A Tree-Based Algorithm for Construction Robots

T. K. Satish Kumar*
Computer Science Department
University of Southern California
tkskwork@gmail.com

Sangmook Jung
Computer Science Department
University of Southern California
sangmooj@usc.edu

Sven Koenig
Computer Science Department
University of Southern California
skoenig@usc.edu

Abstract

In this paper, we present a tree-based algorithm for construction robots. Inspired by the TERMES project of Harvard University, robots in this domain are required to gather construction blocks from a reservoir and build user-specified structures much larger than themselves. While the robots are of roughly the same size as the blocks, they can scale greater heights by using temporarily constructed ramps in the substructures. In this paper, we consider the problem of minimizing the number of pickup and drop-off operations performed on blocks in order to build user-specified structures. Our polynomial-time algorithm heuristically solves this problem and is based on the idea of performing dynamic programming on a spanning tree in the inner loop and searching for a good tree to do so in the outer loop. Our algorithm performs very well in simulation and scales easily to large problem instances. For planning problems of this nature that are akin to construction domains, we believe that valuable lessons can be learned from comparing the success of our algorithm with the failure of off-the-shelf planning technologies.

Introduction

While many tools and equipment are used for construction tasks, humans are still directly involved in critical phases of construction that can otherwise benefit from automation. For example, automated planning and scheduling techniques can be used to increase speed and decrease costs for construction tasks. Furthermore, delegating the actual construction operations to robots can make it safer for humans in hostile situations such as constructing shelter in disaster areas or on other planets.

Towards the goal of automated construction, teams of smaller robots are often more effective than a few larger robots. Smaller robots are usually cheaper, easier to program, and easier to deploy. Despite their possibly limited sensing and computational capabilities, teams of smaller robots are more fault tolerant and provide more parallelism than a few larger robots.

Many examples of collective construction are provided in nature that are analogous to the capabilities of teams of smaller robots. For instance, among many other species of animals, termites are capable of building mounds that are much larger than themselves. Inspired by termites and their building activities, the Harvard TERMES project investigated how teams of robots can cooperate to build user-specified 3-dimensional structures much larger than themselves (Petersen, Nagpal, and Werfel 2011).

The TERMES hardware system consists of small autonomous mobile robots and a reservoir of passive “building blocks”, simply referred to as “blocks”. The robots are of roughly the same size as the blocks. Yet, they can manipulate these blocks to build tall structures by stacking the blocks on each other and building ramps to scale greater heights. Multiple robots should be able to cooperate in a decentralized fashion to build a user-specified structure.

In this paper, we present a tree-based construction algorithm for the TERMES robots; but we only consider the problem of minimizing the number of pickup and drop-off operations performed on blocks in order to build a user-specified structure. The plan generated by our algorithm can be executed either by a single robot or a team of robots with proper coordination. However, because the coordination problem for multiple robots is not discussed completely in this paper, we assume that a single robot executes the plan generated by our algorithm. Our polynomial-time algorithm heuristically solves the problem of minimizing the number of pickup and drop-off operations on blocks and is based on the following two-fold idea: (1) we perform dynamic programming on a spanning tree in the inner loop; and (2) we search for a good tree to do so in the outer loop.

Our algorithm performs very well in simulation and scales easily to large problem instances. Besides being a useful technique for the problem of automated construction, we believe that valuable lessons can be learned from comparing the success of our algorithm with the failure of off-the-shelf planning technologies for this problem domain.

Background

While there has been a fair amount of theoretical work on collective construction, including but not limited to (Jones and Mataric 2004; Grushin and Reggia 2008; Napp and Klavins 2010), many of the assumptions made are largely simplistic as they ignore constraints on robot movements and/or the unreliability of actuators and other mechanical components of the robot.
The TERMES robots, on the other hand, are capable of three basic operations that succeed almost always. These highly reliable operations provide a nice abstraction for construction planning algorithms and allow us to reasonably assume that the robots are ideal (Petersen, Nagpal, and Werfel 2011). Moreover, as we will show later, these three basic operations suffice in enabling a robot to build any user-specified structure.

The three basic operations of a TERMES robot are: (1) climbing up or down blocks one block-height at a time; (2) navigating with proper localization on a partially built structure without falling down; and (3) lifting, carrying, and putting down a block so as to attach it to or detach it from a partially built structure. The robustness of the TERMES hardware system ensures the high reliability of these three operations. A brief description of the TERMES hardware system, borrowed from (Petersen, Nagpal, and Werfel 2011), is as follows.

The TERMES robot is equipped with 4 small whgs that allow for different kinds of locomotion using the same action of simply “driving forward”. The whgs allow the robot to climb onto a block, get down from it, or just move on level ground. In effect, the robot does not need any additional hardware or software capabilities for climbing up or down individual blocks, making this a very reliable operation.

