Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Single- and Dual-Arm Motion Planning with Heuristic Search

Benjamin Cohen
Grasp Laboratory
University of Pennsylvania
Philadelphia, PA 19104
bcohen @seas.upenn.edu

Abstract

Heuristic searches such as A* search are a popular means
of finding least-cost plans due to their generality, strong
theoretical guarantees on completeness and optimality, sim-
plicity in implementation and consistent behavior. In plan-
ning for robotic manipulation, however, these techniques
are commonly thought of as impractical due to the high-
dimensionality of the planning problem. In this paper, we
present a heuristic search-based approach to motion plan-
ning for manipulation that does deal effectively with the high-
dimensionality of the problem. The paper presents a summary
of the approach along with applications to single-arm and
dual-arm motion planning with upright constraints on a PR2
robot operating in non-trivial cluttered spaces. An extensive
experimental analysis in both simulation and on a physical
PR2 shows that, in terms of runtime, our approach is on par
with other most common sampling-based approaches and due
to its deterministic cost-minimization, the computed motions
are of good quality and are consistent, i.e. the resulting plans
tend to be similar for similar tasks. For complete details of
our approach, please refer to (Cohen, Chitta, and Likhachev
2013).

Introduction

Many planning problems in robotics can be represented as
finding a least-cost trajectory in a graph. Heuristic searches
such as A* search (Hart, N. J. Nilsson, and Raphael 1968)
have often been used to find such trajectories. There are a
number of reasons for the popularity of heuristic searches.
First, most of them typically come with strong theoret-
ical guarantees such as completeness and optimality or
bounds on suboptimality (Pearl 1984). Second, the gener-
ality of heuristic searches allows one to incorporate com-
plex cost functions and complex constraints and to repre-
sent easily arbitrarily shaped obstacles with grid-like data
structures (Likhachev and Ferguson 2009). Finally, heuristic
searches provide good cost minimization and consistency in
the solutions. Consequently, heuristic search-based planning
has been used successfully to solve a wide variety of plan-
ning problems in robotics.

Despite the wide popularity of heuristic searches, they
typically have not been used for motion planning for high-
DOF robotic manipulators. The main reason for this is the

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sachin Chitta
Willow Garage Inc.

Menlo Park, CA 94025
sachinc @willowgarage.com

519

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
maxim@cs.cmu.edu

high-dimensionality of the planning problem. In this paper,
we present a heuristic search-based planner for manipula-
tion that combats effectively this high dimensionality by ex-
ploiting the following three observations. First, we use a
manipulation lattice graph to represent the planning prob-
lem. A manipulation lattice graph is a sparse representa-
tion in which the states correspond to the configuration of
the robot while the edges represent short motion primitives.
Any path in the graph is kinematically feasible for the robot.
This representation was designed to specifically handle the
complexities of manipulation through the use of static and
adaptive motion primitives and by decoupling the problem
when appropriate by varying the dimensionality of the lat-
tice. Second, while finding a solution that is provably opti-
mal is expensive, finding a solution of bounded suboptimal-
ity can often be drastically faster. To this end, we employ
an anytime heuristic search, ARA* (Likhachev, G. Gordon,
and Thrun 2003), that finds solutions with provable bounds
on suboptimality and improves these solutions until allotted
time for planning expires. Third, the solutions found in a
low-dimensional simplification of the workspace can serve
as highly informative heuristics and can therefore efficiently
guide the search despite the kinematic constraints that are
inherent to manipulation.

