
Under-Approximation Refinement for Classical Planning

Manuel Heusner and Martin Wehrle and Florian Pommerening and Malte Helmert
University of Basel, Switzerland

{manuel.heusner,martin.wehrle,florian.pommerening,malte.helmert}@unibas.ch

Abstract

A general and important problem of search-based planning
techniques is the state explosion problem, which is usually
tackled with approaches to reduce the branching factor of the
planning task. Such approaches often implicitly exploit the
observation that the number of available operators is higher
than the number of operators that are actually needed to find
a plan. In this paper, we propose a simple, but general under-
approximation refinement framework for satisficing planning
that explicitly exploits this observation. Our approach iter-
atively searches for plans with operator subsets, which are
refined if necessary by adding operators that appear to be
needed. Our evaluation shows that even a straight-forward
instantiation of this framework yields a competitive planner
that often finds plans with small operator sets.

1 Introduction
Planning as heuristic search (Bonet and Geffner 2001) is a
leading approach for domain-independent satisficing plan-
ning. A major obstacle of heuristic search based planners is
the state explosion problem, i. e., the problem that the state
space generally grows exponentially in the size of the plan-
ning task. To tackle this problem, various approaches have
been proposed. For example, helpful actions (Hoffmann and
Nebel 2001) and preferred operators (Richter and Helmert
2009) preferably apply operators that appear to be useful in
the current search state. This idea has been generalized to
macro operators in the YAHSP planner (Vidal 2004). All
these approaches implicitly exploit the observation that the
number of operators that are available in the planning task is
higher than the number of operators that are actually needed
to find a plan. We argue that, although obvious and intu-
itive, this observation deserves even more attention than it
has achieved so far, as the number of available operators
is often significantly higher than needed even in the initial
state. Table 1 shows some examples for this claim in some
common planning tasks. We observe that the number of op-
erators that are needed to find a plan is sometimes (signif-
icantly) less than 1% of the available operators. Averaging
over 1574 previous IPC instances solved by a greedy search
with the FF heuristic (Hoffmann and Nebel 2001), 4.3% of
the available operators are already sufficient to find a plan.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Task # available # needed
barman-sat11-p10-039 2344 72
logistics98-prob35 676 30
mystery-prob10 36738 8
nomystery-sat11-p14 4184 30
scanalyzer-sat11-strips-p18 373140 19
Geometric mean (1574 instances) 4.3%

Table 1: Number of available vs. number of needed oper-
ators (number of needed operators estimated with greedy
best-first search and the FF heuristic)

In this paper, we propose a simple, yet powerful re-
finement framework to directly exploit this observation.
Our approach iteratively searches for plans in an under-
approximation of the original planning task, which is ob-
tained by explicitly reducing the set of operators that may be
applied. The operator subset is refined on-the-fly by adding
some of the missing operators that appear to be needed. Our
approach is parameterized with a refinement strategy that de-
termines at which time which operators should be added.
If at least one operator is added after finitely many steps,
the resulting planning algorithm remains complete. From
a high-level perspective, the overall framework is a variant
of counter-example guided abstraction refinement (CEGAR)
(Clarke et al. 2000). As a crucial difference to CEGAR, our
under-approximation approach guarantees that no spurious
plans (i. e., plans that do not correspond to valid concrete
plans) are found. Our evaluation shows that even a straight-
forward instantiation of this framework yields a competitive
planner, which often finds plans with small operator subsets.
In addition, our framework offers the potential to be instan-
tiated in more powerful ways.

2 Preliminaries
We consider SAS+ planning, where states of the world are
defined with a set V of finite domain variables with a finite
domain Dom(v) for all v ∈ V . A partial state is defined
as a function s that maps a subset of variables to values of
their domain. This subset where s is defined is denoted with
vars(s). For v ∈ vars(s), the value of v in s is denoted with
s[v] (for v /∈ vars(s), s[v] is undefined). A state is defined
as a partial state s with vars(s) = V .

365

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



Definition 1 (Planning task). A planning task is a 4-tuple
Π = (V,O, s0, s?), where V is a finite set of finite-domain
variables, O is a finite set of operators, s0 is a state called
the initial state, and s? is a partial state called the goal.

Operators o ∈ O have an associated partial state pre(o)
(the precondition), and an associated partial state eff (o) (the
effect). Furthermore, o has an associated nonnegative num-
ber cost(o) ∈ R+

0 called its cost. An operator is applicable
in a state s if s[v] = pre(o)[v] for all v ∈ vars(pre(o)).
In this case, applying o in s yields the successor state o(s),
which is obtained from s by setting the values of all variables
according to eff (o), and retaining the other variables values.
A plan π is defined as a sequence of operators o1 . . . on with
the property that π is applicable in sequence starting in s0,
and leads to a state that satisfies s?. The cost of π is defined
as the sum of the costs of each operator in π.