In order to keep track of both position and orientation while moving, turning, or climbing up or down blocks, the TERMES robot uses 6 infrared sensors. Complementing this, the blocks are marked with a white cross on a black background. This pattern helps with the localization of both position and orientation. Moreover, a circular indentation on each block guides the robot when it turns in place without accumulating drift. The indentation is small enough to not obstruct the robot when it needs to move out of it.

The TERMES robot is equipped with an arm and a gripper to facilitate picking up, carrying, and putting down blocks, attaching them to, and detaching them from desired locations. Once again, mechanical features of the blocks, like the use of Neodymium magnets, help the robot perform these operations reliably with the use of only one actuator.

The footprint of a robot is less than that of the blocks; and the robots gather blocks from a reservoir to collectively build a user-specified structure. A nice schematic diagram for the TERMES hardware system with detailed descriptions can be found in (Petersen, Nagpal, and Werfel 2011). Lots of other resources like pictures, videos, and published papers about the TERMES robots are available on the Harvard website http://www.eecs.harvard.edu/ssr/projects/cons/termes.html.

Problem Formulation

In this paper, we will assume that the reservoir is unlimited and that the initial configuration is empty, that is, all blocks are initially in the reservoir. Under these assumptions, we will study the problem of minimizing only the total number of pickup and drop-off operations on blocks. Despite these simplifying assumptions, we will argue later in the paper that an efficient solution to this combinatorial problem is central to many other variants of the collective construction problem. Moreover, we will also argue that the tree-based framework in which we solve this problem is important in its own right since it lends itself naturally to reason about these many variants.

We are given an empty initial configuration and a 2D matrix of non-negative integers, referred to as the input matrix, that represents the desired goal configuration. The cells of the matrix represent physical locations, and the non-negative integers represent the heights of the towers that need to be constructed by stacking up blocks at those locations. At any intermediate stage, the top of a tower is said to be reachable if and only if starting from the ground level, the robot can reach the top of that tower by turning and driving forward. A block can be placed on the top of a tower if and only if there is a neighboring tower of equal height, the top of which is reachable. A block can be removed from the top of a tower if and only if there is a neighboring tower of height 1 less, the top of which is reachable. Under these restrictions, the problem is to build the final configuration using as few add and remove operations, or equivalently, as few pickup and drop-off operations on blocks as possible.

Many variants of the collective construction problem for TERMES robots are NP-hard. For example, the euclidean traveling salesman problem, which is NP-hard, is reducible to optimal planning, even for a single robot, with a non-empty initial configuration and costs associated with traversing distances. Although many other variants of the collective construction problem are also similarly NP-hard, the complexity class to which the problem of minimizing the number of pickup and drop-off operations belongs is unknown. We leave this complexity classification task for future work.

Without knowing the complexity class to which it belongs, we aim for a heuristic solution strategy for the problem of minimizing the number of pickup and drop-off operations. One naive approach to build a user-specified structure is to do it tower by tower starting from one of the corners. In this approach, we need to build a tower of height \(h \) in conjunction with a ramp consisting of towers of heights \(h - 1, h - 2, \ldots, 1 \). The extraneous towers should then be deconstructed, resulting in \(O(h^2) \) total number of pickup and drop-off operations. This naive strategy is nowhere close to optimal even for simple input instances.

We can do slightly better if we avoid deconstructing the ramp completely after a tower is built. We can reuse parts of the ramp for adjacent towers and follow the strategy of completing the structure row by row or column by column. As we will show later in the paper, this strategy corresponds

\[^{2} \text{A tower is a vertical stack of blocks standing at any location.} \]

\[^{3} \text{Because of the whgs, driving forward includes moving on level surface, climbing up a block, and climbing down a block.} \]

\[^{4} \text{Two towers are said to be neighbors of each other when they stand on adjacent cells. However, diagonally adjacent towers are not considered neighbors since the robot cannot move diagonally atop the towers.} \]

\[^{5} \text{Level ground can be considered as a tower of height 0.} \]
Algorithm 1: Procedure Compute-Workspace-Matrix

| Input: | an $A \times B$ matrix R of non-negative integers |
| Output: | the workspace matrix W, and the offsets |

1. (1) `topBorder = \text{argmin}_{1 \leq i \leq A, 1 \leq j \leq B} \{i - R[i][j] + 1\}`
2. (2) `bottomBorder = \text{argmax}_{1 \leq i \leq A, 1 \leq j \leq B} \{i + R[i][j] - 1\}`
3. (3) `leftBorder = \text{argmin}_{1 \leq i \leq A, 1 \leq j \leq B} \{j - R[i][j] + 1\}`
4. (4) `rightBorder = \text{argmax}_{1 \leq i \leq A, 1 \leq j \leq B} \{j + R[i][j] - 1\}`
5. (5) `xoffset = -topBorder + 1`
6. (6) `yoffset = -leftBorder + 1`
7. (7) `workLength = bottomBorder - topBorder + 1`
8. (8) `workBreadth = rightBorder - leftBorder + 1`
9. (9) Build the `workLength \times workBreadth` workspace matrix W as follows:
10. (a) Initialize all entries to 0
11. (b) For each $1 \leq i \leq A, 1 \leq j \leq B$:
12. (i) $W[i + xoffset][j + yoffset] = R[i][j]$
13. (10) Return:
14. (a) the workspace matrix W
15. (b) the offsets xoffset and yoffset

(8)

(a)

(b)

Figure 1: Shows an example for the working of Algorithm 1. (a) shows the input matrix. (b) shows the workspace matrix. Blank cells indicate towers of height 0. The calculated offsets are 2 each in the x-direction and y-direction.

