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Abstract

The Resource Constrained Project Scheduling Problem con-
sists of finding start times for precedence-constrained activ-
ities which compete over renewable resources, with the goal
to produce the shortest schedule. The method of Justification
is a very popular post-processing schedule optimization tech-
nique which, although it is not clear exactly why, has been
shown to work very well, even improving randomly gener-
ated schedules over those produced by advanced heuristics.
In this paper, we set out to investigate why Justification works
so well, and, with this understanding, to bypass the need for
Justification by computing a priori the priorities Justification
implicitly employs. We perform an exploratory study to in-
vestigate the effectiveness of Justification on a novel test set
which varies the RCPSP phase-transition parameters across
a larger range than existing test sets. We propose several hy-
potheses to explain the behavior of Justification, which we
test by deriving from them several predictions, and a new pri-
ority rule. We show that this rule matches the priorities used
by Justification more closely than existing rules, making it
outperform the most successful priority rule heuristic.

Introduction
The Resource Constrained Project Scheduling Problem
(RCPSP) has many important applications, e.g. in man-
ufacturing, maintenance, staff scheduling and school-
timetabling. An instance of the problem consists of a set of
precedence-constrained tasks that compete for renewable re-
sources, and we are asked to assign starting times to these
tasks (a ‘schedule’) that satisfy all constraints. The RCPSP
is also an intractable problem, hence an enormous body of
work has developed over the past decades, in which a great
variety of heuristic approaches has been proposed and evalu-
ated (see the review in (Kolisch and Hartmann 2006), for ex-
ample). A procedure called ‘Justification’ (Valls, Ballestı́n,
and Quintanilla 2005), or ‘Forward-Backward Improvement
(FBI)’ (Tormos and Lova 2001) has become a standard
building block of many methods. Justification is a post-
processing technique, that is applied to an existing sched-
ule: It ‘shifts’ all activities to the right, and then back to the
left, which often leads to a schedule with lower makespan
than the input schedule. The comparison of heuristics in
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(Kolisch and Hartmann 2006) shows that the top performing
heuristics almost invariably make use of FBI. What is not
clear, however, is why Justification works so well. Recent
experimental studies of heuristics for the RCPSP (and other
computational problems), unfortunately still “resemble track
meets more than scientific endeavors”, even now, almost 20
years after Hooker published his paper “Testing Heuristics:
We Have it All Wrong” in the inaugural issue of the Jour-
nal of Heuristics (Hooker 1995, p. 33). The typical paper
proposes a heuristic and compares it with other heuristics
on the standard PSPLIB benchmark set, after which a paper
is submitted if the results are favorable (and not submitted,
or rejected otherwise). Papers that scientifically investigate
a heuristic in order to understand why it works well are rare.

In (Hooker 1994), Hooker calls for a scientific approach
to the study of algorithms, and exemplifies it in (Hooker and
Vinay 1995) with a study of a branching rule for a com-
plete solver for the Satisfiability problem. We also adopt
this approach here. First we describe the RCPSP problem
in detail, along with (classes of) solutions and some algo-
rithms for obtaining them, including FBI. We continue with
an exploratory study of the FBI technique, after we have ar-
gued for and introduced a new test set of instances. Our ex-
ploration leads to observations about the behavior of FBI
that we want to explain. We propose hypotheses that ex-
plain the behavior we observed. Since we can not directly
observe these hypotheses, we derive expectations from them
which we put to the test in controlled experiments. One ex-
pectation is that a novel priority rule heuristic we designed
should work well, and we find in our experiments that indeed
it does.

Problem Definition
An instance of the Resource Constrained Project Schedul-
ing problem (RCPSP) is given by the tuple I =
(A,R, P, d, u, c), where A = {a1, . . . , an} and R =
{r1, . . . , rm} are the sets of activities and resources, respec-
tively, and P ⊆ A × A is a set of precedence constraints:
If (ai, aj) ∈ P (which we also write as ai ≺ aj), then ac-
tivity ai must complete before aj is allowed to start. The
value d(ai) ∈ N+ is ai’s duration, while c(rk) ∈ N+

is rk’s capacity. The value u(ai, rk) ∈ N says how many
units of resource rk activity ai needs (during its entire du-
ration). As is customary, we define two special activities
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a0 and an+1 (both with zero duration and zero resource
usage) that signify the project start and end, respectively:
∀ai ∈ A : a0 ≺ ai ∧ ai ≺ an+1.

