
Plan, Repair, Execute, Explain —
How Planning Helps to Assemble Your Home Theater

Pascal Bercher, Susanne Biundo, Thomas Geier
Thilo Hoernle, Felix Richter, Bernd Schattenberg

Institute of Artificial Intelligence,
University of Ulm, Germany,

email: firstName.lastName@uni-ulm.de

Florian Nothdurft
Institute of Communications Engineering

University of Ulm, Germany
email: florian.nothdurft@uni-ulm.de

Abstract

In various social, work-related, or educational contexts, an
increasing demand for intelligent assistance systems can be
observed. In this paper, we present a domain-independent
approach that combines a number of planning and interaction
components to realize advanced user assistance. Based on a
hybrid planning formalism, the components provide facilities
including the generation, execution, and repair as well as the
presentation and explanation of plans. We demonstrate the
feasibility of our approach by means of a system that aims to
assist users in the assembly of their home theater. An empiri-
cal evaluation shows the benefit of such a supportive system,
in particular for persons with a lack of domain expertise.

Introduction
Today’s rapid technological progress periodically provides
us with technical systems, services and devices of increas-
ingly complex, “intelligent”, functionality. Those systems
include household appliances, web services, cars, service
robots, electronic devices such as smartphones, and much
more. However, it is not always easy to operate these sys-
tems and, even less so, to actually exploit the whole range
of their potential. In many cases, users are overwhelmed or
stressed out by awkward operation menus, inappropriate in-
teraction modes, or inconvenient or even missing instruction
manuals. Moreover, the demand for assistance systems that
support users in their every-day life by helping them to ac-
complish certain tasks or to handle systems and devices ap-
propriately becomes more and more important, in particular
in view of the aging society.

We show how AI planning technology can be employed to
perform user assistance in a smart and valuable fashion. We
introduce a system architecture composed of a number of
planning components, a knowledge base, as well as compo-
nents to manage the system’s dialog and interaction with the
user. The planning components include a hybrid planner that
combines hierarchical concepts with those of partial-order
causal-link planning. In addition, a plan execution system,
as well as plan repair and explanation components are parts
of the architecture. User assistance is based on automati-
cally generated plans. Such a plan of actions is passed to

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the user in a stepwise manner. The user’s execution of these
actions is monitored. This way, the system is able to detect
execution failures or deviations from the proposed plan and
to initiate the repair of the original plan accordingly. Fur-
thermore, explanations can be given, which elucidate why
a certain action is part of the plan, for example. Plans and
explanations need to be communicated to users in an ade-
quate manner, however. Therefore, the system’s facilities
of establishing dialogs with users and interacting through
various modalities are controlled by advanced dialog and in-
teraction management components. They enable the system
to give instructions and explanations via displayed text and
speech, as well as to understand users’ spoken responses and
input via touch screen. We used the planning and interaction
components and their orchestration within the overall archi-
tecture to implement a prototype system that assists users in
the assembly of their home theater. Finally, we carried out
an empirical user study to evaluate the acceptance and bene-
fit of such an assistance system. It showed that the system’s
support was received very well, in particular by non-experts.

Planning technology has been recently used in several hu-
man computer interaction-related contexts. One line of re-
search aims at supporting persons with various impairments,
such as children with autism (Bernardini and Porayska-
Pomsta 2013) or persons suffering from dementia (Boger
et al. 2005). Another line investigates systems that realize
assistance functionality by performing certain interaction-
related tasks presently done by humans, such as household
chores (Beetz et al. 2012) or serving drinks (Petrick and Fos-
ter 2013). These approaches do not incorporate facilities for
revising or explaining the decisions of the system, however.
Approaches that include some form of plan repair exist, e.g.,
the O-Plan architecture (Tate, Drabble, and Kirby 1994), or
in the context of interactive storytelling (Porteous, Cavazza,
and Charles 2010) or robotics (Lemai and Ingrand 2004).

In the next section, we present the system architecture and
the interplay of its major constituents. The following sec-
tions describe these constituents in more detail, focusing on
the planning components. After that, we present the user
study together with its results and conclude the paper.

System Architecture
We have developed an architecture which integrates essen-
tial planning capabilities (plan generation, execution/moni-

386

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



toring, repair, explanation) with components to provide ad-
vanced human-computer interaction (dialog and interaction
management). The architecture and the domain-independent
components enable the implementation of concrete assis-
tance systems in a variety of application areas. Such systems
are capable of multi-modally interacting with a human user
and to provide intelligent assistance based on the various ca-
pabilities provided by the planning and interaction compo-
nents. The architecture is depicted in Fig. 1. We will shortly
explain how the different components interact, before we de-
scribe their particular functionality in more detail.

Assistance functionality is provided through the interplay
of various planning capabilities; the most basic one being
that the system can give a course of actions to a user which
solves his current problem at hand. We assume that these
problems are formalized in terms of a hybrid planning do-
main. Knowledge about the specific domain is stored in the
Knowledge Base component, which manages and processes
the information necessary for the other components to work.

As soon as a user requests assistance in terms of a course
of action to solve a given problem, the Knowledge Base
component passes the corresponding hybrid planning prob-
lem to the Plan Generation component (arrow 1 in Fig. 1).
That component generates a solution, i.e., a plan, and passes
it to both the Plan Execution component and the Plan Ex-
planation component (arrow 2). The latter is done to be
prepared in case the user wants to ask questions about the
current plan. The plan is executed step by step, and several
components (arrows 3 to 10) are involved for each such step.