A Tree-Based Construction Algorithm

In this section, we will describe a tree-based construction algorithm for the TERMES robots. The main idea is to perform dynamic programming on a particular kind of spanning tree. Our empirical results show that this strategy is also far from optimal and that we can do much better with other kinds of spanning trees.

Of course, “blocks world” domains are well studied in the area of automated planning and scheduling. Unfortunately, however, we could not solve even small instances of our construction problem using any of the state-of-the-art planners from the 2011 International Planning Competition. FastForward could not solve SAS formulations of our problem using any of the built-in heuristics (Richter, Westphal, and Helmert 2011). The failure to generate even feasible plans in more than a few minutes merely for 4×4 input matrices prompted us to develop the specialized techniques illustrated in this paper.

The Workspace Matrix

Given an input matrix, our first task is to establish a frame of reference that encompasses ramps that might be constructed

to performing dynamic programming on a particular kind of spanning tree. Our empirical results show that this strategy is also far from optimal and that we can do much better with other kinds of spanning trees.

Of course, “blocks world” domains are well studied in the area of automated planning and scheduling. Unfortunately, however, we could not solve even small instances of our construction problem using any of the state-of-the-art planners from the 2011 International Planning Competition. FastForward could not solve SAS formulations of our problem using any of the built-in heuristics (Richter, Westphal, and Helmert 2011). The failure to generate even feasible plans in more than a few minutes merely for 4×4 input matrices prompted us to develop the specialized techniques illustrated in this paper.

Graphical Representation

An undirected graphical representation of the workspace matrix is relatively straightforward to construct. Each cell in the matrix is represented by a node in the undirected graph.

\text{Measuring distance using the maximum of the differences in x-coordinates and y-coordinates results in a rectangular workspace matrix instead of an arbitrarily shaped boundary of cells.}

\text{The indices of the matrices start from 1.}
The nodes are then annotated with weights corresponding to the entries in the workspace matrix. Two nodes are joined by an undirected edge if and only if the corresponding cells in the workspace matrix are a Manhattan distance of 1 away from each other. In addition, a special node \(S \) is used to represent the reservoir of blocks assumed to be relatively far away from the site of construction. This special node is made adjacent to only those nodes that correspond to the boundary cells of the workspace matrix. This is indicative of the fact that a robot carrying a block to or from the reservoir must cross the boundary of the workspace.\(^8\)

Figure 2 shows the graphical representation for the example from Figure 1. We note that for any workspace matrix, a spanning tree \(T \) on the graphical representation \(G \) induces a spanning forest on the cells of the workspace matrix when \(S \) is ignored.

The Inner Loop: Dynamic Programming

The inner loop of the algorithm solves the planning problem by performing dynamic programming on the spanning tree facilitated by the outer loop. Let \(T \) be this spanning tree of \(G \) with \(S \) as the root. The nodes of the tree correspond to cells in the workspace matrix and are annotated with weights equal to the heights of the towers standing at those cells in the user-specified structure.

The first stage of the inner loop transforms the weights on the nodes of \(T \) to list annotations. Instead of a single integer, each node is now annotated with a list of non-negative integers referred to as markers. Intuitively, the markers indicate the variations in height that the tower standing at that node has to go through in the course of constructing the user-specified structure.

More formally, the lists of markers satisfy the following properties: (1) the first marker in any list is always 0, indicating that we start from an empty initial configuration; (2) the last marker in any list is equal to the height of the tower in the user-specified structure at that node; (3) barring the first and last marker, and when \(i \) is even, the \(i \)-th marker of the list for node \(N \), \(L_N(i) \), is equal to \(\max(L_N(i-1), g_N(i)) \) where \(g_N(i) \) is the maximum of the \(i \)-th markers for the children of \(N \) minus 1 (only those children for which the \(i \)-th marker exists are considered); (4) barring the first and last marker, and when \(i \) is odd, the \(i \)-th marker of the list for node \(N \), \(L_N(i) \), is equal to \(\min(L_N(i-1), g_N(i)) \) where \(g_N(i) \) is the minimum of the \(i \)-th markers for the children of \(N \) (only those children for which the \(i \)-th marker exists are considered); (5) for a node at height \(k \) in the tree, the length of the list annotating it is no larger than \(k + 2 \); and (6) for any list, consecutive markers in it define alternating non-decreasing and non-increasing intervals of non-negative integers.

