
Planning for Mining Operations with Time and Resource Constraints

Nir Lipovetzky and Christina N. Burt and Adrian R. Pearce and Peter J. Stuckey
Computing and Information Systems

The University of Melbourne
Parkville, Australia

Abstract

We study a daily mine planning problem where, given
a set of blocks we wish to mine, our task is to generate
a mining sequence for the excavators such that blend-
ing resource constraints are met at various stages of the
sequence. Such time-oriented resource constraints are
not traditionally handled well by automated planners.
On the other hand, the remaining problem involves find-
ing node-disjoint sequences with state-dependent travel
times on the arcs, which are highly challenging for a
Mixed-Integer Program (MIP). In this paper, we ad-
dress the problem of finding feasible sequences using
a combined MIP and planning based decomposition ap-
proach. The MIP takes care of the resource constraints,
and the planner solves the remaining sequence problem.
We extend the notion of finding feasible sequences to
finding good feasible sequences, by devising a heuris-
tic objective function in the MIP, which improves the
resulting search space for the planner. We empirically
analyse the scalability of our approach on a bench-
mark data set, before demonstrating its effectiveness on
a real world case study provided by our industry part-
ner. These results demonstrate that by using a heuristic
MIP, it is possible to obtain better makespan results with
a suboptimal planner than by using an optimal planner
with an uninformed MIP.

Introduction
Daily open-pit mine planning is the problem of generating
feasible sequences of blocks for excavating-equipment to
mine, such that blending requirements are met at the prod-
uct stockpiles. A feasible sequence is a series of actions
for each excavator, including movements between blocks,
and mining the blocks themselves. The task of generating a
feasible sequence involves allocating excavating equipment
to blocks. The scope of this paper is limited to excavators,
rather than also considering truck/hauling equipment.

In a surface mine, the blocks are pre-determined sections
of ore that are marked for mining in this schedule. Natu-
rally, there is a precedence ordering on the blocks for the
case where some blocks must be mined to reach the blocks
behind. A number of excavators have the task of mining this
set of blocks. The excavators move from block to block,

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

forming a mine sequence. The order of the blocks in these
sequences will affect the makespan and the ability to achieve
the required blend of the formed stockpiles. The excavators
may not mine more than one block simultaneously, lead-
ing to a state-wise node-disjoint path sub-structure to the
problem. Furthermore, the time required for an excavator to
travel between two blocks is dependent on what has already
been mined. That is, as blocks are removed, new pathways
may be formed. Therefore, the travel time is dependent on
the state of the mine. In this paper, we address the problem
of finding parallel plans that yield good, but not necessarily
optimal, makespans such that these criteria are met.

The computational difficulty for this problem arises not in
the size of the instances—these are actually quite small—
but in the layering of several difficult sub-structures. The
state-wise node-disjoint path sub-structure, which imposes
that excavator movements are contiguous and do not in-
tersect at blocks at any given moment, is analogous to
the problem of finding optimal multi-commodity network
flow, which is already NP-complete for the case of Eu-
clidean traversal times between blocks (Even, Itai, and
Shamir 1975). The precedence constraints alone can unde-
sirably convert a polynomial-time solvable problem to NP-
complete (Lenstra and Rinnooykan 1978). On top of this, we
have the resource constraints, which are known to convert
polynomial-time solvable problems to NP-hard complexity
(Blazewicz, Lenstra, and Rinnooykan 1983).

This challenging problem is of great practical importance
to mining operations. In this setting, long-term plans are
used to guide the derivation of short-term plans which, in
turn, are handed down to operational planners who must im-
plement the final, weekly, fine-resolution plan. It is at this
stage that undetected infeasibilities in the plans frequently
become apparent. Infeasibilities arise due to inaccurate allo-
cation of attributes of the ore in any given block, unavailabil-
ity of some equipment due to maintenance and breakdowns,
or, quite simply, the impossibility of achieving the plan due
to the time required to move equipment. The latter can only
be coarsely estimated in higher level planning, where the
plan fidelity is not sufficiently detailed to account for this
fine-grain information (Sandeman et al. 2010).

The current approach in industry is to solve the problem
using manual block picks. That is, a highly trained human
planner utilises their experience of plan actualisation to de-

404

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

vise excavator sequences in an ad hoc manner on a day-to-
day basis. Output from planning tools, such as mine schedul-
ing software, are used to guide these plans. However, they
lack a tool that explicitly gives a mining sequence for each
excavator, and their experience is necessary to create better
plans on-the-fly. Such a tool would give mine planners the
necessary information to improve equipment utilisation and
efficiency of the operation, as well as provide the flexibility
to adjust the schedule on-the-fly.

Solving problems with state-dependent traversal times is
achievable in planning [see, e.g., (Benton, Coles, and Coles
2012)]. However, mixed-integer programming has not been
used, to the best of our knowledge, to solve an operational
planning problem that accounts for equipment movement.
This is most likely because even when the traversal times are
not state-dependent, i.e., we assume the shortest Euclidean
travel time between any two blocks can be achieved, the
problem is still computationally challenging. This, in combi-
nation with the quantity of variables required to capture the
discretisation of a week into minutes (and the symmetries
that arise) renders the full problem intractable for present
day MIP solvers. However, the very nature of solution con-
struction in planning, i.e., searching through states, makes
it particularly amenable to this aspect of the problem. Con-
versely, one of the main challenges for planning is to rea-
son over highly constrained resources, even when all actions
have the same unitary duration (Nakhost et al. 2012). For
modern planning systems, encoding this problem just as a
planning problem is not tractable.

