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Abstract

Partial states are states in which the truth value of one
or more propositions is unknown. Such states are usu-
ally generated in regression and represent not a single
state but rather a set of states. Because of this, a new
partial state can be a subset of another existent par-
tial state, phenomenon known as subsumption of states.
Subsumed states can be pruned as if they were a du-
plicate. However, regular duplicate detection methods
cannot detect such cases. Furthermore, subsumption of
states also occurs when forward and backward search
algorithms are integrated into a bidirectional planner.
In these cases, the forward frontier contains only com-
plete states and the backward frontier will often contain
partial states. In this work, we analyze the impact that
subsumption of states has on search and propose meth-
ods for duplicate detection and detection of collision of
frontiers.

Introduction
Automated planning consists of finding a sequence of ac-
tions, commonly known as plan, that reaches a set of goals
from a given initial state. The most common approach nowa-
days is planning as heuristic search (Bonet and Geffner
2001), which can be done either advancing from the initial
state towards a goal state (called forward search or progres-
sion) or from a goal state to the initial state (called backward
search or regression). Due to the different nature of regres-
sion, backward search planners have several drawbacks, as
recently pointed out in (Alcázar et al. 2013). Some of them
have been thoroughly studied, like the generation of spu-
rious states; however, it is still unclear how and by which
amount subsumption of states, often cited as a problematic
phenomenon, affects search.

A partial state s1, that represents a set of complete states,
subsumes another partial state s2 if s1 is a subset of s2; or,
equivalently, when the set of propositions of the subsuming
state s1 is a subset of the set of propositions of the subsumed
state s2. For example, if some state s = {p} already exists
and a new state s′ = {p, q} is generated, s subsumes s′, as
the set of states that s′ represents is included in the set of
states represented by s. Subsumed states can be labeled as
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duplicates and thus can be safely pruned if their g value is
not lower than the g value of the subsuming state. Heuristic
search planners store the closed list in a hash table to allow
the detection of regular duplicates. However, subsumption
of states is not detectable using a hash function. Therefore,
backward search planners will expand subsumed states. This
may lead to an exponential decrease in performance, so ad-
dressing this problem seems to be of critical importance.

The impact of subsumption of states is not limited to the
duplicate detection case. Bidirectional search has the great
advantage of allowing halting the search when the fron-
tiers of both searches collide, which reduces the depth of
the search tree and hence may decrease the search effort ex-
ponentially. However, detecting the collision of frontiers is
equivalent to duplicate detection in regression. This is the
main reason why bidirectional search, an otherwise attrac-
tive option a priori for satisficing planing, has not been im-
plemented yet in explicit-state planners.

In this work we propose several alternatives to deal with
subsumption of states and analyze their impact. First, disam-
biguating reduces the cases in which subsumption occurs by
completing the partial states (Alcázar et al. 2013), so its im-
pact will be studied. Second, we propose the use of Binary
Decision Diagrams (BDDs) (Bryant 1986) to detect sub-
sumption for both backward and bidirectional search. Third,
we will implement front-to-front heuristics based on Back-
wards Generated Goals (Alcázar, Borrajo, and López 2010),
able to detect collision of frontiers.

Background
In this section we will provide some definitions and concepts
needed for subsequent sections.

Propositional Planning and Subsumption
A planning task is defined as a tuple P=(S,A,I,G). S is the set
of propositions, A is the set of grounded actions, I ⊆ S is the
initial state, and G ⊆ S is the set of goal propositions. Each
action a ∈ A is defined as a triple (pre(a), add(a), del(a))
(preconditions, add effects and delete effects) where pre(a),
add(a), del(a)⊆ S. Optimal planners return a provably least-
cost plan; satisficing planners cannot prove optimality. Par-
tial states are states in which at least one proposition p ∈ S
has an unknown value. Subsumed states can be pruned as if
they were duplicates.
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Definition 1 Given two states si, sj ⊆ S, si subsumes sj
(si v sj) if si ⊆ sj and g(si) ≤ g(sj).

Disambiguation of States
Disambiguation (Alcázar et al. 2013) is the process of reduc-
ing the valid values of unknown propositions given a set of
known propositions s ⊆ S and a set of constraints. Disam-
biguation consists of solving a Constraint Satisfaction Prob-
lem (CSP) with the unknown propositions as variables and
state invariants like mutexes (Bonet and Geffner 2001) as
constraints. Disambiguation detects spurious sets of propo-
sitions (when a proposition p ∈ S cannot be true nor false)
and deduces the value of unknown propositions, which al-
lows completing partial states.