Algorithms 2 and 3 show how to construct the lists of markers for each node in a given spanning tree \(T \). Figures 3 and 4 show an example. Property 1 is ensured by step 1 of Algorithm 2. Property 2 is ensured by step 5 of Algorithm 3. Here, all steps 5(a), 5(b), 5(c) and 5(d) ensure that for any node, the user-specified height in the final configuration gets added as the last marker. Properties 3 and 4 are ensured by steps 4(a) and 4(b) respectively of Algorithm 3. Property 5 is ensured by steps 3, 4 and 5 of Algorithm 3 where the number of iterations in step 4 depend on the value of ‘len’ derived from step 3. Property 6 is ensured by the use of ‘max’ and ‘min’ operators in steps 4(a) and 4(b) of Algorithm 3 along with the case analysis done in step 5 of Algorithm 3 for the last marker.

Consecutive markers in a list can be viewed as specifying intervals of non-negative integers. Because of steps 4(a) and 4(b) in Algorithm 3, these intervals are alternating non-decreasing and non-increasing in any list. The first interval between the first and second markers of any list is non-decreasing; the second interval between the second and third markers of any list is non-increasing, and so on. In general, the \(k \)-th interval contains a non-decreasing sequence of non-negative integers between its end-point markers if \(k \) is odd, and a non-increasing sequence if \(k \) is even.

In the next stage of the inner loop, the required plan is generated by traversing a series of event trees in depth-first order. Event trees are trees constructed from the original spanning tree \(T \) and an interval for each node of \(T \) chosen from its list annotation. The first event tree corresponds to choosing the first interval for each node; the second event tree corresponds to choosing the second interval for each node; and so on. Of course, when the \(k \)-th interval is not defined for a node, it is simply ignored. From Algorithm 3, it is easy to see that the list generated for any node is no longer than the list generated for its parent. This means that the set of nodes for which the \(k \)-th interval is defined always

\(^8\) \(S \) need not have a weight assigned to it, but for simplicity, we assign a weight of 0 to it.
forms a subtree of T.

When k is odd, we refer to the corresponding event tree as a positive event tree. Traversing a positive event tree in depth-first order generates actions in the plan that add blocks to the structure. When k is even, we refer to the corresponding event tree as a negative event tree. Traversing a negative event tree in depth-first order generates actions in the plan that remove blocks from the structure.

Any k-th event tree has a macro-structure and a micro-structure. The macro-structure has super-nodes corresponding to the nodes of T that have a k-th interval. The real nodes of T, however, correspond to the different non-negative integers occurring in the k-th intervals of the super-nodes. The edges between these nodes, constituting the micro-structure of the event tree, are constructed by finding for each node, a supporting node in the parent super-node.

We note that each node in the event tree corresponds to a non-negative integer, referred to as the value of that node. For a node with value v in a positive event tree, its supporting node in the parent super-node is the one with the lowest value $\geq v - 1$. Intuitively, this indicates that, in order to create a tower of height v at that super-node by adding a block on top of it, the height of the tower currently standing at the parent super-node must be $v - 1$. Similarly, for a node with value v in a negative event tree, its supporting node in the parent super-node is the one with the highest value $\leq v$. Intuitively, this indicates that, in order to create a tower of height v at that super-node by removing a block from top of it, the height of the tower currently standing at the parent

Algorithm 4: Procedure Generate-Plan

Input: the spanning tree T with root S, and the list annotations on T’s nodes

Output: a sequence of actions that add blocks to the structure

1. (1) Let M be the maximum number of intervals in any list
2. (2) For $k = 1 \ldots M$:
3. (a) If k is odd:
4. (i) Construct a positive event tree with super-nodes corresponding to the nodes of T that have a k-th interval
5. (ii) Construct nodes corresponding to the different values in the k-th interval of each super-node
6. (iii) For node with value v, construct an edge joining it to the node with the lowest value $\geq v - 1$ in the parent super-node
7. (iv) Call Generate-Positive-Steps on this event tree
8. (b) If k is even:
9. (i) Construct a negative event tree with super-nodes corresponding to the nodes of T that have a k-th interval
10. (ii) Construct nodes corresponding to the different values in the k-th interval of each super-node
11. (iii) For node with value v, construct an edge joining it to the node with the highest value $\leq v$ in the parent super-node
12. (iv) Call Generate-Negative-Steps on this event tree

Algorithm 5: Procedure Generate-Positive-Steps

Input: a positive event tree E with root super-node S

Output: a sequence of actions that add blocks to the structure

1. (1) Traverse the tree E in depth-first order in such a way that a lower-valued sibling is visited before a higher-valued sibling
2. (2) When a node n is visited, add a block at the corresponding super-node N if the value of n is not the lowest in its interval
3. (3) The route between N and the reservoir is indicated by the path of super-nodes between N and S in the event tree

Proof of Correctness

We will now present formal arguments for the correctness of the algorithm as well since the outer loop only produces a specific spanning tree for the inner loop. We start with some preliminary observations.