We assume the reader is familiar with heuristic search al-
gorithms and their terminology, particularly with the notion
of open and closed lists (Pearl 1984). We define a state s as
fully expanded iff all operators fromO that are applicable in
s have been applied, and the corresponding successor states
have been inserted to the open list.

3 Under-Approximation Refinement
The main idea of under-approximation refinement is rather
simple and can be formulated in a compact way. It is di-
rectly motivated by the fact that planning tasks often need
significantly fewer operators than available to find a plan.
On a high level, our approach attempts to find a plan with
a (small) operator subset, and refines this subset by adding
operators if necessary. In more detail, for a planning task
Π = (V,O, s0, s?), our approach is based on the following
under-approximation refinement (uar ) algorithm. Let A be
a best-first search planning algorithm.

• Select an initial subset O0 ⊆ O of operators. Run the
planning algorithmA on Π0 := (V,O0, s0, s?) and repeat
the following steps for i = 0, 1, 2, . . . :

– If a plan π is found in Πi, then return π.
– If the refinement guard triggers, then refine Πi with an

operator set Oi+1 such that Oi ⊂ Oi+1 ⊆ O.
– Re-open all closed states where at least one operator

in Oi+1 \ Oi is applicable. Continue the search with
Πi+1 = (V,Oi+1, s0, s?).

The overall algorithm has the flavor of counter-example
guided abstraction refinement (CEGAR), which is a well-
known approach in model checking (Clarke et al. 2000), and
has recently also been applied in planning for generating ab-
straction heuristics (Seipp and Helmert 2013). Complemen-
tary to CEGAR, our refinement algorithm works on under-
approximations of the original planning task Π, which allow
for less behavior than Π without introducing additional be-
havior. As an immediate consequence, it is ensured that all
found plans are guaranteed to be valid for Π, which is a cru-
cial difference to CEGAR (where over-approximations are
applied that might lead to spurious error traces and plans.)

Our uar algorithm is parametrized in several ways. In
particular, there is the question which planning algorithm

and initial operator subset to choose, when to refine (i. e.,
under which conditions the refinement guards triggers) and
how to refine (i. e., which operators should be added to the
working subset of operators). In practice, one can think of
various instantiations to resolve the design choices discussed
above. As a case study, we will describe a straight-forward
instantiation based on relaxed plans. More sophisticated
ways are discussed at the end of the paper.

3.1 An Instantiation Based on Relaxed Plans
We apply the following instantiation of the uar algorithm
based on relaxed plans identified with the FF heuristic
(called uar rp in the following). Let Π = (V,O, s0, s?) be a
planning task.
• Planning algorithm: Greedy best-first search, where

the heuristic for the search in the intermediate under-
approximations is evaluated with respect to Π (to guide
the search towards a goal in the original planning task).

• Initial operator subset: The initial operator subset O0 is
defined as the set of operators that occurs in a relaxed plan
starting in s0.
• Refinement guard: The operator subset is refined in case

the open list gets empty, or possibly refined (see the next
bullet) in case the search encounters a plateau or local
minimum (i. e., the currently explored state has no suc-
cessor state with better heuristic value).

• Refinement: The overall refinement step for operator sub-
sets is a 4-stage process:

1. First, select the states s1, . . . , sn in the closed list with
lowest heuristic value l. Let π#

1 , · · · , π#
n be relaxed

plans that start in s1, . . . , sn, respectively. If O′ :=

Oi∪{o | ∃j : o occurs in π#
j } ⊃ Oi, thenOi+1 := O′,

i. e., O′ is defined as the refined subset.
2. Otherwise, step 1 is repeated with states with heuristic

values l + 1, l + 2, . . . , until a refined operator subset
is found, or the closed list is scanned completely.

3. If no refined operator subset is found in step 2, and if
the open list is not empty, then the search algorithm
continuous its search in Πi without refinement.

4. If in step 3 the open list is empty, then steps 1 and 2 are
repeated, with the difference that applicable operators
(instead of operators from relaxed plans) are chosen.

Proposition 1. The relaxed plan based instantiation of the
uar algorithm is completeness preserving.

Proof. (sketch) If the uar algorithm terminates without
finding a plan, then the open list is empty, and there are no
states left in closed that are not yet fully expanded. Hence,
all states reachable by the underlying greedy best-first search
algorithm are fully expanded, and the operators from O are
not sufficient to find a plan in the original planning task.