In this paper, we present a MIP–planning tool for solv-
ing this problem for our industry partner. We achieve this
by matching the complementary strengths of both MIP and
planning in a decomposition approach. We first approximate
the projection of the problem onto the resource related vari-
ables, and formulate this problem as a MIP. We derive a
guiding objective function which attempts to anticipate a
‘good’ solution space for the planner. The output from the
MIP is an allocation of blocks to stockpiles such that the re-
source constraints are met. This is the input to the planner,
which then efficiently finds the state-wise node-disjoint ex-
cavation sequences. The key insights are that the problem
itself has structure that we can exploit in both MIP and plan-
ning paradigms, and that the MIP output can be heuristically
manipulated to the advantage of the planner.

In the remainder of the paper, we will provide a full de-
scription of the application, as well as a brief background
to Mixed-Integer Programming and Related Work. We then
present further details of our methodology, including the
MIP and planning models. We demonstrate the scalability
of our method on benchmark problems, before illustrating
its performance on a case study, with discussions and con-
clusions following.

Background
Problem Description
The Rio Tinto operated Yandicoogina mine is a 54 million
tonnes/annum iron ore mine in Western Australia (22.77�S
119.23�E). The main product from Yandi is iron ore fines,

which is a small granularity product. While the iron content
is clearly important, there are contaminants in the ore that af-
fect the efficacy of smelting and metal quality once the ore is
processed. It is therefore important to our industry partner to
create a blended product that meets the contaminant require-
ments of its customers. Ore that is low in silicon dioxide
(SiO2) and aluminium oxide (Al2O3) is considered “high
grade” and can be blended with lower grade ore to obtain a
final product within expected contaminant grade bounds.

In our case study, we analyse data from Au-
gust/September 2013, where there were two primary
active pits. We consider planning periods of one week. In
order to demonstrate the computational effectiveness of
using a combined MIP and planning approach, we select the
most computationally complex, and therefore interesting, of
the available week data for our case study.

Within this time-frame, only pre-blasted ore may be
mined. Therefore, we do not consider vertical precedences.
Multiple levels can be trivially projected to a plane. We are
provided with an a priori short-term plan, which dictates
which blocks should be mined in that period and the goal
blends to be achieved in the stockpiles. Blocks vary from
5kT to 155kT in size, and are not uniformly shaped. We in-
fer precedences, travel and processing times from the mine
status, as provided by our industry partner.

The problem that we address in this paper can be formally
expressed as follows.
Definition 1 (Operational mine planning) Given a short-
term plan, goal blends and a set of blocks to be mined, de-
termine feasible extraction sequences for the available ex-
cavators to perform.

In addition to the problem definition, there are several as-
sumptions provided by our industry partner, as follows.
Assumption 1 Blocks may be split across several stock-
piles.

While the potential outcome of this assumption is not
ideal—as it could clearly lead to inefficient use of
equipment—it may be necessary to, for example, split a high
grade block across two stockpiles in order to meet the blend-
ing requirements. Such splitting actually occurs regularly in
the minesite, but is undesirable from a planning perspective.

Assumption 2 Only one excavator may mine a block at any
one time.

The accessibility of the blocks is also important—we re-
quire sufficient space for the excavator to swing 180� and
for trucks to be able to complete a full turn. Let �(b) contain
the sets of precedences for a given block b. Then we define
B
k

(b) 2 �(b) to be any of these sets, which are contiguous
blocks that must be removed together in order to gain access
to block b. For some blocks, such as those which are already
accessible, �(b) = ;. There may be |�(b)| such sets—any
of which may be removed to gain access, creating disjunc-
tive precedences. We provide an illustration of such a set in
Figure 1.
Assumption 3 A block is accessible if the set B

k

(b) of ad-
jacent blocks is cleared for some k.

405

b

i j k

Figure 1: An illustration of the disjunctive precedence sets.
Suppose we want to mine block b, and that this is possible
if two adjacent blocks are already mined. Let blocks i, j,
k be the blocks in the precedence set, while b is inaccessi-
ble from any other route. Then, the precedence set �(b) =�
{i, j}, {j, k}

, where B1(b) = {i, j} and B2(b) = {j, k}.

A further restriction relates to controlling the grade of each
stockpile. This control is easier to achieve if the stockpiles
are not created simultaneously.
Assumption 4 Stockpiles are created sequentially and a
new stockpile may not be started until the previous stockpile
is complete.

The output to the problem is a set of feasible sequences
for the excavators, which dictate their movement and mining
actions.

Mixed-Integer Programming
Mixed-Integer Programming (MIP) is both a modelling and
solving methodology for problems that can be described
completely with linear constraints and objective function,
and with both continuous and discrete variables. It relies on
the assumption that, when the discrete nature of some vari-
ables is relaxed, the remaining problem is convex and the
optimal solution to the relaxed problem occurs at an inter-
section point of its convex hull. Vossen et al. showed that
planning models can be equivalently expressed as MIP mod-
els. However, this requires an index of each variable to rep-
resent every state in the planning sequence—the resulting
MIP is therefore unlikely to be tractable using traditional
MIP solving methods in the context of interesting planning
problems.

Related Work
In the context of scheduling in mining, MIP technology
has been extensively studied. However, the operational level
planning, has not been well addressed. Smith discusses op-
erational level planning, but does not consider the exten-
sion to include equipment movement. Other notable works
in the MIP literature include Martinez and Newman, who
consider fine-grain operational productivities in the presence
of coarse-grain short term plans, modelled as a MIP; and,
Demeulemeester and Herroelen, who devise a branch and
bound procedure for resource-constrained project schedul-
ing. The first attempts to exploit the strength of MIP algo-
rithms to aid search for planners involved transformations
of a planning problem to a MIP problem—i.e., creating
linear programming or mixed-integer programming based

planners (see, e.g., (Bylander 1997; Kautz and Walser 1999;
Vossen et al. 2000).)

