub-goal schemas, with an average of 9.5 action-
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observations per plan and an average subgoal-depth of 3.8
per plan (Blaylock and Allen 2005).

Features

We use the same features for both datasets. These features
attempt to capture various structural features of predicted
plans, as follows:

e Action/Predicate Counts: we count the occurrences of
each action/predicate appearing, respectively, in the ob-
served, assumed, and explained sets of atoms appearing
in the DAG, as well as the total atoms in each set. For
example, for the DAG in Figure 1, the feature ‘observed-
go’ would have value 1, as would the feature ‘assumed-
robber’; the total counts for the observed and assumed
sets are 2 and 4, respectively. (Note that in the Monroe
domain the top-level goal will be the only atom ever as-
sumed, since the plans are trees.)

¢ Simplicity and Coherence Features: these features are
motivated by the “simplicity” and “coherence” metrics
that are observed by Ng and Mooney to be useful in plan
recognition (1992). The former counts the number of ex-
plained atoms minus the number of assumed atoms, and
the latter is the proportion of pairs of observed atoms that
share a common parent atom in the induced DAG. In Fig-
ure 1, these values are -2 and 1/1, respectively, since there
is only one pair of observed atoms, and they share the
‘robbing’ node as a parent. In addition, we use an unnor-
malized version of the coherence score, and the ratio of
the numbers of explained and assumed atoms.

e Generalized Coherence Features: we count the num-
ber of observation pairs (by action/predicate) that share
a common parent, the number of internal atom pairs (by
action/predicate) that share a common parent, and the
number of internal atom pairs (by action/predicate) that
merely co-occur in a plan. In Figure 1, then, the value of
the feature ‘observed-share_parent-go-point” would be 1,
and similarly for any internal nodes that co-occur or that
share a parent.

e Graph Features: we additionally have features for the

number of edges and nodes in the induced proof/plan
DAG.

ACCEL Experiments While the ACCEL system origi-
nally developed for the story understanding data scores it-
self on the precision and recall of the atoms it assumes in
proving the observed actions, Raghavan recasts the problem
in terms of pure plan recognition by defining high-level ac-
tions in terms of the plan-related atoms, and scoring her sys-
tem in terms of its precision and recall on these high-level
plans (Raghavan 2012). Because the other machine-learning
based approaches to abductive plan recognition we consider
also adopt this evaluation framework, we will adopt it too to
facilitate comparison.

As a first experiment, we use reranking in a fairly tradi-
tional way, namely, we learn to rerank the top- K candidates
produced by a black-box plan recognizer. In particular, we
use the original ACCEL system, which uses a beam search
to search through the proof space, and which selects the set



of assumptions that score most highly according to the “co-
herence” metric mentioned above (Ng and Mooney 1992).
Clearly, under this scheme our prediction for a given test-
example cannot be any better than the best candidate plan
among the candidates selected by ACCEL. However, if AC-
CEL fails to predict the best plan of the candidates it has
generated, we may be able to learn to select the best can-
didate more reliably. To generate training data, we set AC-
CEL’s beam-widths so that it would output a large number
of candidate proofs (typically around 90) for each exam-
ple. We supplemented these candidates with additional neg-
ative examples we generated by searching through the proof
space, so that each training example had approximately 150
candidate proofs. We then trained our reranker on this sup-
plemented training corpus. To test, we took the candidates
produced by ACCEL under its normal settings (typically
around 10 per test example), and selected the highest scorer
using our learned reranker. We compare these results with
those achieved by ACCEL when it selects the best proof
itself. In Table 1 we show the result of these experiments,
where precision and recall are macro-averaged over the 25
test examples. We also compare with Raghavan and Mooney
(2011) and Singla and Mooney (2011) (‘R&M’ and ‘S&M’
respectively). We see that reranking improves ACCEL'’s re-
sults slightly, as we had hoped.

Precision Recall F-Score
ACCEL + Rerank 91.43 90.19 90.81
ACCEL 89.39 89.39 89.39
Beam + Rerank 87.94 85.10 86.50
R&M 72.07 85.57 78.24
S&M (Best) 69.13 78.94 73.73

