
Bootstrapping Simulation-Based Algorithms with a Suboptimal Policy

Truong-Huy Dinh Nguyen∗

Colleges of Arts, Media and Design
Northeastern University

Boston, MA 02115, USA
tru.nguyen@neu.edu

Tomi Silander
Xerox Research Centre Europe

38240 Meylan, France
tsilande@xrce.xerox.com

Wee-Sun Lee, Tze-Yun Leong
Department of Computer Science
National University of Singapore

Singapore 117417, Singapore
{leews,leongty}@comp.nus.edu.sg

Abstract
Finding optimal policies for Markov Decision Pro-
cesses with large state spaces is in general intractable.
Nonetheless, simulation-based algorithms inspired by
Sparse Sampling (SS) such as Upper Confidence Bound
applied in Trees (UCT) and Forward Search Sparse
Sampling (FSSS) have been shown to perform reason-
ably well in both theory and practice, despite the high
computational demand. To improve the efficiency of
these algorithms, we adopt a simple enhancement tech-
nique with a heuristic policy to speed up the selection of
optimal actions. The general method, called Aux, aug-
ments the look-ahead tree with auxiliary arms that are
evaluated by the heuristic policy. In this paper, we pro-
vide theoretical justification for the method and demon-
strate its effectiveness in two experimental benchmarks
that showcase the faster convergence to a near opti-
mal policy for both SS and FSSS. Moreover, to fur-
ther speed up the convergence of these algorithms at the
early stage, we present a novel mechanism to combine
them with UCT so that the resulting hybrid algorithm is
superior to both of its components.

Introduction
Markov Decision Processes (MDPs) provide a common
framework to model complex planning problems. Many re-
cent approaches have been proposed to solve large MDPs,
where the state spaces may be exponential in size with re-
spect to the numerous factors or relations that characterize
real-life applications. In discounted-reward problems, i.e.,
situations where immediate rewards/costs are valued expo-
nentially more than rewards/costs further in future, one vi-
able approach to solve large MDPs is by constructing a ran-
domly sampled look-ahead tree that covers only a small frac-
tion of the state space to estimate the Q-values achievable
by the applicable actions starting in a given state. This ran-
dom sampling approach to estimation requires a simulator,
or a generative model, of the environment. The approach
results in near-optimal policies that are independent of the
state space size, but at the cost of an exponential depen-
dence on the horizon time, determined by the reward dis-

∗A majority part of this work was completed when the author
was with the National University of Singapore.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

count factor and the desired degree of proximity to the op-
timal policy (Kearns, Mansour, and Ng 2002). This depen-
dency is proven to be close to the best dependency achiev-
able by any planning algorithm that is given only a simulator.
Exponential run-time, therefore, is still needed for deriving
reasonable policies for MDPs with discount factors close to
1. In real life applications, these algorithms are often en-
hanced with heuristics in order to approach optimal values
faster (Gelly and Silver 2007).

Nguyen et al. (Nguyen, Lee, and Leong 2012) recently
proposed to use a heuristic policy to bootstrap simulation-
based algorithms for faster convergence to near-optimal
policies. This general method, called Aux for auxiliary pol-
icy estimation, augments the look-ahead tree with additional
arms that are evaluated by a heuristic policy π. The value
of the augmented arm is estimated from the average reward
of multiple π-guided rollouts from a given state. When ap-
plied to the widely used Monte Carlo Tree Search algo-
rithm namely Upper Confidence Bound applied in Trees
(UCT) (Kocsis and Szepesvári 2006), the proposed UCT-
Aux algorithm was shown to yield performance improve-
ment when the heuristic deployed in π satisfies certain con-
ditions (Nguyen, Lee, and Leong 2012). UCT, however, is
inherently optimistic in selecting simulated actions and fo-
cuses the simulations in highly rewarding branches expo-
nentially more often than others. Therefore, UCT-Aux and
the other UCT variants tend to converge to the optimal pol-
icy very slowly; the rate can be super-exponentially slow in
some cases.