The natural motivation to incorporate the strengths of MIP
and planning is to use MIP as a feasibility check for planning
search—the intention here is to reduce the search space, as
in (Van Den Briel et al. 2007).

Another way to reduce the planning search space is by de-
composing the problem, as we have in this paper. When the
required structure is present in a problem, this is the obvious
choice and we do not claim that we are the first to implement
it. Fernández and Borrajo use a linear program to solve part
of a clustered-knapsack problem, and leave the remaining
causal constraints for the planner to solve. In another exam-
ple, Flórez et al. use a MIP to make a partial assignment in
an intermodal transportation application. This has the effect
of reducing the search space for the planner, such that the
problem becomes easier to solve in a reasonable time-frame.
In our work, we strengthen this notion to not only reduce the
state space for the planner, but to choose a part of the state
space that produces consistently good solutions.

Method
In order to decompose the problem into the respective
strengths of the two solving technologies, we use a projec-
tion method as in Benders Decomposition (e.g., see (Hooker
2005).) To begin, we approximate the projection of the prob-
lem onto the variables relating to resource allocation, i.e., we
eliminate the cumbersome time-related variables. This prob-
lem can be solved effectively by MIP technology, yielding
an allocation of blocks to stockpiles, such that the blend-
ing constraints are satisfied. Since there may be many so-
lutions meeting this criteria, we attempt to guide the MIP
toward ‘better’ solutions using a specially formulated objec-
tive function and constraints. We then pass this block allo-
cation to the planner, which searches for good excavation
sequences for the available equipment. We note that even if
the MIP and planning decomposed problems are solved to
optimality, the final solution cannot be guaranteed to be op-
timal. This is because the MIP model is a relaxation of the
overall problem, and can yield solutions that are not feasi-
ble with respect to a time horizon. We therefore lift the time
horizon restriction—that the plans must be enacted within a
week—as our solutions are approximate by design.

An Approximation of the Projection (as a MIP)
Although we project away the ‘movement’ or time-related
variables, the stockpiles themselves are created sequentially:
this ordering gives rise to an implicit time ordering in the
projection. That is, in the projection we can consider the
stockpiles to partition time into � periods, where � is the
number of stockpiles inferred from the summation of block
tonnes and the minimum allowable size of stockpiles. Every
block b is contained in the set of blocks B. We adopt the
following variables in this model:
x
b,d

[continuous] gives the proportion of block b 2 B mined
in period d 2 �,

y
b,d

[binary] indicates if block b 2 B has been completely
mined in period d 2 �,

406

�
b,d,k

[binary] indicates if an adjacent subset of blocks
B
k

(b) ✓ �(b), k 2 {1, . . . , |K(b)|}, to block b are cleared
by period d.
Other important notation includes:

c is an index referring to a particular contaminant,
C

b

is the capacity (tonnes) of block b,
G

b,c

is the grade of contaminant c in block b,

Gi

c

is the lower (upper) bound for contaminant c for all pe-
riods, when i = L (i = U),

Di is the lower (upper) bound for the size of the stockpiles,
when i = L (i = U),

K(b) is the set of indexes for the disjunctive precedences,
such that k 2 {1, . . . , |K(b)|}.
The following model, feasibility MIP F , describes a

mixed-integer programming formulation where the objec-
tive function, (1), is zero for all variables. Therefore, as it
is stated here it is a feasibility problem. Later, we will alter
the coefficients to be non-zero for some variables, thereby
obtaining a way to drive the solutions into a better solution
space.

F : min 0> (xb,d, yb,d, �b,d,k) (1)

s.t.
X

d

xb,d = 1 8 b, (2)

X

d

yb,d = 1 8 b, (3)

X

b

Cbxb,d � D

L 8 d, (4)

X

b

Cbxb,d  D

U 8 d, (5)

X

b

Gb,cCbxb,d � G

L
c

X

b

Cbxb,d 8 c, d, (6)

X

b

Gb,cCbxb,d  G

U
c

X

b

Cbxb,d 8 c, d, (7)

�b,d,k 
P

d0d,i2Bk(b)
yi,d0

|Bk(b)|
8 b, d, k, (8)

�b,d,k �
X

d0d,i2Bk(b)

yi,d0 � (|Bk(b)|� 1) 8 b, d, k, (9)

X

d0d

xb,d0 
X

k

�b,d,k 8 b, d, (10)

yb,d 
X

d0d

xb,d0 8 b, d, (11)

xb,d 2 [0, 1], �b,d,k, yb,d 2 {0, 1}. (12)

Constraint (2) ensures all blocks in the given set are mined.
Constraint (3) ensures that block completion occurs only
once. The correct size of the stockpiles is ensured by de-
mand constraints (4)–(5), while the blend constraints are en-
forced by constraints (6)–(7). The disjunctive precedence
constraints (8)–(10) prevent x

b,d

from being mined unless
any precedences in a set B

k

(b) 2 �(b) for k have been
mined. Constraint (11) links variables x

b,d

and y
b,d

together.
The precedence constraints (8)–(10) in this form are not

sufficient to prevent cliques of blocks that each satisfy one

Stockpile 2

Makespan for Stockpile 1

Excavator 1

a c

Excavator 2

b

Excavator 3

d f

Figure 2: An illustration of a planning solution based on a
feasible MIP F output. The excavator-to-block allocations
are given, where the rectangles depict the time required to
mine each block. Once an excavator has finished mining a
block, it will move to the next block for that stockpile. If no
such block exists, it will wait. Typically, the stockpile allo-
cations elicit unbalanced block sizes, leading to long waiting
times for the excavators.