Binary Decision Diagrams
Decision Diagrams (Bryant 1986) are data structures in-
spired by the graphical representation of a logical function.
A Binary Decision Diagram (BDD) is a directed acyclic
graph with two terminal nodes (called sinks) labeled with
true and false. All the internal nodes are labeled with a
proposition p ∈ S and have two outgoing edges that corre-
spond to the cases in which p is true and false, respectively.
For any assignment of the variables on a path from the root
to a sink, the represented logical function will be evaluated
to the value labeling the sink.

Backward Generated Goals
Backward Generated Goals (BGGs) are partial states gener-
ated from the goals used to reinforce a forward reachability
heuristic (Alcázar, Borrajo, and López 2010). BGGs were
originally computed using the last actions of the relaxed
plan obtained from the FF heuristic (Hoffmann and Nebel
2001), although they can be generated with any regression
technique. BGGs allow computing any reachability heuris-
tic against an arbitrary number of intermediate sets of goals,
although they introduce an overhead. When using BGGs the
distance is computed against the BGG with the lowest hmax.

Subsumption of States and Duplicate
Detection in Regression

Failing to prune subsumed states in regression may have a
very negative impact. Imagine the following case: in a Lo-
gistics task the states s0={(at Truck A), (at Package A)},
s1={(at Truck A), (in Package Truck)} and s2={(at Truck
B), (at Package A)} have been visited. A new state that in-
cludes a new truck s3={(at Truck A), (at Package A), (at
Truck2 A)} is generated; in this case s0 v s3, but a hash
function is unable to detect it. Consequently, a search tree
of exponential size whose root is s3 may be explored, with
a huge impact on performance. Furthermore, if the location
of an arbitrary number of trucks n is unknown, a total of 2n
trees (each one of exponential size) may have to be explored
in the worst case.

Several techniques can be employed to avoid this futile
exploration. First, disambiguation allows completing partial
states. Thus, it helps with cases in which, given two states

s, s′ ⊆ S, s v s′ before disambiguation and s = s′ af-
ter disambiguation. Suppose a planner is using regression
to solve a problem in Blocksworld and expands the partial
state s={(on A B)}. If the actions (stack A B) and (unstack
A B) are applied in sequence in regression, it would gener-
ate a new state s′={(on A B), (clear A), (arm-empty)}. A
human will quickly realize that this sequence leads to the
same state, but a planner will not realize that s subsumes
s′. However, if disambiguation is done, then both s and s′

become s, s′={(on A B), (clear A), (arm-empty), (on-table
B), ¬(clear B)}, so a regular hash function would be able
to prune s′. Disambiguation means solving a CSP per state,
which in some domains may be costly. Nevertheless, it is
possible to disambiguate the preconditions of the actions
in A, which allows pruning spurious actions and obtaining
more complete states when the actions in A are applied in
regression. In fact, it may be the case that disambiguating G
and the actions in A may be enough to obtain most of the
benefits of disambiguating per state.

Another alternative is storing the states expanded in re-
gression in both a regular hash table and a BDD, as BDDs
detect subsumption efficiently. To illustrate this let us revisit
the previous Logistics task. Figure 1 depicts the BDD that
contains s0, s1 and s2. The edges highlighted in red rep-
resent the path that corresponds to s0. If s3 is generated,
checking the value of the propositions of s3 in the BDD will
lead to the true node following the highlighted path, which
means that the BDD contains some state that subsumes s3.

T at A

P in T P in T

P at A P at A

T F

Figure 1: Using a BDD as the closed list of a Logistics task.

Here s3 is encoded as the BDD b and intersected with the
BDD closed used to represent the closed list. If b∩closed =
b, then s3 is subsumed. Note however that inserting and
querying in a BDD is slower than in a hash table and that
its complexity in size is exponential on the number of par-
tial states (Edelkamp and Kissmann 2011), which may cause
overhead. Also, BDDs do not store pointers to parent states,
so the hash table is still necessary to trace back a path.

Forward Collision of Frontiers and Partial
States

Bidirectional search seems well suited to satisficing plan-
ning. The main disadvantage of bidirectional search is that it
must continue searching after the frontiers collide to prove
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optimality (Kaindl and Kainz 1997) - unless an admissible
front-to-front heuristic is used, which is often prohibitively
expensive. In satisficing planning optimality is not required,
so the search can be halted, and a solution returned, the
first time a collision of frontiers is detected. The reason why
this has not been done in satisficing planning yet is because
detecting the collision of frontiers when partial states are
present requires dealing with subsumption of states.