A schedule for an instance I is a function s : A → N
that assigns a start time to each activity (we let s(a0) = 0).
Given a schedule s and a timepoint t, the function i returns
the set of activities in progress in s at time t: i(s, t) 7→
{ ai | s(ai) ≤ t < s(ai) + d(ai)}. A schedule is a solution
if it is feasible, i.e. if it meets the precedence and resource
constraints:

s(ai) + d(ai) ≤ s(aj) ∀(ai ≺ aj) ∈ P (1)∑
ai∈i(s,t)

u(ai, rk) ≤ c(rk) ∀t ∈ N,∀rk ∈ R (2)

The RCPSP asks for a solution that minimizes the project
makespan s(an+1), and finding one is an NP-hard prob-
lem (Blazewicz, Lenstra, and Rinnooy-Kan 1983).

The Earliest Start schedule sEST is the shortest possible
schedule that satisfies only the precedence constraints (1).
It can be computed in polynomial time using a breadth
first search, and it is interesting because sEST(an+1) is a
lower bound on the minimum makespan. An analogous no-
tion is the Latest Start schedule sLST. Letting sLST(an+1) =
sEST(an+1), schedule sLST is computed by recursively start-
ing each directly preceding task as late as possible, taking
into account only the precedence constraints (1).

Visualizing Instances and Solutions
Figure 1 presents an example RCPSP instance with 3 activ-
ities and 2 resources. Solutions to the RCPSP are often pre-
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Figure 1: An example RCPSP instance.

sented using Gantt charts (Wilson 2003)—one for each re-
source in R. Figure 2 presents the earliest start solution sEST

in the two Gantt charts on the left. (For clarity, we extend the
Gantt charts with all non-redundant precedence constraints.)
As the Gantt chart for r1 shows, sEST is not resource feasible:
activities a1 and a3 together overuse resource r1. Starting a3
one time unit later gives the optimal makespan of 3.

Classes of solutions
(Sprecher, Kolisch, and Drexl 1995) identifies a hierarchy of
classes of solutions:

NDS ⊆ AS ⊆ SAS ⊆ FS,

which are the sets of Non-Delay, Active, Semi-Active, and
Feasible Schedules, respectively. In an Active schedule, ev-
ery activity is started as soon as possible while satisfying
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Figure 2: Two schedules for the instance in figure 1.

both the precedence and resource constraints. Non-Delay
Schedules are schedules in which no activity could resource
and precedence feasibly start any sooner even if we relax the
constraint that activities may not be preempted. The set of
Active Schedules always contains an optimal solution, while
the set of Non-Delay Schedules may not contain an optimal
solution (Kolisch 1996; Sprecher, Kolisch, and Drexl 1995).
The solution sOPT in figure 2 is a Non-Delay Schedule, while
delaying activity a2 by one results in a Feasible Schedule.

Algorithms
This section describes heuristic algorithms for finding so-
lutions to instances of the RCPSP. The Serial and Paral-
lel Schedule Generation Schemes (see (Kolisch 1996)) are
greedy algorithms that incrementally construct a schedule
using a Priority Rule heuristic to determine which activity
to schedule next, from a set of eligible activities D ⊆ A (an
activity is eligible if all of its predecessors have already been
scheduled).

Priority Rules
The priority rule that has been identified in (Kolisch 1996)
and (Tormos and Lova 2001) to consistently result in good
schedules is the minimum Latest Finish Time (LFT) heuris-
tic. This rule computes a Latest Start Time schedule sLST and
then prioritizes the activity with arg min

ai∈D
(sLST(ai) + d(ai))

the highest. This task can be seen as the most urgent, since
it is followed by the longest critical chain of activities.

Another priority rule that has been shown to work well is
the maximum Total Successors (TS) heuristic. It selects the
activity in D that has the largest number of successors. An
activity aj is a successor of ai if there exists a path ai ≺
... ≺ aj . Just as with the LFT heuristic, this is intuitively an
urgent task, since there are many activities waiting for it.