anothers precedences, yet together are not reachable. In the
case where precedence cliques occur, we introduce an addi-
tional constraint, which considers the precedences for every
set A

b,k

= b [B
k

(b), which is the union of b with a sub-
set of its precedences. �(A

b,k

) now defines the precedences
for that union set, which necessarily excludes every block
from A

b,k

. Then the required constraint to ensure these sets
of blocks are themselves accessible is:

P
i2Ab,k

x
i,d

|A
b,k

| 
X

b

02�(Ab,k),d0d

y
b

0
,d

0 8 A
b,k

, d.

While this type of constraint should be implemented in
a separation algorithm (see, for example, Geoffrion and
Marsten), the number of such precedence cliques arising in a
one week schedule is very small. In these cases, the number
of constraints can easily be determined a priori and can be
added to the model from the outset.

The key output from the MIP F are the values of variable
x
b,d

, which provide the quantity of block b which should be
mined for stockpile d. This model leaves us with a compu-
tationally efficient way to find a feasible block to stockpile
allocation. However, we would like to generate allocations
that are desirable for the planner. Consider Figure 2.

Here, we illustrate a typical planning solution obtained
from the allocation given by the feasible MIP F . Since the
stockpiles must be generated in sequence, the imbalance in
workload between the excavators leads to waiting times that
have negative impact on the makespan. Ideally, the MIP so-
lution would produce a more balanced allocation, which is
illustrated in Figure 3. This is discussed in the remainder of
this section.
Desirable properties of the stockpile allocation

We would like to find the best partitioning of the blocks
from the MIP such that the planner can find efficient se-
quences for the excavators in order to reduce the makespan.
That is, we wish to manipulate the MIP output such that the

407

Stockpile 2

Makespan for Stockpile 1

Excavator 1

c g

Excavator 2

f a

Excavator 3

e b

Figure 3: An illustration of a planning solution based on
the heuristic MIP H output. The stockpile allocations are
now balanced with respect to workload, leading to shortened
waiting times for excavators.

allocation is as close as possible to the optimal allocation
obtained for the minimal makespan solution. Recall that the
MIP F does not have any variables associated with time, ex-
cavators or mine topology, and therefore cannot explicitly
encode the allocations of blocks to excavators. However, we
can motivate the allocations using an objective function. The
desirable properties of the solution from F are:
1. Each excavator makes a contribution to each stockpile.

Waiting leads to under-utilisation of equipment, and may
contribute to longer makespans.

2. The workload for each stockpile is balanced among ex-
cavators. Clearly, the makespan will be minimised if the
workload is shared.

3. Partitions preferably occur in neighbouring stockpiles.
This property allows excavators to stay within the parti-
tioned block and begin mining it immediately in the pe-
riod.
One way to achieve properties (1) and (2) is to minimise

the deviation between excavator workload. Since the MIP
has no variables relating to excavators, we estimate possible
excavator allocations by introducing continuous variables,
�i
l,l

0
,d

2 R+, to infer the minimum positive (negative) devi-
ation between the material moved in any period when i = +
(i = �) for any excavator pair (l, l0). These deviations are
sound if we know the excavator allocations. So, we first need
to make a best-guess as to which block sequences the plan-
ner will give to the excavators. To do this, we partition the
blocks into preferential sets, P(l), for each excavator us-
ing a fair division scheme as follows: each excavator has
an equal opportunity to nominate its preferred block (which
we choose based on the shortest path from each excavator to
each block.) We then introduce new constraints:

�

+
l,l0,d �

X

b2P(l)

Cbxb,d �
X

b02P(l0)

Cb0xb0,d 8 l, l

0
, d, (13)

�

�
l,l0,d �

X

b02P(l0)

Cb0xb0,d �
X

b2P(l)

Cbxb,d 8 l, l

0
, d. (14)

In order to create balance, it is not sufficient to minimise the
sum of the deviations. This is because a summation amor-

tises across all deviations and can still lead to some large
differences between workloads. We must, instead, minimise
the bottleneck deviation. Since we wish to obtain ‘uniform’
workload in each stockpile, we only need to minimise the
maximum deviation within each stockpile. To do this, we in-
troduce further continuous variables, ⇢

d

2 R+, to represent
this bottleneck, and link it to the deviations in the following
way:

⇢d � �

i
l,l0,d 8 l, l

0
, d, i 2 {+,�}. (15)

Thus, we obtain the following objective function to min-
imise the bottleneck in each stockpile:

min
X

d

⇢
d

.

These extensions to the feasible MIP F take care of prop-
erties (1) and (2). We shall differentiate this MIP from the
feasibility version by referring to it as the heuristic MIP H .

For property (3), we introduce a constraint that ensures
that at most two adjacent variables may be non-zero:

SOS2(x
b,d

8 d), 8 b. (16)

This is a complex constraint expressed as a Special-
Ordered Set (type 2) branching rule (Ryan and Foster 1981).
It elicits a structure suitable for branching on the constraint
itself in the branch-and-bound schema for solving MIP. In-
cluding this constraint ensures that, if blocks are partitioned
across multiple stockpiles, this is restricted to at most two
stockpiles and the stockpiles must be adjacent.

To demonstrate the computational effect of this constraint,
we perform separate experiments on problem H with the
SOS2 encoded, which we indicate by MIP H

s

.