The Plan Execution component identifies the plan step
to be executed next and sends it to the Dialog Manage-
ment component (arrow 3). This way, it can be presented
to the user. The component loads the dialog model associ-
ated with the plan step and calculates the most-appropriate
dialog goals to achieve the effects of the given plan step.
The chosen dialog goals are passed one by one to the Inter-
action Management component (arrow 4), which builds the
actual user interface to be presented to the user (arrow 5).
The input of the user is sent back over the Interaction Man-
agement component to the Dialog Management component
(arrow 8). This constitutes both explicit input entered via
the user interface (arrow 6), and implicit input (e.g., facial
expression), which is registered by the sensors (arrow 7).

Once a dialog goal is finished, its effects are sent to the
Knowledge Base component (arrow 9). A common pattern
is to associate a dialog goal to a plan step, and interpret the
user’s input as an acknowledgement of having achieved the
effects of the plan step. The effects registered by the Interac-
tion Management component are then combined with sensor
inputs within the Knowledge Base component to calculate
a belief about the current world state. This information is
then passed back to the Plan Execution component (arrow
10). That component compares the believed state with the
expected state, using the effects of the last plan step. If they
match, the next plan step is executed in the same way. If a
deviation from the expected state is detected, the Plan Exe-
cution component triggers the Plan Repair component (ar-
row 11). Repair is initiated by constructing an augmented
planning problem, which incorporates the found discrepan-

Figure 2: The figure shows the back panel of the amplifier
used in our domain model and user study.

cies together with the execution state of the currently en-
acted plan. The augmented problem is then sent to the Plan
Generation component (arrow 12), which finds a new solu-
tion replacing the old plan, s.t. a new cycle can start over.

At any point in the interaction, the user may ask why he
had to execute any of the presented plan steps. If he does so,
the Dialog Management component requests the explanation
of the current plan step from the Plan Explanation compo-
nent (arrow 13), which generates a formal explanation stat-
ing why this plan step is necessary to solve the overall prob-
lem. This explanation is sent back to the Dialog Manage-
ment component, which initiates its presentation to the user
(arrows 14 and 4 to 8).

To illustrate how such an architecture works in detail, we
implemented a prototypical system that assists a person in
the task of setting up a complex home theater. The in-
teraction between the various components is realized with
the message-oriented middleware Semaine (Schröder 2010).
The main physical features of the prototype are a multi-
device user interface (one touch-screen, one remote ter-
minal) and user-localization based on a laser-range-finder
(Honold et al. 2013, Figure 10). No additional sensory mod-
ules were used, in particular there were no means of emotion
recognition, or means of automatically recognizing the state
of the home theater setup and cables. Progress on the task
was solely reported through the dialog system.

The task of the user is to connect several devices of his
new home theater. They comprise a satellite receiver, a
blu-ray player, an amplifier, and a television. Finally, the
user wants to be able to use both the blu-ray player and the
satellite receiver. While this task may seem easy for an ex-
pert, it is quite complicated for non-experts: Fig. 2 shows
the back panel of the modeled amplifier (an audio/video re-
ceiver, which we also used in the evaluation) and illustrates
the high number of different ports and thus the difficulty
of the task. In addition to these devices, we modeled sev-
eral different cables, adapters, and adapter cables (such as a
HDMI-to-DVI adapter cable, for example). The information
about available devices, cables, and other information rele-
vant for the task (e.g., about the user) is stored in the Knowl-
edge Base component and sent to the respective components
if requested.

Knowledge Base
Besides storing all the domain specific information, the
Knowledge Base component serves as the central hub for

387



Figure 1: This figure shows the components of our architecture and how they interact with the user and with each
other. It is based on the one presented by Honold, Schüssel, and Weber (2012), with emphasis on the planning
part instead of the user interaction part. The numbers represent the actual data sent from one component to an-
other: 1: planning problem, 2: generated solution plan, 3: next plan step, 4: next dialog goal, 5: interaction output,
6: explicit interaction input, 7: implicit sensor input, 8: fusion result, 9: interaction effects, 10: actual world state,
11: repair request, 12: plan repair problem, 13: explanation request, 14: formal plan explanation.

our architecture. It integrates information from various
sources like sensor data (arrow 7, usually pre-processed by
machine learning modules, not depicted), and explicit user
input via the Dialog Management component (arrow 9). A
major part of this information is of an uncertain nature due
to sensor noise, partial observability or model imperfection.

The requirement of a consistent treatment of uncertainty
throughout the whole system is addressed by choosing a
probabilistic approach. The knowledge of the system is re-
flected in a probability distribution over the possible world
states. Advances in the field over the past 20 years have
led us to a point where the treatment of probability distri-
butions over many random variables slowly becomes feasi-
ble, e.g., by the use of probabilistic graphical models (Koller
and Friedman 2009). To facilitate the concise representa-
tion of large graphical models, and in order to ease the in-
tegration with other modules like automated planning, we
use a logic-like, probabilistic, first-order modeling language
called Markov Logic (Richardson and Domingos 2006).

The integration of the knowledge base with the planning
components mainly focuses on the provision of a world
state. Initially, the Knowledge Base component is queried
for all state-features relevant to the current planning prob-
lem (arrow 1). In the case of the assembly task, this encom-
passes knowledge about available devices and cables. Dur-
ing plan execution, relevant state features are then constantly
monitored (arrow 10).