4 Evaluation
In this section, we evaluate the relaxed plan based instantia-
tion uar rp of the uar algorithm within the greedy best first
search framework provided by the Fast Downward planning
system (Helmert 2006).

366



4.1 Experimental Setup
We evaluate our approach for the hFF heuristic (Hoffmann
and Nebel 2001), both with and without the preferred oper-
ators enhancement. We additionally compare to the looka-
head strategy (including the plan repair technique) proposed
by the YAHSP2 planning system (Vidal 2011). Compared
to the previously proposed version of YAHSP2, we re-
implemented its lookahead strategy in Fast Downward with
the (presumably more powerful) FF heuristic instead of the
additive heuristic. The experiments have been performed on
Intel Xeon E5-2660 CPUs (2.2 GHz) with a timeout of 30
minutes and a memory bound of 2 GB. As a benchmark set,
we use the 2252 planning tasks of the 58 domains from pre-
vious IPC’s in the satisficing track. For the uar rp results, we
additionally report the relative size of the operator subset in
the last under-approximation, i. e., the geometric mean over
the fraction of the available operators that has been used by
the uar rp algorithm to find a plan.

4.2 Experimental Results
The overall coverage results are provided in Table 2. We
report the results for those domains where the coverage
of the considered configurations is not equal. As a base-
line, we applied the uar rp algorithm with greedy best first
search (GBFS) as the underlying algorithm together with
hFF . The baseline results (second and third column in Ta-
ble 2) show the basic potential of under-approximation re-
finement in several aspects. Considering the size of the final
operator subsets needed to find a plan (reported in parenthe-
sis), we observe that the uar rp algorithm on average only
needs less than 12% of the available operators, which is al-
ready rather close to the 4.3% reported in Table 1. While
there are some outliers (like PSR) with more than 50%, there
are various domains where less than 5% of the operators are
encountered. The reduced branching factor of the result-
ing under-approximations with uar rp results in an overall
coverage increase of 180 instances. In particular, more in-
stances could be solved in 25 domains. On the other hand,
uar rp generally causes a computational overhead, and (in
case the “wrong” operators are excluded from the work-
ing set) might spend too much time on searching in under-
approximations. Hence, we obtain a coverage decrease in
7 domains. In particular, this happens in the Woodwork-
ing domains, where crucial operators are missing in several
under-approximations, and this problem is not recognized
by the relaxed plans applied in the refinement steps. To
tackle this problem, more sophisticated refinement strategies
are desired – we discuss a promising direction to achieve
this in Section 5. On the positive side, coverage increases
significantly in several domains such as the Barman and the
Optical-Telegraphs domains.

The fourth and fifth column in Table 2 show the coverage
overview of GBFS with hFF applied with preferred opera-
tors in comparison to our under-approximation refinement
framework. There are two main observations: First, the
overall coverage increase obtained with the uar rp algorithm
is smaller than with pure GBFS, but still there is a slight im-
provement of 21 instances. Apart from this, we observe that

the overall picture is similar to the pure GBFS setting in the
sense that a coverage increase is still obtained in many do-
mains, and the overall number of operators needed to find a
plan is still low.

Finally, as our current instantiation of the uar algo-
rithm resembles the lookaheads (LA) performed by the
YAHSP planner, we re-implemented the lookahead strategy
of YAHSP2 including the plan repair strategy in Fast Down-
ward. The results when combining the LA approach with
the uar rp algorithm are shown in last two columns in Ta-
ble 2. First, we observe that the lookahead planner with the
hFF heuristic yields a strong satisficing planner, which al-
ready solves 1942 out of 2252 problem instances. The over-
all coverage of the combined approach with uar rp slightly
decreases to 1935. Again, a significant role is played by the
Woodworking domain, where uar rp loses a large number of
solved instances. Generally, we observe that the results are
rather diverse: There are various domains where LA search
with uar rp solves more instances than LA search without
uar rp , and vice versa. We remark that this (empirical) di-
versity can also be established on a conceptual level in the
sense that lookaheads and the uar rp algorithm are not com-
parable in terms of dominance. In particular, there are plan-
ning instances Π where lookaheads do not succeed due to
the structure of Π, but the uar rp algorithm does.1 Finally,
we observe that the geometric mean of the overall number
of operators needed to find a plan with LA and the uar rp

algorithm is around 6.2%, which is already very close to the
4.3% from Table 1.

Figure 1 shows the coverage as a function of time for all
considered settings. Adding uar rp to GBFS with hFF re-
sults in a considerably higher coverage in the first second.
After one minute, this setting already exceeds the coverage
of hFF with a 30-minute timeout. When using preferred
operators, the coverage is better with uar rp over the whole
30 minutes, but we see a mixed result when adding uar rp

to YAHSP2 lookaheads. The coverage is higher with uar rp

in the first 10 seconds and slightly worse after around 100
seconds.