Let the input matrix be of dimensions $A \times B$ with the maximum user-specified height for any tower being H. Consider how the second markers are generated for each list. None of them are negative as we take the ‘max’ with the first markers in Algorithm 3. Now consider how the third markers are generated using the user-specified heights and ‘min’ with the second markers which are all non-negative. The third markers are non-negative as well. Repeating this argument, it is easy to show that all markers are non-negative. Moreover, since the markers are generated using the user-specified heights, the ‘max’ operation, the ‘min’ operation, and the ‘minus 1’ operation, no marker can be greater than H. This means that no interval contains more than $H + 1$ elements.
Lemma 2. For a positive event tree, every node \(n \) of value \(v \) in super-node \(N \) has a supporting node \(p \) of value \(v - 1 \) in the parent super-node \(P \) if \(v \) is not the first value in \(N \)’s interval.

Proof. Let the positive event tree correspond to some \(k \)-th interval for an odd \(k \). The \(k \)-th interval is non-decreasing, and is defined between the \(k \)-th and \(k + 1 \)-th markers in each list. Since \(v \) is not the first value in \(N \)’s interval, \(L_N(k) < v \). Also, since \(k \) is odd, by Algorithm 3 we have that \(L_P(k) \leq L_N(k) \). Now since \(k + 1 \) is even, from Algorithm 3 again, \(L_P(k + 1) \geq L_N(k + 1) - 1 \geq v - 1 \). Together, we have that \(L_P(k) \leq v - 1 \leq L_P(k + 1) \). This means that \(v - 1 \) should occur in the \(k \)-th interval of \(P \). Finally, for a positive event tree, since the support of \(n \) is defined as the node in \(P \) with the lowest value \(\geq v - 1 \), and since \(v - 1 \) is included in this interval, node \(p \) in \(P \) with value \(v - 1 \) is in fact the supporting node for \(n \) in \(N \).

Lemma 3. For a negative event tree, every node \(n \) of value \(v \) in super-node \(N \) has a supporting node \(p \) of value \(v - 1 \) or \(v \) in the parent super-node \(P \) if \(v \) is not the first value in \(N \)’s interval.

Proof. Similar to that of the previous lemma.

Lemma 4. For a positive event tree, every node \(n \) of value \(v \) in super-node \(N \) has a supporting node \(p \) of value \(v - 1 \) or \(v \) in the parent super-node \(P \) if \(v \) is the first value in \(N \)’s interval.

Proof. Let the positive event tree correspond to some \(k \)-th interval for an odd \(k \). The \(k \)-th interval is non-decreasing, and is defined between the \(k \)-th and \(k + 1 \)-th markers in each list. Since \(v \) is the first value in \(N \)’s interval, \(L_N(k) = v \). Also, since \(k \) is odd, by Algorithm 3 we have that \(L_P(k) \leq L_N(k) \) making \(L_P(k) \leq v \). Now since \(k + 1 \) is even, from Algorithm 3 again, \(L_P(k + 1) \geq L_N(k + 1) - 1 \geq v - 1 \). Together, we have that \(L_P(k) \leq v - 1 \leq L_P(k + 1) \), and \(L_P(k) \leq L_P(k + 1) \). This means that, if \(v - 1 \) does not occur in the \(k \)-th interval of \(P \), then \(L_P(k) = v \), enforcing that \(v \) should occur in the interval. In effect, therefore, at least one of \(v - 1 \) or \(v \) should occur in the \(k \)-th interval of \(P \), providing the required support for \(n \).

Lemma 5. For a negative event tree, every node \(n \) of value \(v \) in super-node \(N \) has a supporting node \(p \) of value \(v - 1 \) or \(v \) in the parent super-node \(P \) if \(v \) is the first value in \(N \)’s interval.

Proof. Similar to that of the previous lemma.
can be used to yield much better results. Two such trees are the last cell of each row could have been connected to structure row by row starting from one end. Of course, the tree corresponds to the intuitive method of constructing the spanning tree falls out of connecting all neighboring cells in a grid. The outer loop of the algorithm searches for a good spanning tree. Lemma 1 proves that no user-specified tower can possibly create a non-zero marker at a location on it by all towers in the user-specified structure. The usefulness factor of a cell in the workspace matrix (represented as a node in G) is the sum of the relative shadow sizes cast on it by all towers in the user-specified structure.

This heuristic way of reweighting the edges transfers information about a tower to farther nodes in the graph than just its immediate neighbors. When a user-specified structure consists of disconnected substructures, the reweighted minimum spanning tree can construct long “backbone” ramps that are useful for all disjoint substructures. The minimum spanning tree heuristic typically does not produce such backbones.