Alternative approaches include sampling-based and tra-
jectory optimization methods. Sampling-based motion plan-
ners (Kavraki et al. 1996; Kuffner and LaValle 2000) have
been shown to consistently and very quickly solve impres-
sive high-dimensional motion planning problems. However,
these methods do not offer any cost minimization, theoreti-
cal completeness or sub-optimality bounds. RRT* (Frazzoli
and Karaman 2010) is a recently proposed sampling-based
method that does provide guarantees on solution optimality
and completeness. Our experimental analysis confirms, the
random nature of sampling-based planners including RRT*
makes it difficult to generate good quality solutions fast.
CHOMP (Ratliff et al. 2009), works by creating a naive ini-
tial trajectory to the goal, and then running a modified ver-
sion of gradient descent on the cost function. CHOMP offers
many advantages over sampling-based approaches, however
like sampling-based planning, CHOMP relies on random-
ization to help deal with environmental complexities. One
of the strengths of our approach is consistency in the solu-
tions which help make the robot’s motions more predictable.

Algorithm

Heuristic search-based planning has four major components
- graph construction, an informative heuristic, the cost func-
tion and the actual search itself. Their design is critical to
the planner’s performance, solution quality and feasibility.
In the example of motion planning for manipulation, we de-
fine the goal of the graph search itself as the search for the
least cost path in the constructed graph from a state that cor-
responds to the initial configuration of the manipulator to a
state for which the pose of the end-effector satisfies a goal
constraint in work space.

Manipulation Lattice Graph Representation

We employ a non-uniform resolution lattice search space
with non-uniform dimensionality whose edges correspond
to a predefined set of actions, static motion primitives, as
well as adaptive motion primitives, or actions that are gener-
ated at runtime. We call this novel approach, a manipulation
lattice graph. Unlike a standard lattice graph, our approach
is capable of decoupling the search space when appropri-
ate and permits the use of a coarser discretization without
sacrificing the ability to satisfy an arbitrary goal constraint.
Our approach remains true to standard lattices, in that it is a
sparse representation where every path in the lattice repre-
sents a kinematically feasible motion.

Let us use the notation G = (5, E) to denote the graph G
we construct, where .S denotes the set of states of the graph
and E is the set of transitions between the states. The states
in S are the set of possible (discretized) joint configurations
of the joints in the arm we are planning for. The transitions
in E correspond to two types of short, atromic, 100 ms dura-
tion actions we call motion primitives, static and adaptive.
We define a state s as an n-tuple (6,61, 6s,...,0,) for a
manipulator with n joints. It is important to note that the
graph is constructed dynamically by the graph search as it
expands states since pre-allocation of memory for the entire
graph would be infeasible for an n DOF manipulator with
any reasonable n. Each motion primitive, or mp, is a sin-
gle vector of joint velocities, (vg, v1, V2, ..., vy,) for all of the
joints in the manipulator. The set of primitives is the set of
the smallest possible motions that can be performed at any
given state. We refer to the pre-defined set of actions that can
be performed at any given state, as static motion primitives.
These actions are chosen before the search begins and their
purpose is to uniformly explore the space for a valid path.

Adaptive Motion Primitives. Many problems in manipu-
lation may require the robot’s end effector to achieve a very
specific goal configuration, e.g. if the goal of a motion is
to ultimately grasp an object. Such precise positioning may
be difficult to achieve on a lattice that is derived with dis-
cretization. A fine discretization will make the search more
computationally expensive but a coarse discretization may
make it difficult to achieve any arbitrary goal constraint. To
that end, we limit the effects of discretization through the
use of continuous solvers that compute the edges to connect
any given state to the goal state. We call these motions a type
of adaptive motion primitives, or primitives that are dynam-
ically generated on-the-fly. Adaptive motion primitives are

520

actions that don’t belong to the static set and that are cre-
ated as needed during a state expansion, given that the state
meets a certain set of pre-defined criteria. In the motivating
example of an adaptive motion to reach the goal, we say that
when the state, s, that is being expanded represents an end
effector position that is close to the goal, a motion primitive
is generated connecting s t0 5404;. By snapping to the goal
pose, the search is shortened and it is capable of satisfying
any arbitrary goal constraint despite the discretization.