Finally, the Random Priority Rule is often used as a base-
line with which to compare more informed heuristics. It sim-
ply selects a random activity from the set D.

Schedule Generation Schemes
The Serial Schedule Generation Scheme (Serial SGS) is a
single pass greedy algorithm for constructing a schedule
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for an RCPSP instance. The algorithm incrementally sched-
ules a single activity in each iteration, at the earliest possi-
ble resource feasible time, without backtracking on the start
times of already scheduled activities. The activity that is se-
lected in each iteration is the activity with the highest prior-
ity among all the activities whose predecessors are already
scheduled.

Instead of scheduling one activity at a time, the Parallel
SGS schedules as many activities as will remain resource
feasible, before advancing to the next time when a task
completes, again without backtracking. The activities to be
scheduled in the current timestep are iteratively considered
in the order determined by the priority rule heuristic.

Both the Serial and the Parallel SGS operate in time
O(n2m) where n is the number of activities and m is the
number of resources.

Backwards Scheduling
Sometimes, SGSs produce better schedules when the sched-
ule is created backwards. An RCPSP-instance I is first ‘re-
versed,’ creating the instance I ′ = (A,R, P ′, d, u, c) in
which all precedence constraints are reversed—setting P ′ =
{aj ≺ ai | ∀ai ≺ aj ∈ P}—and then solved, after which a
solution to the backwards instance is transformed to be valid
for the original instance. Suppose that schedule s′ was found
for I ′, then s is easily constructed for I as follows:

s(ai) = s′(a0)− (s′(ai) + d(ai)) ∀ai ∈ A

Forward-Backward Improvement (FBI)
Many scheduling algorithms start the activities as early
as possible, even when some activities have some ‘slack’,
i.e. they could start later without adversely affecting the
makespan. Tasks with slack thus consume resources at an
earlier time than strictly necessary. By starting such a task
later, such resources are freed up, which may allow more
critical activities to start earlier, thus reducing the sched-
ule’s makespan. FBI (Valls, Ballestı́n, and Quintanilla 2005)
implements this idea as ‘(double) justification,’ by chaining
two passes of the Serial SGS together, after a feasible sched-
ule s has already been created. The first pass operates on the
reversed instance by using the finish times of activities in s
as priorities, which means that the activity to finish latest in
s is scheduled first in the justified schedule s′. The second
pass operates on the original instance, now using the finish
times of activities in s′ as priorities.

Consider the example instance in figure 3. Suppose we
have the solution sSGS in Figure 4 (left). Activities a5, a6
and a7 have slack, since they could start up to 3 time units
later. But because a5 starts as early as possible, it prevents
activity a8 from running in parallel with a1, which results in
an inefficient schedule. Figure 4 (center) shows the solution
sBWD which is the result of applying the Serial SGS on the re-
versed instance, using the finish times of activities in sSGS as
priorities (the direction of time is shown from right to left).
In this solution there is sufficient room to schedule a8 on top
of a1 because the a5−a6−a7 chain was pushed to the right.
Finally, scheduling the original instance with finish times in
sBWD as priorities results in solution sFWD (Figure 4, right),

which is 1
3 shorter than the first solution sSGS, by exploiting

the room created early in the schedule.
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Figure 3: RCPSP instance with equal-duration activities, one
resource of capacity 7. Resource usage above each activity
(red), LFT below (blue).

Generating Instances
To obtain broad insight into the behavior of the Justifica-
tion algorithm, we want to perform an exploratory study,
in which we assess FBI’s behavior on a variety of RCPSP-
instances. In this section, we discuss some drawbacks of the
commonly used PSPLIB instances, and argue the need for a
new test set, and introduce it. The next section describes the
setup and results of the exploratory study.

Phase Transition Parameters

All NP-complete problems are conjectured to possess at
least one order parameter that determines the difficulty of
solving an instance through its degree of constrainedness
(Cheeseman, Kanefsky, and Taylor 1991). Furthermore, this
order parameter is conjectured to have a critical region in
which really difficult problems exist. For the 3-Satisfiability
problem, for example, the order parameter is the ratio of the
number of clauses to the number of variables in the instance,
and at a critical value of this ratio (about 4.3), about 50% of
randomly generated instances are satisfiable (Mitchell, Sel-
man, and Levesque 1992; Monasson et al. 1999). This co-
incides with a sharp increase in the computational effort re-
quired to established (un)satisfiability.