Empirical Evaluation

In this section, we provide an empirical evaluation of our algorithms. As mentioned previously, none of the off-the-shelf domain-independent planners were able to solve even small instances of the construction problem. Our empirical results, therefore, are a performance comparison between the tower by tower (TBT) method, the row by row (RBR) method, the minimum spanning tree (MST) heuristic, and the reweighted minimum spanning tree (RMST) heuristic. We used three categories of problem instances.

In the first category, we used structures generated at random. Table 1 shows the comparative performances of TBT, RBR, MST and RMST on 10×10 randomly generated matrices with a maximum height of 15. The percentage parameter indicates the fraction of empty locations where no towers stand. 5 trials were used to generate the data in each row. In each row, the median number of additions and removals of blocks in the plans generated by each algorithm is reported. Here, we see the superior performance of RMST.

Algorithm 7: Procedure Reweight-Edges

Input: the graphical representation G of a workspace matrix W

Output: reweighted edges for G

1. (I) For each cell (i, j) in the workspace matrix W, compute the usefulness factor $u(i, j)$ as follows:
2. (a) $u(i, j) = 0$
3. (b) For each tower of height h at location (i', j') that casts a non-zero shadow s on (i, j):
4. (i) $u(i, j) = u(i, j) + s/h$
5. (II) For each edge e in G:
6. (a) $nmr = 1 + |\text{difference in weights of its end-point nodes}|$
7. (b) $dvr = 1 + \text{sum of the usefulness factors of its end-point nodes}$
8. (c) weight of $e = nmr/dnr$

only in association with the non-first elements of each interval. Consider one such element, say, node n with value u in super-node N. Let the parent super-node be P. By construction, P corresponds to a grid cell neighboring that of N. Lemma 2 assures that the tower at P has the appropriate height of $v - 1$ in order to allow for raising the height of the tower at N from $v - 1$ to v by adding one more block on it. Furthermore, Lemma 4 and Lemma 2 together assure that if we trace the supporting nodes back to the root S, we never encounter a height difference of more than 1. This ensures that this path of super-nodes serves as a feasible route for the robot to reach N from the reservoir in order to execute the action of adding a block at N. Now, since all nodes are visited in a depth-first traversal, the heights of the towers in various cells at the end of the traversal correspond to the second markers in the list annotations of each node. In conjunction with Lemma 3 and Lemma 5, similar arguments can be used to prove that the state of the structure matches that of the third markers - or the final markers when the third markers don’t exist - in each list annotation after the depth-first traversal of the second event tree (which is negative). Repeating this argument, we achieve the state corresponding to the final markers for each list, that is, the user-specified structure, when we are done traversing all the event trees. Lemma 1 proves that no user-specified tower can possibly create a non-zero marker at S. This proves the sufficiency of the workspace as constructed by Algorithm 1. Put together, the truth of the theorem is established.

The Outer Loop: Search for a Good Tree

The outer loop of the algorithm searches for a good spanning tree to be used in the inner loop. Clearly, one possible spanning tree falls out of connecting all neighboring cells in each row and connecting the first cell in each row to S. This tree corresponds to the intuitive method of constructing the structure row by row starting from one end. Of course, the last cell of each row could have been connected to S instead of the first cell of each row. Similarly, the columns could have been chosen instead of the rows. All these correspond to intuitive strategies for construction.

We note, however, that these options are only a few specific trees in the space of all trees spanning G. Other trees can be used to yield much better results. Two such trees are (a) the minimum spanning tree and (b) the reweighted minimum spanning tree. Both of them are, of course, heuristic choices, but perform very well in practice. To construct the minimum spanning tree, an edge-weighted graph is constructed from G where the weight of an edge is the absolute value of the difference between the weights of its endpoints. All edges incident on S are set to weight 0. Intuitively, a minimum spanning tree for the edge-weighted version of G finds paths in the user-specified structure with minimum height variations.

Although the minimum spanning tree approach is much better in practice than row by row or column by column construction, the problem with it is that the edge weights measure the height variations only among neighboring cells. Two towers with a single gap between them do not influence the edge weights in any way, when clearly, the ramp constructed for one can be used by the other. To address this problem, we construct a variant of the minimum spanning tree called the reweighted minimum spanning tree.

We say that a tower of height h at cell (x, y) casts a shadow at cell (x', y') if $h > |x - x'| + |y - y'|$. When a shadow is cast, the size of the shadow s is given by $h - |x - x'| - |y - y'|$. Algorithm 7 presents a procedure for reweighting the edges of G. The idea is to scale down the weight of each edge in G by an amount that is proportional to the “usefulness factors” of its end-point nodes. The usefulness factor of a cell in the workspace matrix (represented as a node in G) is the sum of the relative shadow sizes cast on it by all towers in the user-specified structure.

This heuristic way of reweighting the edges transfers information about a tower to farther nodes in the graph than just its immediate neighbors. When a user-specified structure consists of disconnected substructures, the reweighted minimum spanning tree can construct long “backbone” ramps that are useful for all disjoint substructures. The minimum spanning tree heuristic typically does not produce such backbones.