To make the probabilistic view of the knowledge base
compatible with the deterministic state representation of the
planner, one could infer the most probable world state ac-
cording to the current beliefs and report it as actual world
state. But for models with many random variables it is
very likely that the most probable state still has a vanish-
ingly small probability, and the chance that the true world
state differs from the reported one is huge. To handle this,
we declare the part of the global model that comes from
the planning domain as quasi-deterministic. In this part,
upon each new time-step, variables that have not received

an explicit observation (e.g., from the dialog) are automat-
ically observed to the most probable state they had during
the last time step. This makes the quasi-deterministic part
behave like a database, where values only change upon a
write request, offering semantics that are compatible with
assumptions of deterministic planning. Still, the probabilis-
tic part can transparently use information from the quasi-
deterministic part for inferences. The usefulness of such a
connection has been demonstrated by its exploitation for im-
proved user identification (Geier et al. 2012).

Plan Generation
In order to facilitate the provision of a suitable plan, the Plan
Generation component queries the current world state from
the Knowledge Base component. A valid plan will then con-
sist of a course of actions, whose execution will transform
the current world state into a desired state. For the assem-
bly task, actions are usually of the form “Connect port A
of cable X to port B of device Y .”, and the goal conditions
consist of the transmission of certain signals (audio or video)
from source devices to their respective sink devices.

In our system, such tasks are modeled by means of a
hybrid planning problem (Biundo and Schattenberg 2001;
Biundo et al. 2011; Geier and Bercher 2011). Hybrid plan-
ning combines hierarchical planning (Erol, Hendler, and
Nau 1994; Marthi, Russell, and Wolfe 2008) with con-
cepts known from Partial-Order Causal-Link (POCL) plan-
ning (McAllester and Rosenblitt 1991; Younes and Sim-
mons 2003). Both paradigms seem to be well-suited for our
enterprise of assisting human users: The hierarchical aspect
of the domain captures the hierarchical structure many real-
life problems show and the explicit representation of causal-
ity using causal links allows for the explanation of plans
(Seegebarth et al. 2012). These explanations may further
benefit from the hierarchical structure, as it allows more flex-
ibility w.r.t. the level of detail of explanations. We believe
that the capability of systems to explain their own behavior
is essential when assisting human users, since explanations

388



can improve the trust a user has in the system and might lead
to higher acceptance rates (Lim, Dey, and Avrahami 2009).

In hybrid planning, the task is modeled by means
of a planning domain D and a problem instance I.
For our example application, the planning domain mod-
els the specific technical devices (ports male/female, au-
dio/video/either/both signal in/out, etc.) and how they can be
connected using the available cables. The problem instance
specifies the actual task to solve. In hybrid planning, actions
may be either primitive or abstract. In both cases, an action
a(τ̄) has the form 〈pre, eff 〉with pre and eff being conjunc-
tions of literals over the action parameters τ̄ = τ1, . . . , τn.
Preconditions specify in which states an action is applica-
ble, and effects of actions specify how a state changes if
the action is applied. States and action applicability and ap-
plication are defined as usual. A partial plan is a structure
〈PS,≺, VC,CL〉 consisting of a set of plan steps PS, which
are uniquely identified actions, either primitive or abstract.
The partial order between these plan steps is achieved by
the relation ≺. The set VC contains the variable constraints,
which co- or non-codesignate action parameters to other pa-
rameters or constants. We call an action ground if all of
its parameters are codesignated to some constant taking the
closure of VC. A plan is called ground if all its actions are
ground. The set CL contains all causal links of the partial
plan P . A causal link ps →ϕ ps ′ denotes that the precondi-
tion literal ϕ of plan step ps ′ is supported (protected) by the
plan step ps . While primitive actions can be executed if all
their preconditions are supported by causal links, abstract
actions must be further refined, even if their preconditions
are all supported. To that end, the domainD contains at least
one so-called decomposition method for every abstract ac-
tion. A decomposition method m = 〈a(τ̄), VCm, P 〉 maps
an abstract action a(τ̄) to a partial plan P , which “imple-
ments” the preconditions and effects of a(τ̄) (Biundo and
Schattenberg 2001). Applying a method to a partial plan re-
sults in removing the abstract action and replacing it by the
partial plan the method maps to, adding the variable con-
straints VCm, which relate the action parameters to the vari-
ables in P , and to pass on the causal links of the abstract
action to its new sub-actions.

Now, the domain D = 〈A,M〉 contains the set of primi-
tive and abstract actions A as well as the set of decomposi-
tion methods M . The problem instance I is given in terms
of an initial partial plan Pinit , which contains some abstract
actions representing the high-level specification of the tasks
to be achieved. It also contains two artificial actions init
and goal , which encode the initial state and the goal descrip-
tion, respectively. The action init has no precondition and a
complete description of the initial state as effect, including
the facts initially false in terms of negative literals1. The ac-
tion goal has the goal description as precondition, which is
a conjunction of (possibly negative) literals. The solution to
a planning problem is a plan P , s.t.:

1. P is a refinement of Pinit .

2. P does not contain abstract actions.
1In POCL planning, we need to specify the facts initially false

to be able to support negative preconditions of actions.

3. P does not show unprotected precondition literals.

4. P has no causal threats. A causal threat is the situation
where the ordering constraints allow a plan step ps ′′ with
effect ϕ to be ordered between two plan steps ps and ps ′

which share a causal link ps →ϕ′ ps ′, s.t. there is a unifi-
cation σ with ϕ = ¬σ(ϕ′).

Criterion 1 is essential for relating any solution to the initial
plan Pinit . In contrast to PDDL, where the problem is given
merely in terms of a goal description, the goals in hierarchi-
cal/hybrid planning are given in terms of Pinit . Criterion 2
ensures that only primitive actions are present, as only those
can be executed directly. Criteria 3 and 4 together ensure
that every plan step linearization which is consistent with
P ’s ordering constraints is an applicable action sequence
and generates a state which satisfies the goal description.