In this paper, we investigate the auxiliary estimation
approach in other more conservative simulation-based al-
gorithms for large MDPs. In particular, we examine the
Aux-method coupled with Sparse Sampling (SS) (Kearns,
Mansour, and Ng 2002), the backbone of many modern
simulation-based algorithms, and Forward Search Sparse
Sampling (FSSS) (Walsh, Goschin, and Littman 2010), one
of the state-of-the-art sparse sampling algorithms. While
there have been various efforts in enhancing the performance
of UCT (Gelly and Silver 2007; Finnsson and Björnsson
2008; Chaslot et al. 2010; Nguyen, Lee, and Leong 2012;
Keller and Helmert 2013), to the best of our knowledge,
our work is among the first to investigate possible enhance-
ment for the algorithms addressed. In subsequent sections,
we provide theoretical evidence that SS-Aux and FSSS-Aux

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

181

yield performance improvements in run-time efficiency over
SS and FSSS. We then demonstrate empirically that both
SS-Aux and FSSS-Aux outperform their respective vanilla
versions by converging faster to near-optimal policies in two
benchmark domains. In the experiments, UCT-Aux is faster
than SS-Aux and FSSS-Aux in finding a near optimal policy,
but FSSS-Aux eventually beats UCT-Aux in performance.
This motivates a hybrid approach that dynamically switches
between UCT-Aux and FSSS-Aux algorithms yielding per-
formance superior to both of them.

Background
Markov Decision Processes (MDP)
An MDP characterizes a planning problem with the tuple
(S,A, T,R, γ), in which

• S is the state set, and A is the set of available actions.

• T (s, a) = P (st+1 | st = s, at = a) is a probabil-
ity distribution over next states when action a is taken in
state s at time t; we assume that this distribution is time-
independent.

• R(s, a) is the immediate reward received after execut-
ing action a in state s. We assume that R(s, a) is deter-
ministic and bounded, i.e., there is Rmax ∈ R such that
|R(s, a)| ≤ Rmax for all s ∈ S and a ∈ A.

• γ ∈ [0, 1) is the discount factor to downplay temporally
remote rewards.

A policy π is a possibly stochastic function that returns an
action π(s) ∈ A for every state s ∈ S. In infinite-horizon,
discounted MDPs, the value function V and Q-function of a
policy π measure the expected long-term utility of following
π:

V π(s0) = ET

[∞∑
t=0

γtR(st, π(st))

]
, and

Qπ(s0, a) = R(s0, a) + γ E
s′∼T (s0,a)

[V π(s′)] .

The objective of solving MDPs is to obtain a policy π∗

with the maximum expected values in all the states, i.e.,
∀s, πV ∗(s) ≥ V π(s). One common approach is to compute
the optimal Q-function Q∗ and construct the corresponding
policy π∗(s) = argmaxaQ

∗(s, a).

Regret of a policy
Given a policy π of an MDP M = (S,A, T,R, γ), we can
define its performance guarantee as follows:

Definition 1 A policy π is called ε-optimal if its regret,
maxs∈S V

∗(s)− V π(s), is at most ε.

Note that a policy’s regret never exceeds 2Vmax with
Vmax = Rmax

1−γ .

Sampling π to estimate V ∗(s)

Most simulation-based algorithms aim to approximate the
optimal value V ∗(s) = maxaQ(s, a) for the current state
s. The Aux enhancement’s key idea is to opportunistically

choose between the value estimation of the core algorithm
and that of the heuristic policy at each tree node. The lat-
ter, when empirically yielding higher value estimates, is the
main source of estimation improvement.

We will now study the error in approximating V ∗(s) if
we simply simulate a sub-optimal policy π for B times for
L steps, and use the average accumulative reward as an esti-
mate. In this so-called π-estimate, the total estimation error
stems from three sources: (1) the regret of π, (2) the length
L of rollouts, and (3) the limited number B of samples. The
following lemma1 bounds the error in estimating V ∗(s) us-
ing π-guided rollouts.

Lemma 1 Let π be an ε0-optimal policy, Xπ,L,i be the ac-
cumulative reward of π-guided rollout i from state s and
V̄ πB,L(s) = 1

B

∑B
i=1Xπ,L,i. For all p > 0, with probability

at least 1− p,

|V ∗(s)−V̄ πB,L(s)| ≤ ε0+γLVmax+O

(
Vmax

√
ln(1/p)

B

)
.

Proof Sketch. By using triangle inequality we get

|V ∗(s)− Ṽ πB,L(s)| ≤ |V ∗(s)− V π(s)|
+ |V π(s)− V πL (s)|
+ |V πL (s)− Ṽ πB,L(s)|

with V πL (s) = E(Xπ,L,i) for all i. By definition, the first
term is bounded by ε0. The second term is the expected esti-
mation error for V π due to simulating π only forL steps; this
is bounded by γLVmax. Finally, using Hoeffding inequality
with B i.i.d. and bounded values Xπ,L,i, we bound the last
term with probability at least 1− p. �

By increasing the values of B and L, we can get as close
as desired to the ε0-vicinity of a state’s value with high prob-
ability, at the cost of longer running time that scales with
BL.