Empirical Evaluation

In this section, we provide an empirical evaluation of our algorithms. As mentioned previously, none of the off-the-shelf domain-independent planners were able to solve even small instances of the construction problem. Our empirical results, therefore, are a performance comparison between the tower by tower (TBT) method, the row by row (RBR) method, the minimum spanning tree (MST) heuristic, and the reweighted minimum spanning tree (RMST) heuristic. We used three categories of problem instances.

In the first category, we used structures generated at random. Table 1 shows the comparative performances of TBT, RBR, MST and RMST on 10×10 randomly generated matrices with a maximum height of 15. The percentage parameter indicates the fraction of empty locations where no towers stand. 5 trials were used to generate the data in each row. In each row, the median number of additions and removals of blocks in the plans generated by each algorithm is reported. Here, we see the superior performance of RMST
In all cases. As the percentage of empty locations increases, the number of disconnected substructures also increases, and RMST begins to outperform even MST more and more.

In the second category, we designed LEGO models of world famous buildings and gave them as input instances to our algorithms. A sample of the empirical data is provided in Table 2 where the total number of additions and removals of blocks required by each algorithm is shown. Even for these instances, MST and RMST outperformed RBR and TBT by a large margin.

In the third category, we used handcrafted examples to provide “worst-case” scenarios. Even here, we observed the same trend. That is, MST and RMST outperformed RBR and TBT by a large margin. RMST typically generates plans that require only 45−60% of pickup and drop-off operations on blocks compared to TBT and RBR.

Our tree-based algorithms solved all instances in less than 5 seconds each. The algorithms are implemented in Java. All experiments were run on a single 2.3GHz quad-core (Intel Core 17) MacBook Pro machine with 16GB 1600MHz memory. A separate visualization program is used to get insights into the working of the algorithms.

A few resources including pictures of the LEGO building models, sample videos, and examples of generated plans are available at https://www.dropbox.com/s/o4m58ejtp2a0t32/icaps2014.zip.

Discussions

The problem of building a user-specified structure collectively using a team of TERMES robots can be studied under several different cost metrics and restrictions. Some of these variants include: (a) whether we are interested in minimizing the number of operations on blocks, the total distance traveled by the robots, the total distance traveled by them while carrying blocks, or some combination of these for minimizing the total energy consumed; (b) whether we are interested in minimizing the number of blocks drawn from the reservoir by maximizing the reuse of blocks; (c) whether we are given an empty or non-empty initial configuration; (d) whether the capacity of the reservoir is limited or unlimited; (e) whether we are interested in minimizing the makespan or the total number of operations in the plan; and (f) whether pipelining is feasible in addition to parallelism, that is, whether or not robots can be stationed in certain locations and handover blocks to each other.

In this paper, we chose to concentrate on the task of minimizing the number of pickup and drop-off operations on blocks under the assumptions of an empty initial configuration and an unlimited reservoir. However, in this section, we will explain the importance of this core problem to the other variants of the construction problem as well.

Consider the problem of maximizing the reuse of blocks. That is, the additions and removals of blocks should be connected to the reservoir as few times as possible. A good heuristic solution to this problem is to first minimize the number of pickup and drop-off operations and then perform a post-processing step on the plan generated. This post-processing step short-circuits consecutive pairs of addition and removal of blocks connected to the reservoir. Of course, maximizing the reuse of blocks also addresses the problem of a limited reservoir.

Since the TERMES robots can carry at most one block at a time, minimizing the number of pickup and drop-off operations on blocks, followed by the post-processing step of short-circuiting described above, serves as a good initial solution to the problem of minimizing the total distance traveled. Moreover, since the maneuvering actions, pickup and drop-off, consume more energy than other simpler actions, the methodology generates a good heuristic solution for minimizing the total energy consumption as well.

The idea of using trees to minimize the number of pickup and drop-off operations lends itself naturally to other considerations of parallelism. Performing dynamic programming on trees exploits common substructure in the inner loop. Here, subtrees are independent of each other, that is, the operations on blocks carried out at the locations corresponding to the nodes of one subtree do not affect the operations for another subtree. The search for a good tree on which dynamic programming should be carried out is delegated to the outer loop of the algorithm. In considerations of multiple robots and effective parallelism, only the outer loop needs to be modified to find “balanced” trees tailored to the objective function and the constraints of the problem. Of course, in the case of multiple robots, parallelism comes with the overhead of having to coordinate the robots such that they don’t collide with each other. This introduces combinatorial problems akin to multi-agent path finding. However, these problems can also be made simpler by computationally leveraging the fact that multi-agent path finding is easier on trees and with identical agents (Yu and LaValle 2012).