Planning Model
The planning problem is formulated in PDDL2.1 (Fox and
Long 2003) such that its solution is a concurrent temporal
plan realising a partition from blocks to stockpiles, com-
puted previously by the MIP solver. The purpose of the par-
tition is to reduce the planning search space, simplify the
resulting model, and thus improve the scalability of the plan-
ning solvers.

If no partition is given, the planning model has to ac-
count for the blending constraints over each stockpile. Note
that these constraints do not apply for the complete state
trajectory, but rather intermediate states as each stockpile
is completed. Current temporal planning technology is not
equipped with adequate tools to reason over these types
of constraints. Conversely, modern planners act greedily to
achieve the blend constraints for the first stockpiles, without
a mechanism for detecting poor choices that lead to infea-
sibility. If a partition of blocks to stockpiles is taken as a
sorted sequence of goal sets, it is sufficient to reduce the
search space to only finding concurrent paths that respect
this order. Indeed, all the paths that do not violate the order
provided by the partition achieve the blending constraints,
without the need to model blending in the planner.

The partition not only puts the planner into a feasible
space, but also avoids the need for time windows, which, if

408

too coarse, may render some blending requirements infeasi-
ble; and, if too fine, may incur a branching factor explosion.
Given the practical assumption 2, and the MIP solution, a
single dig action per excavator for each partitioned block
per stockpile is sufficient. Thus, the total number of possible
digging actions is

��L⇥
X

b,d

xb,d>0

��,

where L is the number of excavators and the indicator func-
tion is 1 if some ore is removed from block b 2 B in period
d 2 �. A fixed time window is assigned to each action de-
pending on the extraction rate of an excavator and the tonnes
to be mined per block.

Moreover, given Assumption 4, we can further exploit the
MIP solution to decompose the planning problem itself. If
the blocks are partitioned into � stockpiles, it creates � plan-
ning problems, the solution of which provides the move-
ments and assignments of the excavators that achieve the
mining of each block just for the current stockpile d 2 1..�.
Once the first stockpile, d = 1, is solved, the initial positions
of the excavators for the next stockpile, d+1, are defined as
the final positions in previous subproblem d. The solution
for each stockpile, d, concatenated together form a complete
solution for mining the sequence of stockpiles. The prece-
dences ensure that the MIP makes good decisions regarding
ordering the stockpiles, and the planner takes this as input.
Note that no digging action for stockpile d+ 1 can start be-
fore the last digging action for stockpile d ends, but move-
ments are still allowed to position the excavators in the best
position for the blocks in the next subproblem.

We define the topology of the mine as an undirected graph
G

T

= hV
T

, E
T

i. Vertexes, v 2 V
T

, are the initial location
of excavators and scheduled blocks, and edges (v, v0) 2 E

T

are roads connecting the blocks. A cost function dist(v, v0),
for all (v, v0) defines the distance to traverse an edge. Note
that the cost function associated with indirect paths is state-
dependent, as the traversal time may update as blocks are
mined and new pathways are created.

We model the temporal planning subproblems without the
need for any numerical variable as follows.

Definition 2 (planning problem ⇧
d

) Given the tonnes
x
b,d

⇥ C
b

mined from each block b for stockpile d, the
topology graph G

T

and road distances dist(v, v0), the
planning problem ⇧

d

for stockpile d is characterised by a
tuple hF, I,O,Gi, where

• F = {at(b, v), at(l, v),mined(b)} are the set of Boolean
variables (fluents), at(⇤, v) describing all possible loca-
tions of excavators l 2 L, fixed location of blocks b 2 B,
and mined(b) indicating if a scheduled block is mined for
a particular stockpile;

• I = {at(b, v), at(l, v)} describes the initial locations of
blocks and excavators;

• O = {dig(l, b),move(l, v, v0)} are the set of operators—
dig(l, b) defines the digging action for each excavator and
scheduled block, and move(l, v, v0) defines the moving
action for each excavator along each edge;

• G = {mined(b)} is the goal situation, defined for all
blocks b in stockpile d, whose value x

b,d

> 0 in the MIP
solution.

A solution for ⇧
d

is a plan, ⇡
d

, containing at most |G| dig
actions, as just one excavator at a time can mine a block, and
a set of move operators. Given the excavators dig rate, R

l

,
in tonnes/minute and velocity V

l

in metres/minute, the dura-
tion of a dig action is defined as dur(dig(l, b)) = C

b

⇥ x
b,d

/ R
l

, i.e., tonnes allocated from block b to stockpile d di-
vided by the digging rate of excavator l; and, the duration
of a move action as dur(move(l, v, v0)) = dist(v, v0) / V

l

,
i.e., the distance connecting vertexes (v, v0) 2 E

T

divided
the velocity of excavator l. Note that digging actions last
substantially longer than movement actions, as the average
block takes 1000 minutes to dig, while average moving ac-
tions take only 80 minutes.

In order to apply a dig(l, b) action, excavator l has to be
at a location v where at(b, v) = true. Then, mined(b) be-
comes true at the completion of the action, while at(b, v)
becomes false if y

b,d

= 1, i.e., block b is finished at cur-
rent subproblem d. A special fluent, mining(l), is true
throughout the duration of dig(l, b) actions, and is neces-
sarily false at the beginning of any moving action. The op-
erator move(l, v, v0) also requires excavator l to initially be
at v, location v0 to be free by having at(l, v0) = false for
all l 2 L, and sets location v0 true at the end. Furthermore,
as an excavator has to be located in the same location of an
available block in order to mine it, but cannot move through
it, move(l, v, v0) requires that at(b, v) is false. As a result,
if an excavator chooses to move into a location containing a
block to mine, it is forced to mine it, avoiding unnecessary
branching in the search. A special move operator is intro-
duced for moving excavators from partially mined blocks,
to prevent them from getting stuck.