Table 1: Story Understanding results

While this is an encouraging result, it is presumably much
easier to rerank the (limited) output of a system that already
does quite well on the recognition task than to rerank a much
noisier and larger set of predictions. Moreover, it is not real-
istic to assume we would have access to as effective a search
procedure as that provided by ACCEL on an arbitrary plan-
recognition task. We therefore experiment with reranking
the results of a much less targeted beam search. We found
that the union of the results of 3 beam-searches, each using
one of the following simple heuristics, was sufficient to re-
cover candidate sets containing the correct plan for all plans
in the training set when using a beam-width of size 50 and
25 breadth-first expansions: (1) prefer plans that leave the
fewest number of unexplained observations; (2) in addition
prefer plans where no observation is explained by another
observation and where no observation is explained merely
by a renaming; (3) in addition prefer plans that use fewer re-
cursive axioms. This resulted in an average of approximately
2195 candidate plans per training example, and we trained
the reranker over these. The results of prediction on the test
plans (using candidates generated by the same search pro-
cedure, which generated approximately 2137 candidates per
text example on average) are also in Table 1 (as “Beam +
Rerank”). While the results of this scheme are slightly below
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those of the ACCEL system, we see that they outperform
the other machine-learning based approaches on all metrics,
with the exception of the system of Raghavan and Mooney
on recall. In addition, while it can be difficult to train these
latter systems on the mere 25 training examples, thus re-
quiring manual tuning of certain parameters (Raghavan and
Mooney 2011), we are able to effectively train using cheaply
generated negative examples.

Monroe Experiments Whereas the abductive plan recog-
nition systems of Raghavan and Mooney (2011) and Singla
and Mooney (2011) evaluate themselves on predicting the
top-level goals of plans in the Monroe corpus, we addition-
ally focus on predicting the subgoals. We tackle this more
difficult task because given the relatively small number of
top-level goals and their preconditions (which abductive sys-
tems presumably have access to), observed actions are fre-
quently unambiguous with respect to the top-level goal. Sub-
goals, however, are both more ambiguous and often gener-
ated recursively, and so predicting the goal hierarchy can be
challenging. We therefore follow the later work of Blaylock
and Allen (2006) in attempting to predict this hierarchy level
by level, with top-level goal prediction equivalent to predict-
ing the 0’th level of the hierarchy.

Following Blayock and Allen (2006), we randomly se-
lected 500 plans from the corpus for testing, and we re-
port the “convergence” percentage for subgoal prediction
at different levels of the hierarchy. (We also follow Blay-
lock and Allen in only reporting convergence results for sub-
goals that correspond to at least two observed actions.) This
convergence percentage refers to the percentage of subgoal
schemas correctly identified at different levels of the subgoal
hierarchies across the plans in the test set.

For these experiments, we used 2500 randomly selected
plans for training, and the rest as development data. To
search, for each top level goal we ran a depth-first beam
search from the observations, and pruned candidate plans
that could not be explained in terms of this goal, finally tak-
ing the union of the results. This yielded an average of ap-
proximately 434 candidate proofs per training example. In
Table 2 we compare our 0’th level results with those of the
other abductive systems considered above, and our results at
all levels with those of Blaylock and Allen, who use a Cas-
cading HMM approach to subgoal prediction (Blaylock and
Allen 2006). Table 2 also shows (under the ‘# column) for
each level how many plans in the test-set contain sub-goals
corresponding to at least two observations. We see that our
approach performs best on all levels except the 0’th.

Level # B&A Beam + Rerank R&M S&M
0 500 100 99.2 98.8 97.3
1 479 71.8 94.6 - -
2 244 458 81.1 - -
3 144 412 84.0 - -
4 72 61.8 88.9 - -
5 52 6.2 96.1 - -
6 3 0 100 - -

Table 2: Convergence percentage for different subgoal levels



Discussion and Future Work

The fact that the simple discriminative approach described
above seems to lead to dramatically improved performance
on a variety of plan recognition tasks should not be partic-
ularly surprising; it seems quite reasonable that structural
features of plans and proofs would be useful in determining
their plausibility. Indeed, similar intuitions about structural
properties are exploited in the coherence and simplicity met-
rics of the ACCEL system and other such systems (Ng and
Mooney 1992), and this presumably explains why ACCEL
manages to outperform much more modern systems, which
essentially ignore this information.

One drawback of the approach presented above is that it
relies on the existence of a search procedure that can reliably
produce a (not too big) superset of the correct plan/proof.
While this may be easy to engineer in some domains, there
are likely to be some domains where it is not. This issue is
ameliorated somewhat, however, by the fact that there are a
variety of approaches for learning search heuristics in struc-
tured spaces (Daumé III and Marcu 2005). The output of
such a search could then be reranked as above. We leave ex-
periments along these lines to future work.

It is also interesting to note here that there is intuitively
a tradeoff involved in picking a beam width, since a larger
beam will give the reranker more negative examples to learn
from, but it will also require the reranker to select from more
candidates at prediction time. We are unaware of any theo-
retical results characterizing this tradeoff precisely, but the
results in Table 1 suggest that performance is hurt somewhat
when moving from hundreds of candidate proofs to thou-
sands. We leave further investigation of this to future work.
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