Bootstrapping Sparse Sampling
The Sparse Sampling (SS) (Kearns, Mansour, and Ng 2002)
algorithm estimates the best action to take in a state s0 based
on a set of random simulations of policy “rollouts” or ac-
tion execution sequences. The approach is motivated by the
observation that for discounted reward functions the knowl-
edge about rewards and transition probabilities in a vicinity
of the current state suffices for decision making; events far
in future are irrelevant due to the discount factor γ. Conse-
quently, a sufficiently extensive simulation of the near future
would adequately represent the transition probabilities and
the expected cumulative rewards.

The Sparse Sampling Algorithm
The SS algorithm (Algorithm 1 called with h = H and
aux=False) estimates the state-action valuesQ∗(s0, a) of the
optimal policy by constructing a look-ahead tree rooted at

1All the lemmas and propositions in this paper are our contri-
butions; the detailed proofs are however omitted due to space con-
straints.

182

s0 at level H (see Figure 1a). Starting from s0, it simulates
each of the k = |A| possible actions C times in the depth-
first postorder down to level 0 where all values V SS0 (s) are
set to some default value, e.g., 0. After the subtrees at level
h − 1 have been sampled, the node values are backed up to
level h byQSSh (s, a) = R(s, a)+ γ

C

∑C
c=1 V

SS
h−1(s′c), where

s′c denotes a state at level h − 1 that was obtained when
simulating action a in state s the cth time. The V -values of
states at each level are based on the same level Q-values by
V SSh (s) = argmaxaQ

SS
h (s, a).

Input : state s, height h, boolean flag aux

1 if h = 0 or Terminal (s) then
2 V SS0 (s)← 0
3 end
4 else if ¬V isited(s, h) then
5 V isited(s, h)← true
6 foreach a ∈ A do
7 QSSh (s, a)← 0
8 for C times do
9 s′ ∼ T (s, a)

10 QSSh (s, a)← QSSh (s, a) + 1
CR(s′, a)

+ γ
CSS (s’,h-1,aux)

11 end
12 end
13 V SSh (s)← maxaQ

SS
h (s, a)

14 if aux and V̄ πL,B(s) > V SSh (s) then
15 V SSh (s)← V̄ πL,B(s)

16 end
17 end
18 return V SSh (s)

Algorithm 1: SS (s, h, aux)

As detailed above, the value-estimates of leaf nodes in
a SS look-ahead tree were set to zero. In general, given
a leaf value estimation V SS0 (s) that is ε0-optimal, i.e.,
∀s, |V ∗(s) − V SS0 (s)| ≤ ε0, the value estimation error at
the root node s0 is composed of two factors: one due to
the limited sampling parametrized by H and C, and one
due to the leaf error ε0. The following lemma shows that
as H and C increases, with C kept at some magnitude
larger than H , and ε0 is bounded, the algorithm’s regret
εSS = maxs |V ∗(s)− V SS(s)| goes to 0.

Lemma 2 Consider SS with leaf nodes’ values being ε0-
optimal, i.e. ∀s, |V ∗(s)− V SS0 (s)| ≤ ε0. We have

εSS ≤ TSS(H,C) +
γHε0
1− γ

(1)

with TSS(H,C) =
2γHVmax

1− γ
+

Vmax
(1− γ)2

√
H

C
ln
kC

γ
.

In the bound, the first error term TSS(H,C) is due to lim-
ited sampling, while the second partly depends on the qual-
ity of leaf estimation ε0. If high values of H,C are afford-
able, the leaf estimation plays little role in the algorithm’s
quality.

Specifically, Kearns et al. (Kearns, Mansour, and Ng
2002) showed that by setting the leaf values to 0, i.e., leaf
regret ε0 = Vmax, and H and C dependent on ε > 0 such
that C = O

(
H2/γ2H

)
, the resultant estimation of the algo-

rithm is ε-optimal.

SS-Aux: Sparse Sampling with π-guided Auxiliary
Arms
Given a deterministic heuristic policy π, the proposed algo-
rithm, called SS-Aux (Algorithm 1 called with aux=True),
adds one auxiliary arm into each internal state node of the
look-ahead tree2. The auxiliary arm stemming from s is la-
beled by the action a = π(s) (Figure 1b) and it does not ex-
pand to subtrees as do its siblings, but its value is computed
as the average of accumulated rewards returned by π-guided
simulation traces (Section “Sampling π to estimate V ∗(s)”).
The auxiliary arm is treated equally to its ordinary siblings,
i.e., the value of the parent node is computed by taking the
maximum of all child nodes’ estimated values. Note that the
number of auxiliary arms increases exponentially with the
height of the tree if these arms are added to every internal
node. Therefore, in order to manage the incurred extra cost,
we can stop adding auxiliary arms below a certain height Ĥ
with Ĥ < H .