The plan, ⇡
d

, for each stockpile d = 0, . . . ,� is concate-
nated ensuring that all dig(l, d+1) actions for stockpile d+1
start after the last dig(l, d) action for stockpile d has fin-
ished.

The quality of the global solution is given by the ability of
planners to minimise the makespan of the solutions ⇡

d

. The
only optimal temporal planner available is CPT (Vidal and
Geffner 2006), while more alternatives are available as satis-
ficing temporal planners. Surprisingly, not even the satisfic-
ing planners scale-up if all the stockpiles are solved at once,
only finding quick solutions for the subproblems ⇧

d

induced
by the MIP partition. We compare the impact of the optimal
planner CPT, and the suboptimal planner POPF (Coles et al.
2010) comparative results for the readers interest 1.

Experiments
We first test the scalability of our approach on bench-
mark test cases before demonstrating its effectiveness on
a real case study. All experiments were performed single
threaded on a 2.40GHz Intel Processor, with processes time-
or memory-out after 2 hours or 2 GB. The MIPs were solved
using Cplex (v.12.5) with tuned pre-processing and branch-

1CPT ver. 4, and POPF ver. 2, from the 2011 IPC.

409

and-cut settings for different difficulty classes. For the inter-
ested reader, these included switching off Gomory cuts for
feasibility problems with many precedences, turning off cut-
ting plane generation and branch on pseudo reduced costs
for no precedences. For the model with an objective func-
tion, mixed-integer rounding cuts were generated moder-
ately for many and no precedences, while for instances with
moderately many precedences, Gomory cuts were generated
aggressively. Since F is a feasibility problem, for this prob-
lem we set Cplex to emphasise feasibility, and the algorithm
stops once any feasible solution is obtained. However, for H
and H

s

, we run Cplex to optimality. CPT is run with the con-
flict counting heuristic option, and POPF runs only the EHC
fast but incomplete search, which, despite being incomplete,
always finds a solution. POPF-BFS search is disabled, as it
does not improve POPF-EHC solutions over 30 min.

Analysis on Benchmark Problems
We varied the following key parameters in our analysis:
• number of blocks (20–30, increments of 5);
• number of excavators (3  |L|  5, increments of 1);
• block capacities (sampled [normal distribution] with µ =
50000 and � = 30000);

• tightness of blend constraints (sampled [uniform distribu-
tion] outside bounds by 200%.)

These criteria give rise to 450 test cases with 50 random
instances generated for the block and excavator variants. The
topology of the test instances, are designed to be similar to
real-life examples: few blocks are clustered. To create the
topologies, we scatter blocks and excavators using a uniform
distribution along the x and y axis in a grid. We then mapped
the blocks from the grid to a graph, G

T

= (V
T

, E
T

), such
that each edge defines the direct path between two nodes,
and each node defines a block and excavator initial position.

In Table 1, we present the results from experiments with
the three versions of the MIP: F , H , and H

s

, each with
CPT and POPF. Of the 450 generated instances, 113 were
infeasible due to the high grade variance. These were all de-
tected by the MIP solver in less than 0.05s. POPF was able
to solve all the benchmark instances given any of the parti-
tions, while CPT timed out on most of the instances with 30
blocks . As expected, the Cplex run-time for MIP F is faster
than for H , which uses an objective function; while H

s

is
the slowest, as it requires the blocks to be partitioned among
adjacent stockpiles—that is, it has an additional constraint.
Nevertheless, their performance is extremely fast, only tak-
ing 0.01, 0.02, and 0.04 seconds respectively. POPF is on av-
erage 2 orders of magnitude faster than CPT. Interestingly,
both planners were able to realise the partitions computed
by F faster than those computed by both heuristic MIPS,
with H

s

producing faster planning solutions than H . These
results can be understood by looking at the plan length of
the full solution: F plans are shorter than plans for H and
H

s

, which results from the heuristic MIPs trying to partition
more blocks than F in order to share the workload among all
excavators, thus resulting in more digging actions. Note that
plans arising from H

s

are shorter than those from H . This

is due to partitions occurring in adjacent stockpiles, which
results in less moving actions. This also has an important
impact on computation time for the planner.

Minimising makespan is of extreme importance for our
industrial partner, as each excavator, on average, can extract
3000 Tons in 60 minutes—shorter makespans translate di-
rectly to increased overall production. In our experiments,
the heuristic MIPs improve makespan over F with either
planner. While H

s

marginally improves the makespan only
for POPF, there is no impact for CPT. The key to under-
standing this is that more freedom is allowed in H , than H

s

,
to partition the blocks among distant stockpiles if it leads
to a better workload balance. Since CPT is optimal, this re-
striction is clear in the increased makespan. However, for
POPF, the additional freedom from H leads to much longer
suboptimal movements. Overall, CPT yields a significantly
shorter makespan than POPF, thereby evidencing the impact
of computing optimal plans for each subproblem.