Domain Model. We will now give an overview over how
we modeled the problem of setting up a home theater. In
our planning domain, the initial state specifies the avail-
able hardware and its compatibility to other devices. We
differentiate between devices and cables, which both have
an individual sort DEVICE and CABLE, respectively. Sorts
correspond to the concept of types in PDDL. For every de-
vice and cable in the scenario, there is a constant of the re-
spective sort, such as BLURAY of sort DEVICE to model the
blu-ray player. We also introduce an abstract sort HARD-
WARE with sub sorts DEVICE and CABLE to be used by
the actions. Every hardware in the scenario has several
ports: Cables, for instance, ordinarily have two ports, one
for each end of the cable (however, more complicated ca-
bles can have more than one port at the same end). We
thus introduce a sort PORT. Every port of a specific hard-
ware has certain properties: it may be either a signal in
or out, either used or unused, either male or female, and
it may be used for video, audio, both (in case of HDMI),
or either (for instance, a cinch video cable may be used
for either audio or video, but not for both at the same time
as is the case for HDMI). The description of the hardware
also specifies that certain devices are sources of audio and
video signals. For instance, while the TV and the ampli-
fier initially do not have any signal, the blu-ray player and
the satellite receiver initially have both video as well as an
audio signal. In our domain, we therefore have a predicate
HASVIDEO(HARDWARE,DEVICE) expressing that the con-
stant of sort HARDWARE has the video signal produced by
the constant of sort DEVICE. In our scenario, the initial state
thus contains the atoms HASVIDEO(BLURAY,BLURAY) and
HASVIDEO(RECEIVER,RECEIVER) as well as the respective
counter parts for the audio signal.

Actions are the means to connect cables to devices. More
precisely, we modeled the actions in such a way that they
can only be applied if the two ports to be connected are both
unused and compatible with each other (w.r.t. to gender, for
instance). Furthermore, actions may only be applied in the
direction of the signals in order to propagate that signal to
the cable just plugged in. That is, a cable with an input port
may only be connected to a cable or device with an output
port if the other cable/device already has some signal. Then,

389



the cable that has been plugged in will also have that signal.
Note that we did not model unplug actions. Thus, in case
of execution failures, our prototype might not always find a
repaired solution in certain situations.

Hierarchy may be introduced to reduce the search space
by specifying pre-defined solutions to sub-problems. For ex-
ample, an abstract action CONNECT(BLURAY,AMPLIFIER)
can be modeled using several decomposition methods,
each corresponding to a valid solution transporting both
audio and video from the blu-ray player to the ampli-
fier. The initial plan may then contain that abstract
action as well as CONNECT(RECEIVER,AMPLIFIER) and
CONNECT(AMPLIFIER, TV).

Search Procedure. We search for solutions via search in
the space of plans by step-wise refining the initial partial
plan until a solution has been found. We base our search
technique on the standard POCL planning paradigm (Younes
and Simmons 2003), in which plan elements violating solu-
tion criteria induce so-called flaws. We extend this technique
by being able to decompose abstract actions; we call the
resulting system PANDA (Biundo and Schattenberg 2001;
Elkawkagy et al. 2012). The search is a two-stage process.
First, a most-promising plan is selected from a set of candi-
dates. That selection is done using informed heuristic func-
tions. Our system supports pure non-hierarchical heuris-
tics (Nguyen and Kambhampati 2001; Younes and Simmons
2003; Bercher, Geier, and Biundo 2013; Bercher et al. 2013),
as well as hierarchical ones (Elkawkagy et al. 2012). After
a most-promising plan has been selected, one of its flaws is
selected to be resolved. Resolving a flaw generates a set of
successor plans, which can contain new flaws. For example,
the insertion of an action adds one flaw for each of its pre-
condition literals. That procedure is repeated until a solution
has been created.

Plan Execution and Monitoring
Given a solution plan, the Plan Execution component exe-
cutes it in a step by step way. When prompted to execute
the next plan step, it first determines the set of executable
plan steps. A plan step is executable if it has not yet been
executed, whereas all plan steps which are ordered before it,
have already been executed. The Plan Execution component
then chooses a plan step to execute from this set. While any
execution order will guarantee that the goal will be reached,
some orders can be more intuitive for the user. The im-
plemented system therefore employs a domain-specific ap-
proach to execute semantically connected tasks in direct suc-
cession, if possible. For example, several steps are needed
to transport a video signal from the satellite receiver to the
TV. If the last executed step was one of these steps, the com-
ponent prefers executing another such step next. In future
work, we would like to examine the extent to which this
could be done domain-independently, for example by maxi-
mizing the number of common parameter values of two con-
secutively ordered tasks.

The chosen plan step is passed on to the Interaction
Management component, where the actual execution is per-

formed. Once the execution is completed, the interac-
tion management passes the results of the execution to the
Knowledge Base component and sends a signal to the Plan
Execution component. The Plan Execution component then
checks whether the action had the intended effects. This is
done by comparing the expected state – as computed by ap-
plying the specified effects of the action to the last known
world state – with the actual world state obtained by query-
ing the knowledge base. When the expected and actual
world states match, the next plan step is executed.

However, it might happen that the actual world state devi-
ates from the expected state. For example, when plugging an
HDMI cable into the blu-ray player fails because the HDMI
cable is broken, the actual world state will be that the cable
is unusable and that it is not connected to the blu-ray player.
In this case, it has to be checked whether the new world state
interferes with the yet-to-be-executed parts of the plan. This
can be done by examining the presently active causal links
of the plan, i.e., the causal links whose producer task has
been executed while its consumer task has not.