One example of a continuous solver-based adaptive mo-
tion primitive, or amp, that we use is inverse kinematics-
based. When a state s is expanded whose end-effector po-
sition, e fzy(s), is within a pre-defined distance to the goal
end-effector position, d;x, we use an inverse kinematics (IK)
solver to generate an additional mp, amp;i(s, Sgoar) for
state s. If IK succeeds, we then construct amp;(s, Sgoal)
as an interpolated path from s to the solution returned by IK
and also check it for collisions.

Non-uniform Dimensionality. Planning in a high dimen-
sional lattice is computationally expensive and can require a
lot of system resources. An important observation, however,
is that when planning for a high dimensional arm, not all of
the available DOF may be needed to find a safe path to the
goal region or even to the goal position itself. Frequently,
using a subset of the joints is fully adequate in computing
a feasible path to the vicinity of the desired end-effector
pose. Once it does get close to the desired end-effector pose,
changing additional joints may become necessary in order
to satisfy orientation constraints and to maneuver the end-
effector in cluttered spaces.

This observation motivated us to generate a set of static
motion primitives that varies in its dimensionality. A subset
of this full set of motion primitives can be used to quickly
search for a path to the goal region. These motion primitives
are chosen such as to result in a lower-dimensional state-
space. Once the search enters a potentially cluttered goal re-
gion, the planner uses the complete set of full dimensional
primitives to search for a path to the goal pose in a full-
dimensional state-space.

We define M Pj,,,p to be a subset of the predefined set
of primitives that can change only a subset of joints. This
means that in the regions where only the motion prim-
itives from M Pj,,,p are used, the state-space is lower-
dimensional (its dimensionality is the number of joints that
are in the subset). M Py,,;;p is the complete set of primitives
that are capable of changing all of the joints, creating a full
dimensional state-space.

Non-uniform Resolution. The motion primitives we used
are multi-resolution as well as multi-dimensional. All mp €
M Py p are larger motions, allowing the search to get to
the general goal region quicker. M Py, p contains shorter
motion primitives to allow the search to find a motion to the
goal more precisely. Thus, M Pj,,p and M Py, p are two
different sets.

Anytime Search

Any standard graph search algorithm can be used to search
the graph G that we construct. Given its size, however, op-
timal graph search algorithms such as A* (Hart, N. J. Nils-

son, and Raphael 1968) are infeasible to use. While find-
ing a solution that is provably optimal is expensive, find-
ing a solution of bounded suboptimality can often be dras-
tically faster. To this end, we employ an anytime heuristic
search, ARA* (Likhachev, G. Gordon, and Thrun 2003),
that quickly finds an initial and possibly sub-optimal solu-
tion and repairs it while deliberation time allows, efficiently
reusing its previous efforts. The algorithm guarantees com-
pleteness for a given graph G and provides a bound € on the
sub-optimality of the solution at any point of time during
the search, w.r.t. to the set of motion primitives used and the
resolution of the configuration space.

The cost function we used is designed to minimize the
path length while maximizing the distance between the arm
and nearby obstacles along the path. The cost of traversing
any transition between states s and s’ in graph G can there-
fore be represented as c¢(s,s’) = ceetr(s) + Caction(s,s).
The action cost, Cqction, i the cost of the mp which is gen-
erally determined by the user and c.¢;; is the soft padding
cost.

Informative Heuristics

For a heuristic function to be most informative, it must cap-
ture the key complexities associated with the overall search,
such as mechanism constraints or the environment complex-
ities. A common approach for constructing a heuristic is to
use the results from a simplified problem (e.g. from a lower-
dimensional search problem where some of the original con-
straints have been relaxed). We use a single heuristic that
guides the search towards achieving the (x, y, 2) component
of the goal constraint. We use a 3D breadth first search (BFS)
to compute the cost of the least-cost path from a given cell to
the cell that corresponds to the goal position (z, y, z) while
avoiding obstacles. More details are provided in the follow-
ing section.