Many measures have been proposed to predict how hard
an RCPSP instance will be to solve optimally. Evidence of
a difficulty phase transition for RCPSP is presented in (Her-
roelen and De Reyck 1999), on two parameters called Re-
source Strength and Resource Constrainedness. They also
demonstrate a linear difficulty decrease in Order Strength.
This section provides the definitions of these three measures.

Resource Strength (RS) This metric intends to measure
the size of resource conflicts. For all resources, it computes
the ratio of the resource’s capacity to its highest peak us-
age in the Earliest Start Time schedule. Let uPEAK(rk) be re-
source rk’s peak usage in sEST, and uMAX(rk) the maximum
usage of rk by a single activity. Then the Resource Strength

94



sSGS sBWD sFWD

7

6 6 60 0 0

a1 a2 a3 a4

a8 a9

a5 a6 a7

a1 a2 a3 a4

a8 a9

a5 a6 a7

a1 a2 a3 a4

a8 a9

a5 a6 a7

Figure 4: Left: LFT solution to the instance in Figure 3. Middle: The FBI backward pass. Right: The FBI forward pass.

is computed as follows:

uPEAK(rk) = max
t

(
∑

ai∈i(sEST,t)

u(ai, rk)),

uMAX(rk) = max
ai

(u(ai, rk)),

RSk =
c(rk)− uMAX(rk)

uPEAK(rk)− uMAX(rk)
.

To compute the Resource Strength of an instance the val-
ues per resource are averaged.

Resource Constrainedness (RC) Compared to RS, this
alternative resource metric aims to be a more pure measure
of the resource constraints. It does not use precedence rela-
tions in its computation, while still giving an indication of
the hardness of the instance. The RC measure for a resource
rk is defined as the normalized average consumption of the
resource rk, averaged over all activities that require the re-
source.

RCk =

∑
ai∈A u(ai, rk)

|{ ai | u(ai, rk) > 0}| × c(rk)
.

Like Resource Strength it is averaged over all resources
to obtain a measure for the complete instance.

Order Strength (OS) The Order Strength of an instance
is a measure of the constrainedness of the network of prece-
dence relations. If we call P the transitive closure of P , then
the Order Strength is computed as:

OS =
|P |
n2−n

2

.

Test Set Generation
Researchers who work on the RCPSP are very familiar with
the PSPLIB test sets (Kolisch, Schwindt, and Sprecher 1998),
designed for the investigation of the hypothesis that small
RCPSP instances cannot be hard (Kolisch, Sprecher, and
Drexl 1995). This test set is extremely widely used, to the
point where one can wonder whether most of the current re-
search effort is not over-fitted to this test set.

More importantly, the PSPLIB was generated before the
RCPSP phase transition parameters were studied. As such,
it does not take into account the RC parameter, and instead

of OS it uses Network Complexity which was shown in (De
Reyck and Herroelen 1996) to have no predictive power for
instance hardness.

In (Herroelen and De Reyck 1999), the authors conjecture
that RS and RC are correlated such that low RS roughly cor-
responds to high RC. They suggest that there is only a small
role for OS (and for precedence constraints in general) in
determining instance difficulty. Instead, we conjecture that
precedence constraints do play a role, and that the three mea-
sures are pairwise correlated. In particular: suppose RS is
held constant, then as OS increases, fewer activities are in
parallel in sEST which requires higher resource usage to cre-
ate peaks of the required size, corresponding to an increase
in RC.

Because the PSPLIB set does not seem to cover a wide
enough range of instances for the purposes of our ex-
ploratory study, we decided to generate our own test set.
Based on our conjecture we generated a test set of 21, 000
instances by keeping RS fixed and varying OS between 0
and 1. The fixed values are n = 50, m = 4, RS = 0.25
and the probability that activity ai uses resource rk is 0.80.
For the generation of the test set we used the RANGEN2
generator introduced in (Vanhoucke et al. 2008). There this
generator was shown to produce instances with the largest
precedence network diversity for a given amount of process-
ing time. Figure 5 shows how the value for RC depends on
OS for the generated instances. Because we have fixed RS,
we expect to see a correlation between RC and OS, which is
indeed present in the results. An increase in OS results in an
increase in RC, at a Pearson correlation coefficient of 0.938.