If there is no active causal link for a given literal then it
is either irrelevant for executing the remainder of the plan or
a yet-to-be-executed task will reestablish it at a later point.
Therefore, if the current state agrees with the expected state
on all literals for which there is an active causal link, the plan
is sure to still be a valid solution. Otherwise, the plan con-
tains tasks (that might be executed far in the future) whose
preconditions are no longer supported by valid causal links
and the plan needs to be repaired.

Plan Repair
When the Plan Execution component detects that the plan
at hand cannot be executed as intended, that plan, together
with the problems detected during execution, is passed on to
the Plan Repair component, which generates a “repair prob-
lem”. The Plan Generation component uses this repair prob-
lem to generate a repaired solution, if possible.

There might be several reasons for a plan to fail. Of-
ten, the reason lies in the non-deterministic and partially ob-
servable nature of the environment. For example, an action
might not be applicable (now or in the future), because one
of its precondition literals does not hold at the current world
state while the system predicted that precondition to hold.
In our domain, for instance, a cable might be defective or a
device port might not be working against expectation.

In these cases we need to find another – working – solu-
tion to the original planning problem, which can cope with
the unpredicted changes of the world. If the new problem
turns out to be unsolvable, we at least need to inform the
user that it is no longer possible to set up the home the-
ater system with the remaining set of cables and adapters.
While in standard state-based planning, replanning seems
most attractive (Nebel and Koehler 1995), it is not that easy
in hierarchical approaches like we follow, since solutions
need not only be executable, but also be a refinement of
the initial plan (cf. solution criterion 1). We thereby fol-
low a plan repair approach, which is suited for this ad-
ditional constraint (Bidot, Biundo, and Schattenberg 2008;
Biundo et al. 2011).

390



The repair mechanism basically works as follows: Given
the planning domain D = 〈A,M〉, the initial problem in-
stance I given by Pinit , and the failed solution plan P , the
Plan Execution component creates a repair problem instance
I = 〈Pinit , O〉, which now contains a set of obligations O.
This set contains an existence obligation for all plan steps
which have already been executed. Satisfying these obli-
gations will guarantee that executed plan steps are part of
any new solution. This is important, as we require solutions
which are refinements of the initial plan and the plan steps
already executed may be essential to satisfy that criterion.
Since these plan steps have been executed in one specific
order (while the plan that was to be executed might only
be partially ordered), O also contains ordering obligations
which restrict these plan steps to be totally ordered and pre-
vent any “new” action to be ordered within this sequence.
Lastly, O contains an obligation that requires a so-called
process to be inserted right behind the executed plan step
sequence. A process is a primitive action with no precondi-
tion and the unpredicted world changes as effect.

The planning procedure is altered in such a way that
unsatisfied obligations are represented as additional flaws.
Then, plans with no flaws are solutions to the original plan-
ning problem, they contain the already executed plan steps,
and can cope with the unforeseen changes caused by the en-
vironment.

Plan Explanation
So, for example, when the system learns about the fact that
one of the cables is broken, it comes up with a new solu-
tion. This solution is usually more complicated than the
original one, since the problem of a missing cable must
be worked around. A broken cable could be addressed by
using adapters and adapter cables as a replacement. How-
ever, the pro-active generation of a new plan, in particu-
lar a more complicated one, may confuse the user. Even
worse, the system can produce changes in the plan that are
not anticipated by the user, because the deviation was not de-
tected via user interaction (e.g., the user reporting the fail-
ure of the cable), but it was detected via different means,
e.g., computer vision. The explanation of such unexpected
or otherwise opaque decisions is critical for the human-
computer interaction, because especially unexpected or not
understandable situations may have a negative impact on
the human-computer trust relationship (Muir 1992). Stud-
ies have shown that if the user does not trust the system, the
interaction may suffer. This includes reduced frequency or
way of interaction, and in the worst case the complete abor-
tion of future interaction (Parasuraman and Riley 1997). Of
course, as we want technical systems to become intelligent
assistants and help us in complex, as well as in critical situ-
ations, it is clear that this should be impeded.

In human-human interaction moments of unclear, not rea-
sonable decisions by one party are often clarified by explain-
ing the process of reasoning (i.e., increasing transparency
and understandability). Analogous to that, research by Lim
et al. (2009) showed that different kinds of explanations can
improve the trust in and the understandability of context-
aware intelligent systems. The results showed that Why and

Why-not explanations were the best kind of explanation to
increase the user’s understanding in the system, though trust
was only increased by providing Why explanations.

Therefore, our planning system can help improve trust
and understandability by providing, if requested, plan expla-
nations. The special case of plan explanation used in this set-
ting is the task of explaining why a given plan step is present
in a given plan. To generate explanations, an axiomatic sys-
tem Σ comprising formalizations of basic arguments about
a plan and their logical consequences is constructed (Seege-
barth et al. 2012). The axioms are derived from the solution
criteria, the plan at hand, and the problem specification. We
use the atom N(ps) for representing that a step ps is nec-
essary for a given plan P to constitute a solution. For a
formula φ encoding a reason that supports the presence of
ps in P , Σ contains an axiom of the form ∀ps.[φ⇒ N(ps)].
Constructing an explanation for the presence of a plan step
is equivalent to finding a sequence of “applications” of these
axioms.