Unlike SS which completely relies on the value estima-
tion of expanded subtrees, whenever the heuristic π appears
to yield higher estimated value than any of its siblings, the
parent node’s value is estimated by this heuristic value in-
stead. Eventually, this improved estimation propagates and
contributes to the root’s value. Intuitively, if the heuristic is
good at states that are near the root on the optimal path,
the improvement is instantiated early in the process. Con-
sequently, SS-Aux can be run with shorter height H , which
saves computing resources.

While the running time of SS is (kC)H , SS-Aux’s is
(kC)H + LB(kC)H−Ĥ = (kC)H(1 + LB/(kC)Ĥ). De-
pending on the resources allocated, Ĥ can be adjusted so
that LB/(kC)Ĥ is negligible, in which case the running
time of SS-Aux is asymptotically equal to that of SS.

Bootstrapping Forward Search Sparse
Sampling

SS-Aux suffers from the impracticality of SS due to unfo-
cused sampling which allocates a fixed amount of computa-
tion for every tree branch and node. As a result, SS requires
a long running time before delivering any meaningful ap-
proximation. The problem is more pronounced in domains
that are highly stochastic and where discount factor is close
to 1.

There have been many attempts such as Heuristic Sam-
pling (Péret and Garcia 2004), Adaptive Sampling (Chang
et al. 2005) and Upper Confidence Bound applied in Trees
(UCT) (Kocsis and Szepesvári 2006) to improve the prac-
ticality of the forward sampling approach. All the forward

2The method can be generalized to stochastic policies by adding
κ auxiliary arms to each state node s, with κ being the number of
actions a such that P (π(s) = a) > 0.

183

… … …

avg

max

k
C C

a1 ak

H+1

s0

(a) Sparse Sampling

(b) SS-Aux

Figure 1: The look-ahead trees of SS and SS-Aux; each state
node (circles) estimates V SSh while its state-action children
(rectangles) estimate QSSh for each height h ∈ [H − Ĥ,H].

sampling methods use a similar tree-like structure as SS, so
there is potential to enhance them using the Aux method.
The latest in this series is the Forward Search Sparse Sam-
pling (FSSS) (Walsh, Goschin, and Littman 2010) that tries
to smartly allocate the computation to promising branches of
the look-ahead tree in order to more quickly approximate the
optimal policy in large domains. In this section, we investi-
gate the application of the Aux method to enhance FSSS.

Forward Search Sparse Sampling (FSSS)
FSSS is the latest successor of SS that is able to com-
bine the performance guarantee of SS with selective sam-
pling (Walsh, Goschin, and Littman 2010). Instead of di-
rectly forming point estimates of the Q- and V-values in a
look-ahead tree, it maintains interval estimates that allow it
then to guide the sampling to the promising and/or unex-
plored branches of the look-ahead tree based on the widths
and upper bounds of the intervals.

Similar to SS, FSSS also constructs a tree of height H
and branching factor k. However, instead of constructing the
whole tree in one go, FSSS traverses the tree from root down
using simulated episodes of length H called trials. At each
state node s of the trial, the algorithm expands the state by
simulating all the k actions C times. Instead of then recurs-

ing to all the next states like SS, the FSSS picks the action
a∗ with a highest upper-bound for Q(s,a) and selects the next
state s∗ with the widest interval for V(s’) among the states
s′ that were obtained by simulating a∗ at s. The selected
state s∗ is then expanded until the leaf node is reached, af-
ter which the interval bounds of V- and Q-values are updated
recursively on the path from leaf to root. When there is an ac-
tion at the root with the Q lower bound greater than all other
arms’ upper bounds, i.e., the action is surely more highly
rewarding than its siblings, the algorithm terminates.

As such, FSSS may also skip subtree expansions at
branches where no further exploration would be helpful.
When no pruning occurs, FSSS requires at most (kC)H tri-
als. However, its running time may be up to O(H(kC)H).

Proposition 1 The running time of FSSS is bounded by
O(H(kC)H).