Here we propose two methods to detect collision of fron-
tiers, the use of BDDs and employing BGGs to derive a
front-to-front heuristic. Using BDDs is analogous to the case
presented in the previous section; the closed list of the back-
ward search is duplicated in a BDD and we check whether
states generated forward are subsumed by the BDD. This
is also possible when detecting backward collision of fron-
tiers, although the operation would be b ∩ closed 6= ∅. Note
that since BDDs merge nodes to maintain the succinctness
of the data structure, the exact subsuming state may not be
obtained by following the path down the BDD and hence
the hash table must be sequentially explored after detecting
the collision to find the subsuming state.1 More efficient al-
ternatives to overcome this may be possible, i.e. as done in
frontier search (Korf et al. 2005).

BGGs also allow detecting forward collision of frontiers.
Any reachability heuristic enriched with BGGs returns 0
when evaluating a state subsumed by a BGG. In this work
BGGs are created from the states expanded backwards in-
stead of using the last actions of forward relaxed plans. As
the BGG corresponds univocally to a state in the backward
closed list, tracing back a path is straightforward.

A Case for Sparser Frontiers when Using BGGs
Like other front-to-front heuristics, using BGGs becomes in-
creasingly expensive as the opposite frontier grows. As the
overhead is proportional to the number of BGGs, keeping
their number to a minimum may alleviate this. We propose
removing BGGs at random when a given threshold is sur-
passed. Ideally, if only a subset of BGGs is kept, the farther
they are from each other the better they will represent the
explored search space. Removing them at random does not
guarantee this, although it is likely that, if an area of the
search space contains a high amount of BGGs, most of the
removed BGGs will belong to that area. Another concern is
that removing BGGs may render the h value of nodes obso-
lete. This is so for every front-to-front heuristic when the op-
posite frontier changes for any reason (i.e. when new nodes
are generated), so it is for the most part unavoidable.

Another alternative is using sparse data structures. Ran-
dom Planning Trees (RPT) (Alcázar, Veloso, and Bor-
rajo 2011), an adaptation of Rapidly-Exploring Random
Trees (Kuffner and LaValle 2000) for automated planning,
keep a sparse tree instead of a dense closed list. They are
generated expanding towards randomly sampled states and
the goal alternatively. They use a local planner with a limit
in the number of expanded states to create new nodes of the
tree. The number of nodes of the tree is usually very small,

1This happens with forward collision of frontiers; in backward
collision of frontiers the required state is encoded by b ∩ closed .

so keeping a BGG per node is unlikely to cause a big over-
head. Furthermore, RPTs tend to explore the search space
evenly thanks to their sampling method, which impacts pos-
itively the accuracy of the BGG-derived heuristic.

Figure 2 shows how BGGs work. Both trees represent
RPTs, although they can also be seen as regular search trees
generated by best-first search algorithms. The waves gener-
ated from Si represent the layers of the relaxed exploration
of the heuristic. This shows how the heuristic computation is
stopped when the first BGG is satisfied and how the distance
to the BGG is computed by extracting a relaxed plan.

Figure 2: Computation and extraction of a relaxed plan from
the forward RPT node Si to the closest BGG BGGj .

Experimentation
All the techniques were implemented on top of Fast Down-
ward (Helmert 2006). Benchmarks, score and settings were
the ones from the International Planning Competition of
2011. First we evaluate the impact of subsumption in re-
gression. We used FDr using greedy best-first search and the
cached FF heuristic (Alcázar et al. 2013). G and the pre-
conditions of the actions in A are always disambiguated.
Versions labeled with b use a BDD and with d do disam-
biguation per state. The results of Table 1 show that surpris-
ingly BDDs only help in two domains, Sokoban and Park-
ing, improving the coverage considerably in the former. In
the rest of the domains BDDs yield a similar or worse re-
sult, losing 4 problems in Visitall. Disambiguation appears
to be more useful, but its main benefit comes from detecting
spurious states, which explains why it solves more problems
in Floortile and Parking. FDr(bd) achieves the highest cov-
erage, which suggests that avoiding pathological cases in-
duced by subsumption and spurious states pays off despite
the overhead introduced. Nevertheless, the impact of sub-
sumption is minor in most domains as long as G and the
preconditions of the actions are disambiguated.

Now we try 10 planners in the context of bidirectional
search: FD, Fast Downward with lazy evaluation, the FF
heuristic, preferred operators and spurious operator pruning;
FDr(bd); biFD, a combination of FD and FDr(bd); biFD(c),
biFD with collision of frontiers; BGG, biFDc + BGGs;
BGG(s), BGG with a sparse frontier - when the number of
BGGs is greater than 2k BGGs are removed until there are
only 1k; RPT, a forward RPT with a limit of 100k nodes and
p=0.5 that uses FD as local planner; RPTr, RPT but uses
FDr; biRPT, combination of RPT and RPTr with a limit
of 10k; and biRPT(bgg), biRPT + BGGs. All bidirectional
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Domain FD FDr biFD biFD(c) BGG BGG(s) RPT RPTr biRPT biRPT(bgg)
Barman 19 0 18 17 1 1 11 0 8 5