The reason for the presence of a plan step ps in a plan
P , according to the solution criteria for hybrid plans, can be
one of the following: First, ps is trivially either init , goal , or
any plan step from the problem specification, i.e., Σ contains
N(init), N(goal), and N(ps) for all ps in Pinit . Second, ps
establishes a precondition of some other plan step ps ′. For
this, Σ contains an atom CR(ps, ϕ, ps ′) for every causal link
ps →ϕ ps ′ present in P , representing the causal relation be-
tween ps and ps ′. The necessity of further plan steps can be
recursively derived from causal relations to necessary plan
steps with the following axiom:

∀ps.[[∃ps ′, ϕ.[CR(ps, ϕ, ps ′) ∧N(ps ′)]]⇒ N(ps)] (1)

The third reason for the presence of a plan step ps in P is
that ps has been introduced by decomposing an abstract plan
step ps ′ during the construction of P . In contrast to causal
dependencies, this information is not represented explicitly
in the solution plan and has to be (re-)constructed from the
knowledge about the plan generation process: for each de-
composition of an abstract plan step ps ′ via a methodm, per-
formed during the construction of P from Pinit , Σ contains
an atom DR(ps,m, ps ′) for each plan step ps introduced by
m, representing the decomposition relation between ps and
ps ′. Plan step necessity can again be recursively derived:

∀ps.[[∃ps ′,m.[DR(ps,m, ps ′) ∧N(ps ′)]]⇒ N(ps)] (2)

The result of an explanation request is a formal proof that
has to be conveyed to the user in a more suitable from, for
instance verbally. The simplest way of achieving this is to
provide a text template for each axiom and translating an
explanation proof step by proof step.

As an example, consider the case where a video
signal needs to be transported from the blu-ray
player to the TV, reflected in the goal description via
HASVIDEO(TV,BLURAY). The solution plan contains a
sequence of plan steps connecting devices and cables. The
tasks are connected with causal links successively providing
the HASVIDEO(X,BLURAY) property to the next task in
the sequence. If the user requests an explanation for the
necessity of the plan step plugging a cable into the blu-ray

391



player, the Plan Explanation component uses the above
axioms to successively determine the need to derive the
necessity of all plan steps in the sequence, including the
goal step. Since the goal step is necessary by definition, so
are all the other plan steps in the sequence.

Explanations subsume several kinds of explanations like
Why, Why-not, How-to, or What. Plan explanations in our
system are meant to increase the understandability in the
system’s decisions by using Why explanations. Therefore,
plan explanation is to be distinguished from explanation of
declarative knowledge, which uses What and How-to expla-
nations to impart knowledge (Nothdurft and Minker 2012).

Dialog and Interaction Management
In the case of required user-interaction, plan steps are trans-
mitted to the Dialog Management component (cf. Fig. 1).
Here, the provided plan step is decomposed into a hierarchi-
cal dialog structure which consists of so-called dialog goals
(Nothdurft et al. 2010). Each dialog goal represents a single
interaction step between human and technical system (e.g.,
one screen on a device filled with specific information). The
term dialog ”goal” arises from the fact that every step in
the interaction pursues a goal. This goal is, in this case,
to achieve one or several of the desired plan step effects.
Therefore, the term dialog goal is to be distinguished from
the term goal used in planning.

This means on the one hand that a plan step may be de-
composed into several steps of interaction, and on the other
hand that for every desired plan step effect a set of simi-
lar dialog goals may exist. These similar dialog goals may
for example take into account user knowledge or emotions,
and therefore differ in the complexity and kind of content
presentation. The selection of the next dialog goal is made
in a user-adaptive manner and leads to an individual dialog
appropriate for the current user (Honold et al. 2013). For
information presentation the dialog goal is passed on to the
Interaction Management component (cf. Fig. 1) and by that
transferred to a XML-based format called Dialog Output.

Hereby, the dialog content is composed of multiple in-
formation objects referencing so-called information IDs in
the information model. Each information ID can consist
of different types (e.g., text, audio, and pictures) which
are selected and combined at runtime by a fission sub-
component to compose the user interface in a user- and
situation-adaptive way. The reasoning process about the
most-appropriate user interface is based on a set of evalu-
ation functions. These functions rate the selection of pos-
sible output modalities and combinations by a reward func-
tion and propagate the best one for presentation (Honold,
Schüssel, and Weber 2012).

Performed user input is perceived by the input devices and
transmitted to the multimodal fusion (Schüssel, Honold, and
Weber 2013). The interaction input is passed on back to the
Dialog Management component, which analyzes how the in-
teraction result influences the desired plan step effects. The
effects of the user interaction are transferred to the Knowl-
edge Base component and the Plan Execution component is
notified that the current plan step has been processed by the
dialog management.

Additionally to that, if the user requested an explanation
why the current plan step has to be executed, the dialog man-
agement can transfer a plan explanation request to the Plan
Explanation component.

Experimental Evaluation
We conducted an experiment to evaluate the benefit of pro-
viding plan explanation for the acceptance of an automated
assistive system. The experiment is designed as a controlled,
randomized trial. This allows us to investigate the effects of
plan explanations in a principled way. For reasons of repro-
ducibility, we recreated a fixed course from the prototype
system as a seemingly interactive HTML5 slide show. Par-
ticipants are confronted with the task of connecting several
devices of a home theater system consisting of a satellite
receiver, a blu-ray player, an amplifier, and a television, as
explained in the beginning of the paper. Fig. 2 shows the
back panel of the amplifier used in the study. The require-
ments to the solution were that both watching satellite, TV,
and blu-ray disks is possible. The task was complicated by
the fact that the enacted solution uses an adapter for one con-
nection. Participants were given an electronic assistant that
gave them instructions on which cable to connect to which
device through written and spoken text, as well as by images
of the devices with the concerned ports highlighted. Partic-
ipants were randomly, and without them knowing, assigned
into two groups. The control group (n = 29) was faced
with the task as described. The treatment group (n = 30)
was shown two plan explanations at fixed steps. The longer
explanation was: “This step served the goal to transmit the
video signal of the blu-ray player to the TV. To this end,
the video signal of the blu-ray player is transmitted over the
HDMI-to-DVI adapter and the HDMI-to-DVI cable to the
amplifier. From there it is transmitted over the video-cinch
cable to the TV.“.

