
Property Directed Reachability for Automated Planning∗

Martin Suda
Computer Science Department
University of Manchester, UK

martin.suda@gmail.com

Abstract

Property Directed Reachability (PDR), also known as IC3,
is a very promising recent method for deciding reachability
in symbolically represented transition systems. While origi-
nally conceived as a model checking algorithm for hardware
circuits, it has already been successfully applied in several
other areas. This paper summarizes the first investigation of
PDR from the perspective of automated planning.

Introduction
Property Directed Reachability (PDR), also known as IC3,
is a recently proposed algorithm for deciding reachability in
symbolically represented transition systems (Bradley 2011;
Eén, Mishchenko, and Brayton 2011). Since its discovery in
2010 it has already established itself as one of the strongest
model checking algorithms used in hardware verification.
The original way in which PDR harnesses the power of a
modern SAT-solver gives the algorithm a unique ability to
discover long counterexample paths combined with a re-
markable performance in proving unreachability. Other in-
teresting traits include a typically small memory footprint
and a good potential for parallelization.

With awareness of the well-known equivalence between
model checking and automated planning, the aim of this
work is to investigate PDR from the planning perspective.
Our main goal is to establish whether the practical success
of the algorithm can be repeated on planning benchmarks.
Moreover, we are also interested in the relation of PDR to
the currently used planning techniques. This extended ab-
stract is a summary of our findings, which have been pre-
sented in full elsewhere (Suda 2014).

Symbolic Transition Systems and Encodings
Transition systems are used to describe the state spaces and
thus the semantics of problems both in model checking and
in automated planning. We introduce the notion of a sym-
bolic transition system (STS) to serve as a succinct repre-
sentation of the state space. Based on propositional logic,

∗The work was done in Max-Planck-Institut für Informatik,
Saarbrücken, Germany.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an STS is designed to allow atomic queries about the sys-
tem to be easily delegated to and answered by a SAT-solver.
Symbolic transition systems serve as a general input to PDR.

In order to obtain an STS from a planning task we need
to choose a suitable encoding. We observe that most of the
standard encoding schemes of the planning as satisfiability
paradigm (Kautz and Selman 1996) can be easily adopted
for this purpose. This means that a general implementation
of PDR combined with any such encoding already yields a
standalone planner.

The Algorithm
PDR is probably best understood as a hybrid between an
explicit and a symbolic approach. It explicitly constructs a
path consisting of concrete states, starting from the initial
state and extending it step by step towards the goal. At the
same time, it maintains symbolic reachability information,
which is locally refined whenever the current path cannot be
extended further. The reachability information guides the
path construction and is bound to eventually converge to a
certificate of non-reachability, if no witnessing path exists.

In more detail, the reachability information takes the form
of a sequence of sets of clauses. The i-th set in the sequence
over-approximates the i-fold preimage of the set of goal
states. These clause sets play a role similar to an admissi-
ble heuristic. They represent a lower bound estimate for the
distance of a state to the goal and thus provide a means to
guide the search towards it. However, while a heuristic value
of a particular state is normally computed only once and it
remains constant during the search for a plan, the clause sets
in PDR are refined continually. The refinement happens on
demand, driven by the states encountered during the search.

Since the path construction happens in the context of a
concrete encoding, PDR can be likened to an instance of the
planning as satisfiability approach in which the construction
of the assignment is controlled to grow only in one direc-
tion. PDR also proceeds iteratively, gradually disproving
existence of plans of length 0, 1, 2,. . . . Due to a so called
obligation rescheduling technique, however, PDR can dis-
cover a plan of length l already during iteration k < l, that
is, while the existence of shorter plans has not necessarily
been ruled out yet. This typically leads to improved perfor-
mance, as it allows the algorithm to avoid completing the
potentially expensive non-existence proofs.

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

540

PDR without a SAT-solver
Our main theoretical contribution is the discovery that in the
context of automated planning PDR can be realized com-
pletely without a SAT-solver. We notice that the computa-
tion of the path extension, which is normally implemented
by posing a query to the solver, can be in the case of the
sequential plan semantics delegated to a planning-specific
procedure. With this procedure we not only obtain a polyno-
mial time guarantee for computing the extension, but by de-
coupling PDR from the underlying SAT-solver we also gain
additional insights and ideas for further improvements.

The general form of the path extension query, the core op-
eration around which the whole algorithm is built, is as fol-
lows. Given a state s and a set of clauses L, we ask whether
there is a state t, a successor of s with respect to the encoded
transition relation T , that satisfies the clauses of L. In the
positive case, we take the successor t to proceed with the
path construction. In the negative case, we want to extract
a reason r in the form of a subset of the literals defining
s such that no state satisfying r has a successor satisfying
L. The reason r is then converted to a clause which refines
the reachability information. Subsequently, PDR backtracks
from s to consider a different state for extension.