Exploratory Study

The purpose of our exploratory study is to generate a wide
range of observations on the performance of the Justification
procedure. Our observations should provide us with many
‘views’ of the behavior of Justification, allowing us to for-
mulate general hypotheses to explain and understand its be-
havior. So, for example, we will want to see what Justifica-
tion does to schedules produced by the Parallel as well as
the Serial SGS, even though the Parallel SGS is known to
typically produce shorter schedules.
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Experimental Design
We want to generate data showing how Justification behaves.
This procedure works on an RCPSP instance, with a given
schedule as input, and performs two passes. In these ex-
ploratory experiments, therefore, we investigate three ques-
tions: (1) How is justification affected by the characteris-
tics of the instance? (2) How is justification affected by the
choice of SGS (Serial or Parallel) used to generate the input
schedule? And finally, (3) what is the interaction between
the first and the second justification pass?

The setup is therefore as follows. We perform experiments
on the test set described in the previous section, varying Or-
der Strength (and by correlation Resource Constrainedness)
over the range of possible values, to ensure that we can make
observations regarding the first question. First, each instance
in this test set is solved—using the LFT priority rule—with
both the Serial (S) and the Parallel (P) SGS, allowing us to
address the second question above. We use each SGS in both
the forward (F) and the backward (B) direction, ensuring that
any subsequent improvement obtained by Justification can-
not be ascribed to the initial schedule direction being much

worse than the justified direction. This provides us with four
input schedules for Justification (SF, SB, PF, and PB). Then,
each of these four schedules is improved with two justifica-
tion passes (1 and 2). By recording the results of both justi-
fication passes we can address the third question.

We are interested in the quality of the solutions produced,
measured as the percentage increase in makespan compared
to the optimal makespan. Because it is not feasible to solve
every instance in the test set to optimality, we use the short-
est makespan we have ever found for an instance as an ap-
proximation.

Exploration Results
Figure 6 visualizes the results, using the Parallel (Serial)
SGS for producing an input schedule on the left (right).
Each line is the smoothed mean performance line fitted to
a scatterplot of all instances (not shown), so we had six scat-
terplots originally. The x-value of each datapoint in these
scatterplots is the OS-value of the instance, and the y-value
measures the percentage by which the produced schedule si
is longer than the best sBEST, computed as si−sBEST

sBEST
× 100%.

For the values in the ‘Parallel SGS’ plot, the schedule used
for the ‘0’ measurement was the shortest of PF and PB, the
schedule used for the ‘1’ measurement was the shortest of
PF1 and PB1, and the schedule used for the ‘2’ measure-
ment was the shortest of PF2 and PB2 (and similarly for the
‘Serial SGS’ plot). We emphasize three observations:

1. The first justification pass lowers the mean deviation by
many more percentage points for the Parallel SGS, than
for the Serial SGS.

2. The improvement provided by the second justification
pass is much smaller than that provided by the first pass.

3. Only extreme values of Order Strength (OS > 0.975) do
not show significant improvement at the 2.5% one-sided
confidence interval.

Explanation
We now try to explain the above observations, by propos-
ing two hypotheses. Because we can not observe directly
whether they are true, we derive predictions from them about
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what effects we expect to find in controlled experiments. If
we do find those effects, this does not prove that a hypothesis
is true, but it provides evidence that it is. On the other hand,
if the effect does not appear, we know the hypothesis is not
true (or that something went wrong in our experiments).

Analysis of Forward-Backward Improvement
As illustrated in Figure 7, the space of Active Schedules

f ′

f

NDS

DS

AS = NDS ∪ DS

Figure 7: The solution space of Active schedules.