Solvers I S T #P M

F/POPF 450 (113) 450 (0.01) 199 57.66 7491.08
H/POPF 450 (113) 450 (0.02) 2.56 68.60 7429.84
Hs/POPF 450 (113) 450 (0.04) 2.14 60.49 7373.48

F/CPT 450 (113) 375 (0.01) 294.00 54.30 6285.57
H/CPT 450 (113) 328 (0.02) 711.97 68.68 5992.51
Hs/CPT 450 (113) 363 (0.04) 582.68 61.48 6173.74

Table 1: Benchmark results. I is the total number of in-
stances, S is the number of “solved” instances (including
those proved unsolvable by MIP in parentheses), T is (MIP)
planner computation time in seconds, #P is plan length, and
M is makespan in minutes. T , #P, and M are averaged
among instances solved by all solvers. F , H , and H

s

stands
for feasability, heuristic MIP, and heuristic MIP with SOS2
respectively.

Analysis on Real Case Studies
From data provided by our industry partner, we selected the
four most interesting (i.e., challenging) weeks, with at least
25 blocks across all pits. These schedules did not contain
any complex precedences, so constraints (8)–(10) reduce to

X

d

0d

x
b,d

0 
X

d

0d,i⇢�(b)

y
i,d

0 8 b, d,

thereby simplifying the difficulty of solving the MIP sig-
nificantly. We generated a concatenated instance of the first
three instances in order to build a more difficult instance
with respect to precedences. We generated blend targets
for four contaminants: iron, aluminium oxide, silicon diox-
ide and phosphorous. The permissible gaps of these grade
bounds vary between contaminants from 0.006% to 0.4% of
the final blend. Thus we have 5 instances ranging from 22–
75 blocks with 1173–3704 kT, with an average block size of
50kT varying from 5–150kT, and contaminants grade rang-
ing from within the bounds up to 30 times outside the min-
imum and maximum blend targets. In all instances we per-
mitted the average available equipment of 5 excavators.

410

Data (Plan Length) Makespan [minutes] (MIP) Computation Time [seconds]
Inst. |B| P

P
F/POPF H/POPF Hs/POPF F/CPT H/CPT F/POPF H/POPF Hs/POPF F/CPT H/CPT

(1) 37 26 1614 (117) 12218 (140) 9704 (133) 8678.81 — — (0.02) 10 (0.06) 12.69 (0.12) 9.67 (0.02) — (0.06) —
(2) 23 8 1173 (75) 8131 (109) 7130 (95) 7209.87 (74) 7805 — (0.01) 2.3 (0.04) 2.76 (2.20)2.18 (0.02) 249.65 (0.05) —
(3) 25 0 1449 (75) 14906 (110) 9475 (90) 8928.81 (75) 14659 (111) 7835 (0.01) 2.65 (0.02) 3.44 (1.56)2.48 (0.01) 4715.69 (0.02) 6107.06
(4) 21 18 1375 (68) 12171 (94) 7645 (81) 7591.50 (78) 10438 (97) 6021 (0.01) 1.16 (0.02) 33.78 (0.69)1.05 (0.01) 894.23 (0.02) 1694.99
(5) 66 68 3704 (255) 37405 (385) 26761 — — — (0.20) 74.49 (0.37) 92.69 — (0.20) — (0.38) —

Table 2: The case study data and complete method results. In column (1) we list the instances. |B| refers to the number of
blocks. P refers to the number of precedences.

P
is the total ore in kilotonnes. F , H , and H

s

stands for feasability, heuristic,
and heuristic with SOS2 MIP respectively. Computation time is reported for (MIP) planner in seconds. A — indicates a timeout

The results of Table 2 over the real case scenarios
are consistent with the results over the benchmark prob-
lems. F/POPF and H/POPF solve all instances, and
H

s

/POPF solves all but instance 5, which represents 3
weeks of operations. Here, the SOS2 constraint renders the
MIP too difficult and Cplex runs out of memory. F/CPT
and H/CPT solve 3 and 2 instances, respectively. CPT
times out in all instances trying to realise the partitions com-
puted by H

s

and is therefore not reported in the table. H and
H

s

partitions render longer plans than F with both planners,
while H

s

yields shorter plans than H with POPF, as both H
and H

s

try to partition more blocks to minimise the resulting
makespan. As a result, the makespan of H and H

s

partitions
are significantly better than F with both planners. Remark-
ably, the heuristic MIP solutions computed with the subop-
timal planner POPF yield a much smaller makespan than the
solutions computed by the optimal planner CPT with just the
feasible MIP F . While computing optimal plans improves
the quality of the makespan, this result highlights the impor-
tance of finding ‘good’ partitions from blocks to stockpiles
with the MIP solvers, which H and H

s

are able to infer.

Discussion and Evaluation
Tables 1 and 2 present the computational results from our
experiments using MIP F , H , and H

s

with two planners,
suboptimal POPF and optimal CPT. CPT obtains better so-
lutions with respect to makespan, than POPF. We also see
a sharp improvement in makespan when using the heuris-
tic MIP compared with the feasibility MIP, even when the
optimal planner CPT is used for the feasibility MIP and sub-
optimal POPF for H . The concatenated instance (5) presents
significantly more precedences than the other instances, and
therefore becomes more difficult to solve quickly. POPF is
faster than CPT, so choice of planner becomes a choice be-
tween speed and quality. It is remarkable, also, that the ad-
dition of the SOS2 constraints (16) improved the allocation
such that it was not only easier for the planner to find a so-
lution, but also yielded better quality solutions.