Considering the plan quality, the average costs of the dis-
covered plans with and without under-approximations are
similar in all three configurations. In more detail, the ge-
ometric mean of the discovered plans’ quality is slightly
worse with uar rp for GBFS with hFF (factor 1.02) and for
GBFS with hFF and preferred operators (factor 1.01), and
equal when applied with the lookahead framework.

5 Conclusions
We have presented an initial under-approximation refine-
ment approach for classical planning, which directly ex-
ploits that the number of available operators is often signif-
icantly higher than needed to find a plan. The framework
is general and can be instantiated in many different ways,
which particularly offers the possibility for more advanced

1In a nutshell, this can happen in planning domains where the
set of operators in a relaxed plan is sufficient to find a concrete
plan, but in order to find this plan, the operators have to be applied
multiple times.

367



Domain
hFF hFF + preferred operators hFF + YAHSP2 lookaheads

uar rp uar rp uar rp

airport (50) 34 34 (20.25%) 36 35 (20.22%) 28 27 (19.48%)
barman-sat11-strips (20) 2 20 (15.58%) 7 16 (21.5%) 20 20 (1.89%)
blocks (35) 35 35 (20.98%) 35 35 (20.92%) 28 35 (20.74%)
depot (22) 15 14 (9.49%) 18 13 (8.61%) 15 12 (5.49%)
driverlog (20) 18 19 (14.63%) 20 19 (14.98%) 16 15 (11.54%)
elevators-sat08-strips (30) 11 12 (18.32%) 11 13 (18.74%) 12 12 (10.72%)
floortile-sat11-strips (20) 7 7 (66.55%) 7 8 (67.77%) 9 8 (68.68%)
freecell (80) 79 78 (1.65%) 80 78 (1.67%) 78 79 (0.67%)
grid (5) 4 5 (1.62%) 4 5 (1.62%) 5 5 (1.26%)
logistics98 (35) 30 34 (2.67%) 34 34 (2.65%) 30 33 (1.57%)
miconic-fulladl (150) 136 136 (29.39%) 137 137 (29.43%) 120 120 (22.39%)
mprime (35) 31 34 (0.19%) 35 34 (0.2%) 35 35 (0.09%)
mystery (30) 17 18 (0.77%) 17 19 (0.91%) 19 19 (0.56%)
nomystery-sat11-strips (20) 10 15 (9.64%) 13 14 (8.05%) 16 20 (14.94%)
openstacks-sat08-adl (30) 6 6 (76.88%) 6 6 (56.35%) 30 30 (4.99%)
openstacks-sat08-strips (30) 6 6 (74.5%) 6 6 (44.22%) 30 30 (4.99%)
openstacks-sat11-strips (20) 0 0 0 0 20 20 (1.28%)
optical-telegraphs (48) 4 35 (12.65%) 4 38 (12.65%) 48 48 (4.2%)
parcprinter-08-strips (30) 21 23 (33.87%) 20 23 (33.87%) 19 25 (28.84%)
parcprinter-sat11-strips (20) 5 7 (33.22%) 3 7 (33.4%) 5 8 (29.38%)
parking-sat11-strips (20) 20 20 (4.21%) 19 19 (3.43%) 16 18 (3.68%)
pathways (30) 10 13 (21.03%) 22 24 (22.45%) 30 30 (9.01%)
pathways-noneg (30) 11 14 (21.02%) 22 24 (22.01%) 30 30 (8.98%)
pegsol-08-strips (30) 30 30 (51.02%) 30 30 (51.39%) 26 26 (70.66%)
pegsol-sat11-strips (20) 20 20 (73.22%) 20 20 (70.93%) 16 16 (97.04%)
philosophers (48) 48 40 (55.47%) 48 40 (55.47%) 48 48 (17.65%)
pipesworld-notankage (50) 33 41 (7.51%) 42 44 (7.34%) 43 42 (4.39%)
pipesworld-tankage (50) 21 34 (4.24%) 34 35 (3.66%) 41 43 (0.91%)
psr-large (50) 13 13 (64.03%) 13 14 (66.68%) 18 16 (71.53%)
psr-middle (50) 38 39 (66.72%) 38 39 (70.16%) 43 42 (72.1%)
rovers (40) 23 32 (8.23%) 39 39 (7.21%) 40 40 (2.93%)
satellite (36) 27 34 (6.04%) 28 34 (6.22%) 35 35 (0.95%)
scanalyzer-08-strips (30) 28 30 (2.39%) 30 30 (2.67%) 26 26 (3.54%)
scanalyzer-sat11-strips (20) 18 20 (1.81%) 20 20 (2.04%) 16 16 (2.77%)
schedule (150) 37 116 (6.77%) 150 149 (6.84%) 146 149 (4.36%)
sokoban-sat08-strips (30) 28 27 (64.97%) 28 27 (63.28%) 28 26 (57.75%)
sokoban-sat11-strips (20) 18 18 (69.77%) 18 18 (66.9%) 18 17 (60.23%)
storage (30) 18 17 (16.65%) 19 16 (17.28%) 18 16 (18.51%)
tidybot-sat11-strips (20) 15 15 (0.64%) 15 15 (0.6%) 16 17 (0.82%)
tpp (30) 22 23 (12.41%) 30 30 (8.08%) 30 30 (3.2%)
transport-sat08-strips (30) 11 23 (3.82%) 20 23 (3.84%) 30 30 (0.63%)
transport-sat11-strips (20) 0 4 (1.93%) 3 6 (2.05%) 20 20 (0.23%)
trucks (30) 17 18 (4.94%) 18 18 (5.29%) 11 14 (4.7%)
trucks-strips (30) 17 17 (4.42%) 18 17 (4.71%) 11 12 (4.45%)
visitall-sat11-strips (20) 3 3 (100.0%) 3 3 (100.0%) 20 20 (25.95%)
woodworking-sat08-strips (30) 27 14 (4.92%) 30 14 (4.92%) 28 14 (4.82%)
woodworking-sat11-strips (20) 12 3 (1.5%) 20 3 (1.51%) 17 3 (1.51%)
Sum (2252) 1574 1754 (11.82%) 1808 1829 (11.63%) 1942 1935 (6.19%)