(AS) is divided into the set of Non-Delay Schedules (NDS)
and its complement, which we call the set of Delay Sched-
ules (DS). (We also use AS, NDS and DS as names for par-
ticular schedules in these respective sets.) Kolisch showed
that the Parallel SGS produces an NDS, while the Serial SGS
produces an AS, which is either a DS or an NDS (Kolisch
1996). Recall that there always exists an AS that is optimal,
while it is possible that no NDS is optimal. Because FBI uses
the Serial SGS, it may turn an NDS into a DS. We hypoth-
esize that this transformation generally causes a reduction
in makespan. If this is true, then the observation that FBI
works better on schedules produced by the Parallel SGS is
easily explained: The Serial SGS produces fewer NDSs than
the Parallel SGS.
Hypothesis 1. Transforming an NDS into a similar DS re-
sults in a schedule with lower makespan, unless the NDS
schedule was optimal.

To make the intuition behind the proposed hypothesis
clear, we first reason from the opposite operation (f in Fig-
ure 7). Consider a function f : DS→ NDS that transforms a
DS s into a similar NDS, as follows. First determine for each
pair of activities (ai, aj) ∈ A2 if ai is scheduled completely
before, completely after or partially concurrent with aj in s.
Note that specifying this partial ordering for each pair of ac-
tivities is sufficient to encode the complete schedule s. Fur-
ther, identify the earliest activity ai which can partially start
at time t < s(ai). We say that this activity ai is in the active
position.

The proposed function f iteratively produces a new
schedule s′ by shifting the active position activity ai to start
at time t by setting s′(aj) = s(aj) for j 6= i and s′(ai) = t,
and recomputing the partial ordering. Schedule s′ is infea-
sible due to activities aj starting at t′ > t which blocked
ai from starting at t in s. To make s′ feasible again, replace
every partially concurrent pair (ai, aj) with the condition
that ai is completely scheduled before aj . The now feasible
schedule s′ is similar to s (in terms of sequence) but with ai
no longer delayed. Since t was the earliest ‘gap’ and the first
change occurs at t′ > t, the next earliest possible gap is at
t′′ >= t′. Because start times of the active position activities
considered are strictly increasing this procedure terminates,

having produced an NDS schedule s′. This algorithm may
increase the makespan if at some time an aj that was part of
the critical chain is pushed forward.

The inverse function f ′ : NDS→ DS transforms an NDS
s′ into a similar DS. However, it is not possible to specify
the inverse procedure as we have done for f for two reasons.
In the first place, it is not clear which criterion we should
use to select an activity ai to delay, or to what time t to
delay it to. Secondly, it is not clear when to terminate the
procedure, since after the first iteration the objective of turn-
ing an NDS schedule into a DS schedule has been achieved.
However, we conjecture that this function generally reduces
the makespan of the schedule, and that the FBI algorithm
performs this function on NDS schedules. We can derive a
number of expectations from hypothesis 1 that can be used
to test it. In the first place, we may simply look at the types
of schedules before and after justification.
Expectation 1. If the application of a justification pass
transforms a NDS into a DS the resulting schedule will have
a lower makespan.

An alternative approach to testing the hypothesis is by al-
tering the procedure of FBI. A defining aspect of FBI is that
it uses the Serial SGS to justify the schedules. We may how-
ever try to use the Parallel SGS instead. This makes FBI pro-
duce an NDS, which means the hypothesized effect should
not be present in the results, and we thus expect less im-
provement (expectation 2). On the other hand, if we only
use the Parallel SGS for the first pass of FBI, we ensure that
the second pass is always applied to an NDS. This implies
that an input DS will be improved more by Parallel-Serial
FBI than by Serial-Serial FBI (expectation 3).
Expectation 2. If FBI is performed with the Parallel instead
of the Serial SGS, schedules will be improved less.
Expectation 3. If FBI is applied with Parallel SGS used
only in the backward pass, its effect is strengthened on input
Delay schedules.

Explaining the Implicit Priorities of FBI
From the exploratory study we conclude that the perfor-
mance of FBI is not due to the fact that it consists of two
passes. Therefore, when analyzing how FBI assigns priori-
ties to activities, we restrict ourselves to a single justification
pass. From the observation that justification works regard-
less of the value of OS/RC, we conclude that to explain the
performance of FBI we should look for a general property
of the justification algorithm.