Elevators 20 20 20 20 20 20 20 20 20 20
Floortile 7 20 20 20 20 20 9 18 20 20

Nomystery 10 6 10 10 9 10 10 4 11 12
Openstacks 20 0 19 19 2 8 20 5 13 18
Parcprinter 12 8 12 12 11 12 12 7 12 11

Parking 20 0 19 19 2 7 20 3 8 8
Pegsol 20 17 20 20 14 19 20 5 20 20

Scanalyzer 19 20 20 20 20 20 20 20 20 20
Sokoban 19 11 19 19 12 16 17 5 18 11
Tidybot 17 2 15 15 14 14 17 4 2 9

Transport 11 5 11 11 10 11 11 5 10 6
Visitall 5 2 5 5 2 2 10 8 6 6

Woodworking 20 14 20 20 19 19 20 18 15 18
Total 219 129 228 227 156 179 217 122 183 184

Table 2: Problems solved in IPC-11.

FDr(bd) FDr(b) FDr(d) FDr
Barman 0 0 0 0 0 0 0 0

Elevators 15.50 20 16.36 20 18.59 20 19.17 20
Floortile 14.79 20 13.21 18 15.79 20 13.84 18

Nomystery 4.90 6 4.07 6 4.54 6 5.00 6
Openstacks 0 0 0 0 0 0 0 0
Parcprinter 6.53 8 6.92 8 5.95 8 8.00 8

Parking 3.06 4 2.35 3 3.73 5 1.10 2
Pegsol 3.61 17 6.10 18 8.56 18 18.00 18

Scanalyzer 16.19 20 16.99 20 17.95 20 19.42 20
Sokoban 10.67 11 2.90 7 1.05 4 2.05 3
Tidybot 1.98 2 1.80 2 0.80 2 1.48 2

Transport 4.53 5 4.62 5 4.87 5 4.97 5
Visitall 0.30 2 0.30 2 2.38 4 6.00 6

Woodworking 4.97 14 13.56 14 4.97 14 14.00 14
Total 87 129 89 123 89 126 113 122

Table 1: Time score and coverage of FDr.

planners expand towards the direction that has used less time
so far at each time. Results are shown in Table 2.

Several conclusions can be drawn from the experimen-
tation. First, biFD obtains a higher coverage. However, de-
tecting the collision does not offer any advantage, and in fact
biFD(c) loses one problem - it times out when retrieving the
subsuming state. This happens because in search spaces with
symmetries and transpositions there is a high probability that
the search trees for both directions are completely different.
This is further the case when the density of solutions of the
problem is high. Optimal search algorithms must explore all
the states whose f value is lower than the optimal cost of
the solution; however, suboptimal search algorithms com-
mit strongly to subtrees in the search state and often do not
collide with the opposite frontier until they are close to the
goal. BGG, although guided towards the opposite frontier,
is considerably less efficient than biFD due to the overhead
induced by BGGs. A sparse frontier partially alleviates this
problem, but the results are still not close to biFD’s. RPTs
are competitive with best-first search planners, but biRPT is

not as efficient as biFD. biRPT(bgg) does not suffer from
BGG’s overhead and obtains a similar coverage to biRPT,
although this varies greatly across domains.

Related Work
A recent work by Eyerich and Helmert (2013) identifies sub-
sumption as an important problem when searching back-
wards and proposes the use of a partial-match trie (Rivest
1974). This is a similar idea to ours, but there are impor-
tant differences. Tries allow retrieving subsuming states, so
a path can be traced back immediately. However, tries have
one leaf per state, which may be very memory demanding.
Furthermore, queries in the trie are reported by the authors to
be a bottleneck in terms of time. At every inner node of the
trie both the corresponding edge and the “don’t care” edge
must be explored, which may lead to exploring a high num-
ber of paths. As a consequence, in some domains their plan-
ner runs out of time, a surprising fact given that planners that
use abstraction heuristics typically exhaust memory long be-
fore time. As for BDDs, Table 1 shows that the overhead is
not critical in the tested domains despite their exponential
worst case. A direct comparison between partial-match data
structures would shed light on this matter.

Conclusions
In this work an experimental evaluation of the impact of par-
tial states has been done. Additionally, several new bidirec-
tional planners have been implemented to test the viability
of the proposed techniques. The impact of subsumption in
regression varies from domain to domain, although it seems
to be overstated (as long as G and the actions are disam-
biguated). Furthermore, bidirectional search does not seem
to be better than combining two planners that search in op-
posite directions into a portfolio. These results apply to sat-
isfacing planning; we leave a more extensive analysis of the
described techniques in optimal planning as future work.
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