We know, from experimentation, that it is not easy to out-
perform the feasibility problem F in terms of solution qual-
ity. For example, one heuristic we tried was to allocate the
blocks according to distance from the excavators. This alone
produced biased allocations that were worse than those pro-
vided by the feasible MIP. Contrary to intuition, only a small
part of the differences in the makespan results are due to
movement. The majority of the difference is due to a shar-
ing of the workload amongst the excavators such that wait-

ing time is minimised.
This work strongly emphasises both the practical impor-

tance of planning, and the importance of heuristics to drive
the planner toward better solutions. On one hand, we have
shown that planning can play a key role in solving a prob-
lem that has been left unaddressed in the literature in spite of
its practical significance. On the other hand, our experiments
have illustrated that good heuristics can be MIP-based, and
can give rise to better results when combined with a subop-
timal planner than simply using an uninformed decomposi-
tion MIP/planning approach.

Ideally, we would like to compare the results of our ap-
proach with that of a human mine planner. Unfortunately,
this is not possible as we take the block set, B, from the
short-term plan, while the mine planner is influenced by the
current state of the mine. This means there is a mismatch
between the block sets considered in each week. In future
incarnations of this solver, we will take the current mine sta-
tus as an input. These are necessary, anyway, if the planner
wishes to use our tool on-the-fly with the most up-to-date
information possible, but also permit comparisons.

Conclusions and Outlook

In this paper, we have presented a comprehensive illustra-
tion of how MIP and planning technology can work together
to efficiently solve a real-world mining problem. In particu-
lar, we demonstrated an effective method for solving prob-
lems with state-dependent edge costs (in a network), and re-
source constraints. The basic approach itself is simple and
re-deployable for other applications with similar require-
ments. Our key contribution in this paper is the development
of a ‘guiding’ objective function, which helps the MIP to se-
lect solutions that have desirable properties for the planner.

Our industry partner has also indicated interest in an ex-
tension of the problem which involves including, as an op-
tion, blocks that are scheduled to be mined in the future.
Such a tool would allow the Operations Planners to validate
their intuition regarding schedule ‘fixes’ or ‘re-optimising’
on-the-fly. As it is, the presented approach is also useful for
Operations Planners to check weekly schedules for feasibil-
ity and to quickly derive good mining sequences for the ex-
cavators. Thus, it is a valuable tool to aid in the complex and
expensive decision-making that occurs on mine sites.

411

Acknowledgements
The authors wish to thank Jon Lapwood and John Usher
from Rio Tinto for their extensive discussions throughout
our research. This research was co-funded by the Australian
Research Council linkage grant LP11010015 “Making the
Pilbara Blend: Agile Mine Scheduling through Contingent
Planning” and industry partner Rio Tinto.

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In Proceedings of ICAPS, 2–10.
Blazewicz, J.; Lenstra, J.; and Rinnooykan, A. 1983.
Scheduling subject to resource constraints: classification and
complexity. Discrete Applied Mathematics 5:11–24.
Bylander, T. 1997. A linear programming heuristic for opti-
mal planning. In Proceedings of AAAI/IAAI, 694–699.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
ICAPS, 42–49.
Demeulemeester, E., and Herroelen, W. 1992. A
branch-and-bound procedure for the multiple resource-
constrained project scheduling problem. Management Sci-
ence 38(12):1803–1818.
Even, S.; Itai, A.; and Shamir, A. 1975. On the complex-
ity of time table and multi-commodity flow problems. In
Proceedings of FCS, 184–193.
Fernández, S., and Borrajo, D. 2009. Solving clustered over-
subscription problems for planning e-courses. In Proceed-
ings of SPARK Workshop, volume 9.
Flórez, J. E.; de Reyna, A. T. A.; Garcı́a, J.; López, C. L.;
Olaya, A. G.; and Borrajo, D. 2011. Planning multi-modal
transportation problems. In Proceedings of ICAPS, 66–73.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20:61–124.
Geoffrion, A. M., and Marsten, R. 1972. Integer program-
ming algorithms: A framework and state-of-the-art survey.
Management Science 18(9):465–491.
Hooker, J. N. 2005. A hybrid method for the planning and
scheduling. Constraints 10(4):385–401.
Kautz, H., and Walser, J. P. 1999. State-space planning by
integer optimization. In Proceedings of AAAI/IAAI, 526–
533.
Lenstra, J., and Rinnooykan, A. 1978. Complexity of
scheduling under precedence constraints. Operations Re-
search 26:22–35.
Martinez, M. A., and Newman, A. M. 2011. A solu-
tion approach for optimizing long-and short-term produc-
tion scheduling at lkab’s kiruna mine. European Journal of
Operational Research 211(1):184–197.
Nakhost, H.; Hoffmann, J.; Müller, M.; et al. 2012.
Resource-constrained planning: A monte carlo random walk
approach. In Proceedings of ICAPS, 181–189.

Ryan, D. M., and Foster, B. A. 1981. An integer program-
ming approach to scheduling. Computer scheduling of pub-
lic transport urban passenger vehicle and crew scheduling
269–280.
Sandeman, T.; Fricke, C.; Bodon, P.; and Stanford, C. 2010.
Integrating optimization and simulation—a comparison of
two case studies in mine planning. In Proceedings of WSC,
1898–1910.
Smith, M. L. 1998. Optimizing short-term production
schedules in surface mining: Integrating mine modeling
software with ampl/cplex. International Journal of Mining,
Reclamation, and Environment 12:149–155.
Van Den Briel, M.; Benton, J.; Kambhampati, S.; and
Vossen, T. 2007. An lp-based heuristic for optimal planning.
In Principles and Practice of Constraint Programming–CP
2007. Springer. 651–665.
Vidal, V., and Geffner, H. 2006. Branching and pruning: An
optimal temporal pocl planner based on constraint program-
ming. Artificial Intelligence 170(3):298–335.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 2000. Ap-
plying integer programming to ai planning. The Knowledge
Engineering Review 15(1):85–100.

412