When the encoded transition relation T follows the se-
quential plan semantics, the positive part of the above “con-
tract” can be efficiently implemented by a simple iteration
over all the successors of the state s. We just check for every
action whether it is applicable in s and if so, we test whether
the corresponding successor satisfies the clauses from L.

Non-trivial is, however, the negative part, because it is es-
sential for the efficiency of PDR that the computed reason be
as small as possible. We propose (Suda 2014) to decompose
the problem by computing separate reasons for each action
and combining these into an overall reason in a final opti-
mization step. The complexity is polynomially bounded in
the sizes of s, L, and the action set of the planning task.

Experiments
We performed a series of experiments aimed to establish the
potential of PDR for automated planning. As the test prob-
lems we used 1561 STRIPS problems (of 49 domains, in
total) collected from the International Planning Competition
(IPC),1 years 1998–2011. The experiments were run on ma-
chines with 3.16 GHz Intel Xeon CPU, 16 GB RAM, run-
ning Debian 6.0. Below we list the most interesting findings.

• The “SAT-solver free” variant of PDR, which we im-
plemented in a new planner PDRplan2, performs over-
all better than the general version of the algorithm com-
bined with encodings (simple sequential and parallel en-
codings, as well as the ∃-step parallel encoding (Rinta-
nen, Heljanko, and Niemelä 2006) and the SASE encod-
ing (Huang, Chen, and Zhang 2012) were tried).

• The forward direction of search (progression), where the
explicit path is constructed from the initial state towards
the goal, gives generally better results than the backward

1http://ipc.icaps-conference.org
2https://github.com/quickbeam123/PDRplan

Total Fast Downward PDRplan Mp
1561 1437 1333 1310

Table 1: Number of problems solved within 1800s.

direction (regression). We note that the backward di-
rection is the one preferred in model checking, because
it yields superior results for “proving” valid properties.
However, when the main focus is on “discovering coun-
terexamples” or, equivalently, on finding plans, the for-
ward direction should be favored.

• Neither clause propagation nor inductive minimization
(Bradley 2011), two features which are normally deemed
essential for the performance of PDR, seem to provide
a significant benefit on planning problems. This could
again be explained by the fact that more than 99 percent of
our planning benchmarks are satisfiable (or “solvable”).

• When compared to state of the art planners (see Ta-
ble 1), PDRplan does not reach the performance of Fast
Downward (Helmert 2006),3 but outperforms Mp (Rinta-
nen 2012), probably the current best representative of the
planning as satisfiability approach. PDRplan was also
able to solve most of the problems on several domains.

We refer the reader to the full paper (Suda 2014) for an ac-
count on plan quality and optimal planning. We also discuss
there a perhaps surprising connection between PDR and the
Graphplan algorithm of Blum and Furst (1997).

References
Blum, A., and Furst, M. L. 1997. Fast planning through planning
graph analysis. Artif. Intell. 90(1–2):281–300.
Bradley, A. R. 2011. SAT-based model checking without unrolling.
In Jhala, R., and Schmidt, D. A., eds., VMCAI, volume 6538 of
LNCS, 70–87. Springer.
Eén, N.; Mishchenko, A.; and Brayton, R. K. 2011. Efficient
implementation of property directed reachability. In Bjesse, P., and
Slobodová, A., eds., FMCAD, 125–134. FMCAD Inc.
Helmert, M. 2006. The Fast Downward planning system. J. Artif.
Intell. Res. (JAIR) 26:191–246.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ planning as
satisfiability. J. Artif. Intell. Res. (JAIR) 43:293–328.
Kautz, H. A., and Selman, B. 1996. Pushing the envelope: Plan-
ning, propositional logic and stochastic search. In Clancey, W. J.,
and Weld, D. S., eds., AAAI/IAAI, Vol. 2, 1194–1201. AAAI Press
/ The MIT Press.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. J. Artif. Intell. Res.
(JAIR) 39:127–177.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Planning as
satisfiability: parallel plans and algorithms for plan search. Artif.
Intell. 170(12–13):1031–1080.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Artif.
Intell. 193:45–86.
Suda, M. 2014. Property directed reachability for automated plan-
ning. J. Artif. Intell. Res. (JAIR). To appear.

3We used the configuration LAMA-2011 (Richter and Westphal
2010), the winner of the satisficing track of IPC 2011.

541