The key insight is that justification starts by looking at
a feasible input-schedule from the opposite side. Consider a
solution represented in Gantt chart form. Whereas seen from
the ‘left’ all initially feasible activities start at the same time,
from the ‘right’ side we can differentiate between the last
and the second to last activity to finish. After all it is quite
unlikely that all final activities end at the same time.

Because all the schedules produced by an SGS are AS, for
each activity ai we can identify its immediate predecessors
aj . These predecessors finish exactly when ai starts and are
either related by precedences, or they use some of the re-
sources ai needs. Thus these predecessors are exactly those
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activities that prevent ai from starting any earlier. In any AS
there is always at least one activity aj that causes ai to start
at a later time than 0. This causality forms a chain of activi-
ties from 0 to s(ai).

Justification gives the highest priority to the task that fin-
ishes last (in the input schedule), which means it prioritizes
the longest chain of activities. If Justification improves the
schedule, it must be the case that this critical chain has be-
come shorter. So for a schedule improved by Justification,
the longest chain was delayed compared to the Earliest Start
schedule sEST. We call this difference between the chain
length in the realized schedule and sEST the realized delay.

Possibly, scheduling activities using priorities based on
the length of their critical chain in sEST plus their realized
delay results in good schedules. If each activity was equally
likely to be delayed compared to sEST, the size of the real-
ized delay would be a constant scale factor on the chains in
sEST. Then scheduling tasks by minimum LFT will in fact
be equivalent to scheduling them according to their realized
delay. In this case, the performance of LFT can be explained
by its similarity to our hypothetical ‘realized delay’ priority
rule.

Of course, in practice the resource usages are lopsided,
and the risk of delay will differ per activity. And when there
are very few precedence constraints, the resource usages al-
most entirely dictate the risk of delay, which, as we’ve seen,
is a blind spot of LFT. The success of justification can be ex-
plained as follows: Every feasible schedule provides a good
estimate of the risk of delay each activity has.

Hypothesis 2. Scheduling activities by prioritizing the
longest expected chain of successors yields good schedules.

Instead of using a feasible schedule as an estimate, we
may try to estimate a priori the risk of delay a task suffers
from the resource usage peaks at its position in sEST. Solving
the peaks that occur in sEST results in a feasible schedule,
which is the basis of constraint posting solvers such as those
in (Policella et al. 2007). The idea of estimating the risk of
delay in sEST is formalized in our new Resource Profile Rule.

Resource Profile Rule When a task is part of a resource
peak in the sEST schedule, the likelihood of delay may de-
pend on the amount of this resource it needs. A task that
needs a large amount of the resource can be delayed by a
single other task, while tasks that need almost none of the
resource can be scheduled alongside many other such tasks.
Also, scheduling high resource consumption tasks first is
likely beneficial. Therefore, assigning a higher priority to an
activity that uses more of a overused resource makes sense.
We estimate the delay of a task i in a EST peak on resource
k as follows:

delayi,k =
peakk − c(rk)

c(rk)
× u(ai, rk)

c(rk)
.

The first factor accounts for the height of the peak relative
to the capacity. If the capacity is exceeded three times, it
takes at least two times the average task duration to level the
peak. The second factor accounts for the likelihood a task is
delayed due to its use of the resource.

NDS DS

Parallel NDS 19.4% of 2667 82.3% of 18333
DS 0 0

Serial NDS 1.2% of 2040 3.0% of 1425
DS 17.0% of 837 60.1% of 16698

Table 1: Percentage of solutions improved out of the solu-
tions belonging to each input-output combination.

Given an estimation of the delay a single task suffers, the
length of the chain following a task is computed by deter-
mining the longest path of delays and task durations. Since
the precedence graph does not contain any cycles, it suffices
to compute this chain length using a recursive breadth first
search.

chaini = max
rk∈R

(0, delayi,k) + d(ai) + max
(ai≺aj)∈P

(chainj).

The Resource Profile Rule selects the activity with the
highest value for chaini first. This priority rule should be-
have like FBI does, without first computing a feasible sched-
ule. If hypothesis 2 is correct, we expect the following:
Expectation 4. The Resource Profile rule assigns the same
priorities to activities as the Justification algorithm.
Expectation 5. The makespan of schedules produced by us-
ing the Resource Profile rule will equal those produced by
FBI applied to schedules produced with LFT.