Being able to solve the collective construction problem for a specified non-empty initial configuration has many important applications in reconfigurable modular robotics (Yun and Rus 2010). Although a detailed discussion of this prob-

Table 1: Shows the relative performances of TBT, RBR, MST, and RMST on randomly generated structures.

<table>
<thead>
<tr>
<th>%Empty</th>
<th>TBT</th>
<th>RBR</th>
<th>MST</th>
<th>RMST</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>753</td>
<td>413</td>
<td>179</td>
<td>170</td>
</tr>
<tr>
<td>20</td>
<td>697</td>
<td>369</td>
<td>162</td>
<td>158</td>
</tr>
<tr>
<td>30</td>
<td>632</td>
<td>372</td>
<td>222</td>
<td>194</td>
</tr>
<tr>
<td>40</td>
<td>572</td>
<td>376</td>
<td>196</td>
<td>180</td>
</tr>
<tr>
<td>50</td>
<td>512</td>
<td>313</td>
<td>185</td>
<td>163</td>
</tr>
<tr>
<td>60</td>
<td>452</td>
<td>310</td>
<td>194</td>
<td>153</td>
</tr>
<tr>
<td>70</td>
<td>431</td>
<td>245</td>
<td>169</td>
<td>129</td>
</tr>
<tr>
<td>80</td>
<td>158</td>
<td>146</td>
<td>115</td>
<td>077</td>
</tr>
<tr>
<td>90</td>
<td>081</td>
<td>081</td>
<td>070</td>
<td>055</td>
</tr>
</tbody>
</table>

Table 2: Shows the relative performances of TBT, RBR, MST, and RMST on models of world famous buildings.

<table>
<thead>
<tr>
<th>Building Model</th>
<th>Matrix</th>
<th>Max H</th>
<th>TBT</th>
<th>RBR</th>
<th>MST</th>
<th>RMST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiffel Tower</td>
<td>7 x 7</td>
<td>15</td>
<td>845</td>
<td>845</td>
<td>781</td>
<td>509</td>
</tr>
<tr>
<td>Empire State</td>
<td>6 x 8</td>
<td>15</td>
<td>3152</td>
<td>932</td>
<td>450</td>
<td>476</td>
</tr>
<tr>
<td>Taj Mahal</td>
<td>12 x 12</td>
<td>6</td>
<td>896</td>
<td>384</td>
<td>352</td>
<td>350</td>
</tr>
<tr>
<td>Giza Pyramid</td>
<td>15 x 15</td>
<td>8</td>
<td>2752</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>Disney Hall</td>
<td>22 x 16</td>
<td>10</td>
<td>11091</td>
<td>2245</td>
<td>1493</td>
<td>1499</td>
</tr>
</tbody>
</table>
lem is beyond the scope of this paper, a relatively straightforward solution strategy falls out of the tree-based algorithm for solving the collective construction problem for empty initial configurations. To solve the collective construction problem for a specified non-empty initial configuration and a specified goal configuration, two instances of the construction problem are solved with empty initial configurations and goal configurations corresponding to the specified non-empty initial configuration and the specified goal configuration separately. In a post-processing step, the plan generated for the first instance is reversed, and the steps are short-circuited with those of the plan generated for the second instance.

Conclusions and Future Work

In this paper, we presented a tree-based algorithm for construction robots. Inspired by the TERMES project of Harvard University, robots in this domain are required to gather construction blocks from a reservoir and build user-specified structures much larger than themselves. Common to many variants of the problem, we identified the core combinatorial task of minimizing the number of pickup and drop-off operations performed on blocks in order to build user-specified structures. Our polynomial-time algorithm heuristically solves this problem and is based on the idea of performing dynamic programming on a spanning tree in the inner loop, and the search for a good tree to do so in the outer loop. Empirical results showed that our algorithm performs very well in simulation and scales easily to large problem instances. Besides being a useful technique for the problem of automated construction, we believe that valuable lessons can be learned from comparing the success of our algorithm with the failure of off-the-shelf planning technologies for this problem domain.

There are many avenues for future work. One important direction is to conduct local search on trees in the outer loop. This could not only lead to better solutions for the problem addressed in this paper, but could also lead to a general principle for solving the many variants of the construction problem. Lessons learned in the context of local search methods for solving other combinatorial problems, like SAT, can be employed here as well. Other directions include adapting our techniques to specific construction tasks from real-world domains and comparing them with other approximate heuristic strategies like Ant Algorithms (Dorigo, Di’Caro, and Gambardella 1999). Construction of more complex structures such as with roofs, hollow enclosures and non-uniform block sizes is also an interesting avenue for future work.

Acknowledgements

We thank Marcello Cirillo, Tansel Uras and Liron Cohen for their suggestions and helpful discussions, Tansel Uras and Liron Cohen also for their help by experimenting with general-purpose planners in our domain, and Radhika Nagpal for her interest in our project and her encouragement. Our research was supported by NSF under grant number IIS-1319966 and ONR under grant number N00014-09-1-1031. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies or the U.S. government.

References