The outcome of the trial was captured by a self-report
questionnaire administered right after the task. Most impor-
tantly we asked for the subjectively perceived certainty that
the way how the devices are connected fulfills the stated re-
quirements as a 5-point Likert question (e.g., five levels from
“No Chance” to “Certain”). In addition to demographic vari-
ables, we asked about expertise and prior experience with
similar tasks, several other questions about how the partici-
pant perceived the device, and questions about how the ex-
planations were perceived (only for the treatment group).

Our main hypothesis was that the plan explanations have
a positive effect on the subjectively perceived certainty in
the validity of the setup solution.

We recorded 59 subjects in total. Concerning demo-
graphic variables, we have at 3 female and 7 male subjects
aged over 30, and 19 female and 27 male subjects aged at
most thirty; age is missing for three subjects; 26 subjects had
a university degree. Nine participants alone were Ph.D. stu-
dents in chemistry. Only 7 subjects’ graduation was lesser
than high school equivalent. In general the education level of
the sample was overly high. Only 12 participants had a tech-
nical background (computer science, engineering); though
this does not include natural sciences and Mathematics, to
which another 18 subjects affiliated.

392



We constructed a summary variable capturing the over-
all perception of the system by summing up all questions
that rate aspects of the system (trust, patronization, appeal,
utility, etc.; with good internal consistency α = 0.83). Ac-
cording to this scale, the system was very well received in
general (mean/sd: 26.63/3.67 points out of 30). We found
a major influence on this rating in the answer on a ques-
tion (5-point Likert scale) asking people to judge their con-
fidence to do the setup as required, but while only using
the device manuals. The answer to that question signif-
icantly predicted the overall perception in a linear regres-
sion (β = −0.37, t(55) = −2.99, p < .01). Thus, people
who consider themselves unskilled liked the system better.
We also found that women rated the system better than men
(mean/sd female 28.14/1.93, male 25.67/4.19, significant
with p < .01 using Mann-Whitney-U, Z = −2.81).

Considering the differences between subjects in the treat-
ment group and those in the control group, the main hypoth-
esis that explanation fosters confidence in the implemented
solution cannot be supported by the experimental results. In
contrary, subjects of the treatment group had lower confi-
dence on average (mean/sd: control 4.66/0.55, treatment
4.50/0.82, not significant). However, the confidence of the
subjects in the correctness of their assembly was very high
in general. Some subjects rated their confidence “certain”,
even though they forgot to connect some of the cables. Sub-
jects within the treatment group also had lower overall per-
ception scores compared to the control group (mean/sd: con-
trol 27.4/2.6, treatment 25.8/4.4, not significant).

We attribute the result concerning the explanation feature
to several factors. First, there is no substantial risk involved
in making a mistake while connecting the components. A
simple experiment (turn the devices on and see if it works)
can yield a reliable answer without much effort. So being
pushed towards reasoning about the correctness may be per-
ceived as annoying. Remember that the explanations were
displayed without an explicit request by the user, to facil-
itate randomization. A second reason for the result within
the treatment group is the possibility of an unsettling effect
of the explanation, caused by the participants thinking they
are to be fooled into believing something wrong — facili-
tated by the experimental condition.

When looking only at the treatment group, we found that
people with a higher education level rated the explanation
aspect2 better (mean/sd: with German “Abitur” 14.9/5.38,
with university degree 17.9/5.43; not significant).

In addition to the structured part, the questionnaire con-
tained free questions, asking the participants about aspects
they particularly liked or disliked. An aspect that was
praised in most comments was that we provided photographs
of the devices with highlighted ports. The negative counter-
part were complaints about the text-to-speech engine used
to read the instructions and the explanations, which were
also raised by a vast majority of the participants. Comments
about the system in general were all positive: “assists in a
useful way”, “this assistant would be great for my parents.”,

2sum over 6 questions with good internal consistency of α =
0.84

or “this assistance system is very useful, as it allows people
without expertise to follow the instructions successfully”.
The comments also confirm our assessment that not the ex-
planations themselves were perceived negatively, but the fact
that they were mandatory: Some participants mentioned as
positive that the explanations were completely optional, as
one can simply proceed by clicking on “next” (they were not
intended to be optional, but some people proceeded without
reading them). Other comments suggested to present the
explanation before the instruction it refers to, rather than af-
terwards. There were only five comments about the actual
quality of the explanations. Four of them were positive, only
one mentioned that explanations were complicated by men-
tioning the technical names for the cables. Some of the pos-
itive remarks were “explanations were good and useful, but
the presented version was confusing due to the bad, auto-
mated voice” and “the explanations seem to be unnecessary
at first glance, but they increase the understanding of what
one does and strengthen the credibility of the system”.

We conclude that a system that offers automated support
is received very well, in particular by non-experts. Fur-
thermore, explanation abilities appear to be an important
and beneficial feature of assistance systems, while their pro-
active provision should be thoroughly considered.

Conclusion
We presented a domain-independent architecture to imple-
ment plan-based assistance systems. It integrates planning
capabilities with advanced dialog and interaction manage-
ment components, which enable multi-modal communica-
tion skills of such systems. The approach offers a high de-
gree of flexibility by involving plan repair mechanisms to
assist users in cases where unexpected execution failures oc-
cur. Based on the architecture, we implemented a prototype
system capable of assisting users in the task of setting up a
complex home theater. We demonstrated the acceptance and
usefulness of this system in an empirical evaluation.