Testing
The first experiment investigates how the types of solutions
affect FBI’s ability to improve them (expectation 1). The
second experiment tests expectation 4 by looking at the dis-
tance between the priorities assigned by justification and the
rules LFT and RP. The remaining expectations are treated in
an experiment on the deviation from the best known solu-
tion using the RP rule and different combinations of SGS in
double justification.

Solution Types Table 1 has the type of the input schedule
of the first pass of justification in the rows, and the type of
output schedule in the columns. The results are presented
as a percentage of schedules that was improved out of the
number of schedules that belong to that input-output type
combination.

We see that when justification constructs a DS (right col-
umn in the table), the output schedule is much more likely
to be an improvement over the input schedule. We also see
that for a large number of instances produced by the Parallel
SGS, justification produces Delay schedules. This matches
our expectation that justification works well on the Paral-
lel SGS because of its ability to construct similar Delay
schedules out of Non-Delay schedules. We also see that the
Non-Delay schedules produced by the Serial SGS are al-
most never improved. The reason for this is that the Serial
SGS starts producing Non-Delay schedules only when Or-
der Strength is high. For these instances, the schedules are
Non-Delay because of precedence constraints, and thus jus-
tification cannot improve them.
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Priority Comparison We expect the RP rule to assign pri-
orities to activities that are similar to the priorities assigned
by Justification (Expectation 4). To test this we want to com-
pare the priority assigned by RP with the priority assigned
by the second pass of Justification on LFT. Because these
values are not on the same scale, we normalize them such
that for each rule the lowest priority task has priority value
0, while the highest has value 1. In this way a priority rule
defines a vector of priorities that is independent of the SGS
used. The Euclidean distance between the vectors of two pri-
ority rules measures their similarity. Figure 8 presents the
smoothed mean Euclidean distance between the RP and LFT

rules and the second justification pass.
As expected, the distance between priorities assigned by

RP and Justification is shorter than between LFT and Justifi-
cation. So the RP rule seems to assign priorities like Justifi-
cation. However, there is still a lot of room for improvement
in the low Order Strength region.

Modified Justification To test expectations about the way
justification improves schedules through its solution types,
we implemented double justification with each SGS in each
of the two passes, for four different variants. Each of these
four implementations was applied to the schedules obtained
earlier by using the LFT and RP heuristics in combination
with the SGSs. The results are in figure 9. The line ’None’
in the top figures is equal to the line ’0’ in figure 6, while
’Ser-Ser’ is equal to ’2’ there.

The figure shows that the similarity of RP with justifica-
tion also translates into a significant improvement in mean
deviation: 4.16% compared to 4.98% of LFT (combined
over the SGSs). This is in line with expectation 5, although
because the priorities do not match exactly, performance is
less than that of justification.

On the types of solutions produced, we see that using the
Parallel SGS for the final justification pass results in almost
no improvement. This is what we expected (expectation 2),
and means that a large part of the performance of Justifi-
cation comes from its ability to generate Delay schedules.
We find further confirmation of this in the way the ‘Parallel-
Serial’ justification algorithm interacts with the solutions
produced by the Serial SGS. By applying the Parallel SGS in
the first pass, the second Serial pass is able to improve these
schedules more than using two Serial passes, which matches
expectation 3.
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Conclusion
We have used an empirical approach to study the Justifica-
tion post-processing algorithm and its interaction with the
Schedule Generation Scheme algorithms. Our improved un-
derstanding has led to a new priority rule that mimics the
principles we hypothesize Justification uses. By testing the
performance of this new priority rule against the best known
priority rule we not only provided evidence that our hypothe-
ses are correct, but as a consequence also demonstrated that
this new rule performs significantly better. Our research sug-
gests that Justification is a suitable approach to bridge the
gap between Non-Delay Schedules and Active Schedules,
typically improving them. Perhaps more importantly than
the individual results, is the result that following an empir-
ical approach to study algorithms pays off in terms of both
increased understanding and improved algorithms.
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