Applications
Single-arm Planning

‘We construct an n dimensional statespace when planning for
an arm with n joints. Each state is represented by an n ele-
ment vector whose elements correlate to actual joint posi-
tions. Each motion primitive is an n element vector of ve-
locities.

In addition to the adaptive motion primitive,
ampix (8, Sg0a1) that we described earlier, we use an-
other continuous solver-based amp, which we call an
orientation solver-based primitive, or ampo,s(s,Sgoat)-
When a state s is expanded whose end-effector position
satisfies the position constraint of the goal, efyy.(Sgo0al)
we use an orientation solver to generate an additional
motion primitive, amp,s for that state. The orientation
solver computes the proper motions necessary to satisfy the
orientation constraint, e f,p, (Sgoaz) (roll, pitch, yaw angles
of the desired end-effector pose), without moving the end
effector out of its position, e f,.(s).

To make the heuristic we presented in section more repre-
sentative of the actual search, we represent the end-effector
using its inner sphere. In our implementation, this implies

521

Figure 1: The four scenarios: kitchen, tabletop, industrial
and narrow passageway. The pink spheres with cyan arrows
indicate the desired 6D goal poses for the right end-effector.

that we are effectively adding an extra padding to the obsta-
cles equal to the radius of this sphere when running the 3D
breadth first search to compute heuristics.

To measure the performance of our planner, we performed
a set of experiments on the right arm of the PR2 robot in
four different simulated environments. The set of planners
we compared our approach to are RRT* (Frazzoli and Kara-
man 2010) and RRT-Connect (Kuffner and LaValle 2000).
The cost function for RRT* is the distance traveled in joint
space. The environments we used are shown in Figure 1.
In each environment, multiple goal locations are defined for
the end-effector of a robot and 30 experiments are run in
each one. More information on the details of all of the ex-
periments in this paper can be found in (Cohen, Chitta, and
Likhachev 2013).

Table 1 shows the performance benchmarks for all the
environments in Figure 1. The sampling-based planners are
very fast but our approach is certainly competitive in most
environments. In general, we found that the solutions gen-
erated by ARA* are noticeably shorter in path length. Note
that in these experiments both ARA* and RRT* are only run
until the first solution. ARA¥* is initialized with € = 100.

For many planning problems, the consistency of the mo-
tions is important as it helps make the actions of the robot
more predictable for a human interacting with it. Planning
with heuristic searches is typically very consistent, meaning
that similar inputs generate similar outputs. To compare the
consistency of the motions generated by the planners, we
performed an experiment in which all three of the planners
are called to plan from a single configuration of the robot to
multiple goal poses that are within a close vicinity of each
other. In these experiments, the right arm of the PR2 is ex-
tended over the tabletop, and below the table are 27 6D goal
poses, all of which are contained within a 10cm cube. The
average lengths of these paths can be found in Table 2.

| same start — different goals | ARA* | RRTC | RRT* |

length (joint space) (mean, rad) 8.828 | 23.565 | 22.259
length (joint space) (std. dev., rad) | 2.758 | 14.705 | 17.438
length (wrist) (mean, meters) 1.921 | 2.831 2.831
length (wrist) (std. dev., meters) 0.255 | 1.929 2.365
length (elbow) (mean, meters) 1.133 | 1.769 1.703
length (elbow) (std. dev., meters) | 0.155 | 1.050 1.469
variance (wrist) (fotal, meters?) 11.721 | 124.085 | 104.662
variance (elbow) (total, meters®) |10.128 | 55.716 | 44.023

Table 2: Results from 27 consistency experiments.