Acknowledgment
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Beetz, M.; Jain, D.; Mosenlechner, L.; Tenorth, M.; Kunze,
L.; Blodow, N.; and Pangercic, D. 2012. Cognition-enabled
autonomous robot control for the realization of home chore
task intelligence. Proc. of the IEEE 100(8):2454–2471.
Bercher, P.; Geier, T.; Richter, F.; and Biundo, S. 2013. On
delete relaxation in partial-order causal-link planning. In
Proc. of the 25th IEEE Intl. Conf. on Tools with AI (ICTAI
2013), 674–681.
Bercher, P.; Geier, T.; and Biundo, S. 2013. Using state-
based planning heuristics for partial-order causal-link plan-
ning. In Proc. of the 36nd German Conf. on AI (KI 2013),
1–12.

393



Bernardini, S., and Porayska-Pomsta, K. 2013. Planning-
based social partners for children with autism. In Proc. of
the 23rd Intl. Conf. on Automated Planning and Scheduling
(ICAPS 2013), 362–370.
Bidot, J.; Biundo, S.; and Schattenberg, B. 2008. Plan repair
in hybrid planning. In Proc. of the 31st German Conf. on AI
(KI 2008), 169–176.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief (a preliminary report on combining state
abstraction and HTN planning). In Proc. of the 6th European
Conf. on Planning (ECP 2001), 157–168.
Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236. Special
Issue on Complex Cognition.
Boger, J.; Poupart, P.; Hoey, J.; Boutilier, C.; Fernie, G.; and
Mihailidis, A. 2005. A decision-theoretic approach to task
assistance for persons with dementia. In Proc. of the 19th
Intl. Joint Conf. on AI (IJCAI 2005), 1293–1299.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In Proc. of the 26th Natl. Conf. on AI
(AAAI 2012), 1763–1769.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of the 2nd Intl. Conf. on AI Planning
Systems (AIPS 1994), 249–254.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Intl. Joint
Conf. on AI (IJCAI 2011), 1955–1961.
Geier, T.; Reuter, S.; Dietmayer, K.; and Biundo, S. 2012.
Track-person association using a first-order probabilistic
model. In Proc. of the 24th IEEE Intl. Conf. on Tools with
AI (ICTAI 2012), 844–851.
Honold, F.; Schüssel, F.; Weber, M.; Nothdurft, F.; Bertrand,
G.; and Minker, W. 2013. Context models for adaptive
dialogs and multimodal interaction. In Proc. of the 2013
9th Intl. Conf. on Intell. Env.’s (IE 2013), 57–64.
Honold, F.; Schüssel, F.; and Weber, M. 2012. Adaptive
probabilistic fission for multimodal systems. In Proc. of
the 24th Australian Computer-Human Interaction Confer-
ence (OzCHI 2012), 222–231.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles And Techniques. The MIT Press.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In Proc. of the 19th
Natl. Conf. on AI (AAAI 2004), 617–622.
Lim, B. Y.; Dey, A. K.; and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems. In Proc. of the SIGCHI Conf. on
Human Factors in Comp. Systems (CHI 2009), 2119–2128.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic hier-
archical planning: Optimal and online algorithms. In Proc.
of the 18th Intl. Conf. on Automated Planning and Schedul-
ing (ICAPS 2008), 222–231.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. of the 9th Natl. Conf. on AI (AAAI
1991), 634–639.
Muir, B. M. 1992. Trust in automation: Part i. theoretical
issues in the study of trust and human intervention in auto-
mated systems. In Ergonomics, 1905–1922.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan gen-
eration: A theoretical and empirical analysis. AI 76(1):427–
454.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. of the 17th Intl. Joint Conf. on AI
(IJCAI 2001), volume 17, 459–466.
Nothdurft, F., and Minker, W. 2012. Using multimodal
resources for explanation approaches in technical systems.
In Proc. of the 8th Conf. on Intl. Language Resources and
Evaluation (LREC 2012), 411–415. European Language Re-
sources Association (ELRA).
Nothdurft, F.; Bertrand, G.; Heinroth, T.; and Minker, W.
2010. GEEDI - Guards for Emotional and Explanatory DI-
alogues. In 6th Intl. Conf. on Intell. Env.’s (IE 2010), 90–95.
Parasuraman, R., and Riley, V. 1997. Humans and au-
tomation: Use, misuse, disuse, abuse. Human Factors:
The Journal of the Human Factors and Ergonomics Society
39(2):230–253.
Petrick, R., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proc. of the 23rd
Intl. Conf. on Automated Planning and Scheduling (ICAPS
2013), 389–397.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Trans. Intell. Syst. Tech. 10:1–10:21.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62(1-2):107–136.
Schröder, M. 2010. The SEMAINE API: towards a
standards-based framework for building emotion-oriented
systems. Advances in Humam-Computer Interaction 2010.
Schüssel, F.; Honold, F.; and Weber, M. 2013. Using
the transferable belief model for multimodal input fusion
in companion systems. In Multimodal Pattern Recognition
of Social Signals in Human-Computer-Interaction (MPRSS
2012), LNCS/LNAI 7742. 100–115.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo,
S. 2012. Making hybrid plans more clear to human users
– a formal approach for generating sound explanations. In
Proc. of the 22nd Intl. Conf. on Automated Planning and
Scheduling (ICAPS 2012), 225–233.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-plan2: an open
architecture for command, planning and control. In Intell.
Scheduling, 213–239.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of AI Research
(JAIR) 20:405–430.

394