Proof Sketch. At each non-leaf state node, expansion sam-
ples the simulator kC times, thus incurring a cost of
O((kC)H) in total. In one FSSS trial, selection and update
take O(H), so since there are at most (kC)H trials, alto-
gether these two actions cost O(H(kC)H). The total run-
ning time is therefore dominated by O(H(kC)H). �

This means that in the worst case FSSS may require
longer running time than SS.

FSSS-Aux: FSSS with π-guided auxiliary arms
Similar to SS-Aux, we add one auxiliary arm at every inter-
nal state node of the tree up to a certain depth. At each of
these auxiliary arms, the lower and upper bounds are com-
puted using B π-guided rollouts of length L. The procedure
is detailed in Algorithm 2 with the aux flag set to true and
EstimateQ(s, a, π) being the average bounds returned by
π-guided simulations. Similar to the behavior of SS-Aux,
it is straightforward to show that in the worst case, when
auxiliary arms do not help to prune any branch, FSSS-Aux
yields the same estimation as that of FSSS. In the good case
when the heuristic policy is near-optimal, we expect many
state nodes have their lower-upper bound gap closed faster.
In fact, the following proposition states that, after terminat-
ing, FSSS-Aux is as good as SS-Aux.

Proposition 2 On termination, the action chosen by FSSS-
Aux is the same as that chosen by SS-Aux.

Proof sketch. Note that if there is no pruning possible, FSSS-
Aux expands the same tree as SS-Aux. Otherwise, upon ter-
mination, there is no point for further tightening the bounds
because one arm surely has higher value than the rest, as its
lower bound exceeds the upper bounds of other arms. This
means that the selected arm is guaranteed to be the same as
the one selected by SS-Aux, which expands the full tree. �

Note that however at premature termination, there is no
guarantee on the performance of FSSS as compared to that
of SS (or FSSS-Aux to SS-Aux for that matter) due to their
dissimilarity in exploring the state space. Specifically, FSSS
uses upper-lower bound gap to guide the search, while SS
distributes sampling equally among all child nodes to collect
rewards’ statistics. As such, they may discover the optimal
values at different time points.

Input : state s, height h

1 if h = 0 or Terminal (s) then
2 Lh(s), Uh(s)← 0, 0
3 return
4 end
5 if ¬V isited(s, h) then
6 V isited(s, h)← true
7 foreach a ∈ A do
8 Lh(s, a), Uh(s, a)← Vmin, Vmax
9 Sh(s, a)← {}

10 for C times do
11 s′ ∼ T (s, a)
12 Ch(s, a, s′)← Ch(s, a, s′) + 1
13 Sh(s, a)← Sh(s, a) ∪ {s′}
14 Lh−1(s′), Uh−1(s′)← Vmin, Vmax
15 end
16 end
17 â← π(s) /* Auxiliary arm */
18 Lh(s, â), Uh(s, â)← EstimateQ (s, â, π)
19 end
20 a∗ ← argmaxa U

h(s, a)

21 s∗ ← argmaxs′ Ch(s, a∗, s′)(Uh−1(s′)− Lh−1(s′))
22 FSSS-Aux-Rollout(s∗, h− 1)

23 Lh(s, a∗)← R(s, a∗) +
γ

C

∑
s′ Ch(s, a∗, s′)Lh−1(s′)

24 Uh(s, a∗)← R(s, a∗) +
γ

C

∑
s′ Ch(s, a∗, s′)Uh−1(s′)

25 Lh(s)← maxa L
h(s, a)

26 Uh(s)← maxa U
h(s, a)

27 return
Algorithm 2: FSSS-Aux-Rollout (s, h)

Complexity-wise, the number of trials required by FSSS-
Aux has the same bound as that of FSSS.

Proposition 3 The total number of trials of FSSS-Aux be-
fore termination is bounded by the number of leaves in the
tree.

Proof sketch. The proof is identical to that of Proposition
3 by Walsh et al. (Walsh, Goschin, and Littman 2010), by
noting that every trial of FSSS-Aux has to end at a node with
zero bound gap. If such a node is not a leaf, it would not be
selected in the first place, because it cannot be the node with
widest bound gap. As such, every trial must end at a leaf
node, i.e., the number of FSSS-Aux rollouts is bounded by
the number of leaves in the tree. �

Similar to the situation with SS-Aux, since the addi-
tional time required by FSSS-Aux is that of evaluating
auxiliary arms, with suitable values of Ĥ , this incurred
cost is negligible, rendering the running time of FSSS-Aux
being asymptotically comparable to that of vanilla FSSS,
i.e. O(H(kC)H). Nevertheless, in the good case when the
heuristic policy is near-optimal, we expect the algorithm to
terminate faster and produce a better approximation than
FSSS, as the heuristic helps discover the optimal arm ear-
lier.