Table 2: Coverage overview: GBFS (hFF , hFFwith preferred operators, and hFFwith YAHSP2 lookaheads) vs. under-
approximation based on relaxed plans (uar rp); the average fraction of operators needed by uar rp is given in parenthesis.

368



100 101 102 103

Time (seconds)
1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

C
ov

er
ag

e

hFF

hFF + uarrp

100 101 102 103

Time (seconds)
1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

C
ov

er
ag

e

hFF+ preferred operators
hFF+ preferred operators +uarrp

100 101 102 103

Time (seconds)
1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

C
ov

er
ag

e

hFF+ YAHSP2 lookaheads
hFF+ YAHSP2 lookaheads +uarrp

Figure 1: Coverage at different times for GBFS with hFF , hFF + preferred operators and hFF + YAHSP2 lookaheads vs.
under-approximation based on relaxed plans (uar rp).

refinement strategies in the future. The experimental evalu-
ation has served as a proof of concept and has demonstrated
that a straight-forward instantiation based on relaxed plans
already yields a planner that is competitive with the state of
the art in satisficing planning.

Generally, we think that stronger results can be achieved
with more powerful refinement strategies. Apart from the
investigation of more sophisticated techniques to decide
when a refinement step should take place, we will inves-
tigate strategies based on linear programming to decide
which operators should be added. Linear programming (LP)
has recently found increasing attention for planning (van
den Briel, Vossen, and Kambhampati 2005; Bonet 2013;
Pommerening, Röger, and Helmert 2013; Pommerening et
al. 2014), particularly for the generation of powerful heuris-
tic functions. In this setting, the heuristic value is deter-
mined by the solution of a particular LP which contains in-
formation which and how often certain operators should be
applied to find a plan. Clearly, this information could di-
rectly serve as a refinement strategy as well, and will also
principally generalize our approach by exploiting the in-
formation about the maximal number of operator applica-
tions in under-approximations. Generally, linear program-
ming approaches seem to be suited well for our approach
because their flexibility allows for encoding a large informa-
tion spectrum. For example, the information gained from re-
laxed plans π# can be encoded such that solutions are forced
to contain at least the operators from π#, which again will
generalize our current approach.

Acknowledgments
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Safe Pruning in
Optimal State-Space Search (SPOSSS)”.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Bonet, B. 2013. An admissible heuristic for SAS+ plan-
ning obtained from the state equation. In Proc. IJCAI 2013,
2268–2274.

Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
Proc. CAV 2000, 154–169.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
Proc. ICAPS 2014.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proc. ICAPS
2009, 273–280.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for AI planning:
A branch-and-cut framework. In Proc. ICAPS 2005, 310–
319.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proc. ICAPS 2004, 150–159.
Vidal, V. 2011. YAHSP2: Keep it simple, stupid. In IPC
2011 planner abstracts, 83–90.

369