| Environment — | Kitchen | Tabletop | Industrial | Narrow Passageway |

| Planner — | ARA* | RRTC | RRT* | ARA* | RRTC | RRT* | ARA* | RRTC | RRT* | ARA* | RRTC | RRT* |
planning time (mean, sec) 0.31 | 0.01 | 0.87 | 098 | 0.01 | 0.03 | 0.14 | 0.01 | 6.06 | 0.74 | 0.66 | 3.90
planned length (mean, rad) 9.52 [13.13 {1290 | 10.97 | 10.20 | 10.19 | 5.76 | 12.12 | 12.33 | 17.33 | 25.66 | 23.24
simplified length (mean, rad)| 693 | 9.81 | 930 | 7.37 | 8.14 | 7.71 | 409 | 8.81 | 6.88 | 9.54 | 13.56 | 12.60
success rate 100% | 100% | 87% | 100% | 100% | 100% | 100% | 100% | 80% | 100% | 100% | 100%

Table 1: Performance comparison of three planners for single-arm manipulation in the scenarios shown in Figure 1.

Dual-arm Planning with an Upright Constraint

Many dual-arm tasks come with a natural requirement that
the object be kept upright throughout the entire path, such as
carrying a tray with food or drink on it. The act of holding an
object with two hands naturally implies a constraint where
the two end-effectors of the arms have to maintain a relative
configuration with respect to each other.

Instead of a 14D state space for a robot with two 7 DOF
arms (i.e. PR2), we can exploit the natural dimensional-
ity reduction that stems from the two constraints we men-
tioned above. Given the global pose of the object and the
positions of one DOF in each arm, we can compute the
complete configuration of each arm. That is, there is a one
to one mapping between the 14D joint space of the two
arms and the 6D space represented by the object pose and
two free angles (one for each 7 DOF arm), represented as
(z,y,z,roll,01,02). The 6D states can be mapped back
to the full 14D space whenever required, e.g. for collision
checking and feasibility checking.

Given the upright constraint, we can modify the heuristic
to make it more informative. Instead of modeling the object
as a sphere when performing the 3D BFS, we instead model
it as a cylinder, or a stack of cylindrical discs, because we are
constraining the object from rolling or pitching. Modeling
the object as a cylinder is significantly more informative than
using an inner sphere when the object’s dimensions are not
similar along each axis, e.g. a tray which is very wide and
flat.

Results from a set of 12 experiments are presented in Ta-
ble 3. Photos of the robot during the experiments on the PR2
can be seen in Figure 2.

Time until | Expands. un- | €finq: | Expands. un-
First Soln. (s) | til First Soln. til Final Soln.
0.31 182 3 8,161
0.15 76 3 7,584
0.33 182 3 6,265
2.01 544 5 5,021
1.07 379 4 7,991
0.98 432 4 6,445
14.88 6,773 100 [6,785
0.56 31 3 6,714
0.57 34 3 5,960
1.06 322 5 4,932
0.14 62 3 7,344
0.13 68 3 6,437

Table 3: Results from 12 simulated trials.

522

Figure 2: Four of the dual-arm experiments.

References

Cohen, B.; Chitta, S.; and Likhachev, M. 2013. Single-and
dual-arm motion planning with heuristic search. The Inter-
national Journal of Robotics Research 0278364913507983.

Frazzoli, E., and Karaman, S. 2010. Incremental sampling-
based algorithms for optimal motion planning. Int. Journal
of Robotics Research.

Hart, P. E.; N. J. Nilsson; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems, Science, and Cyber-
netics SSC-4(2):100-107.

Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566-580.

Kuffner, J., and LaValle, S. 2000. RRT-connect: An effi-
cient approach to single-query path planning. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), 995-1001.

Likhachev, M., and Ferguson, D. 2009. Planning long
dynamically-feasible maneuvers for autonomous vehicles.
International Journal of Robotics Research (IJRR).

Likhachev, M.; G. Gordon; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Advances in Neural Information Processing Systems (NIPS)
16. Cambridge, MA: MIT Press.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Ratliff, N.; Zucker, M.; Bagnell, J. A.; and Srinivasa, S.
2009. Chomp: Gradient optimization techniques for effi-
cient motion planning. In IEEE International Conference
on Robotics and Automation.