Numerical Experiments
In this section, we will assess the performance of the
Aux method when used with UCT, SS and FSSS in two
benchmark domains, Obstructed Sailing and Sheep Farmer.
As compared to other popular bootstrapping methods with
UCT (Gelly and Silver 2007), UCT-Aux is known to be very
competitive if the coupled heuristic is “extreme”, but under-
performs otherwise due to the inherent optimism of UCT
in distributing rollouts (Nguyen, Lee, and Leong 2012). As
such, we would also like to observe how SS-Aux and FSSS-
Aux fare with UCT-Aux in cases when UCT-Aux stumbles.

Note that for SS algorithms, instead of setting a fixed
value for the tree height H , we implement them using It-
erative Deepening with respect to H . These online versions
of SS are allocated a certain amount of time for each plan-
ning step, starting out with an initial small value ofH . Upon
termination, if there is still time for planning,H is increased
and the algorithm is restarted. However, the sampling width
factor C is kept fixed. Even though the theoretical bound is
established with C magnitudes larger than H , empirically
a value for C roughly reflecting the stochasticity of the do-
main suffices.

Obstructed Sailing
In the Obstructed Sailing domain (Nguyen, Lee, and Leong
2012), the agent tries to move a boat, in the most cost-
effective manner, around obstacles from a starting point to a
destination in changing wind conditions that affect the cost
of execution. Note that the domain’s stochasticity comes
from the fact that the wind direction frequently changes ac-
cording to a probabilistic transition matrix. In our exper-
iments, after each time step, the wind has roughly equal
probability to remain unchanged, switch to its left or its
right (Kocsis and Szepesvári 2006). The maps used are of
size 20 by 20 with starting position at (5, 5) and goal at
(15, 15), and the obstacles are placed with probability 0.4
at each grid square. The algorithms are pitted in 1000 differ-
ent random maps for which the benchmarked optimal policy
is obtained by Value Iteration (Bellman 1957).

Figure 2: Sails-To-Goal heuristic produces near-optimal es-
timates/policies in good cases (left) but misleads the search
control in others (right).

In bootstrapping the algorithms, we use two heuristics that
show different behavior in terms of performance: Sails-To-
Goal and Stochastic Optimal.

Sails-To-Goal (STG). This heuristic selects a valid ac-
tion closest to the direction towards goal position regardless

185

0.1 1 10
−90

−80

−70

−60

−50

−40

seconds

Optimal
UCT
UCT−Aux
FSSS
FSSS−Aux
SS
SS−Aux

Figure 3: Aux algorithms in Obstructed Sailing when cou-
pled with SailsToGoal. y-axis is the negative cost average
(the standard errors of the means are smaller than the mark-
ers’ size), while x-axis shows, in log scale, the allocated time
per planning step in seconds.

of the cost (Nguyen, Lee, and Leong 2012). It is therefore
particularly good for maps with few obstacles, producing
near-optimal plans for many states, but counterproductive
with highly obstructed maps, since it often gets stuck in dead
ends and corners that surround the goal position (Figure 2).
As such, this heuristic shows behaviors of “make it or break
it” (extreme), i.e., in most states s, the action value estimate
Qπ(s, a) is either near-optimal or as low as that of a random
policyQrand(s, a). In Obstructed Sailing, STG yields an av-
erage accumulated cost of 161, far from the optimal cost of
41.88.

Stochastic Optimal with p = 0.2 (SO0.2). This heuris-
tic is an example for heuristics that are milder in nature
than Sails-To-Goal. It issues optimal actions with probabil-
ity p = 0.2 and random actions for the rest. This policy is
also suboptimal but almost always yields better estimation
than random movement; it is not as “extreme” as Sails-To-
Goal. However, the highly randomized nature of the policy
causes it to stumble badly too; the average accumulated cost
of SO0.2 is 256.66.

Results. Figure 3 and 4 depicts the average negative costs
of UCT, SS and FSSS and their Aux-bootstrapped versions
when coupled with two π-heuristics, STG and SO0.2 re-
spectively. As explained above, STG is known to be “ex-
treme” and preferable by UCT-Aux, while SO0.2 is not,
causing UCT-Aux to stumble badly. Indeed, UCT-Aux out-
performs vanilla UCT with STG (Figure 3) but is completely
outmatched with SO0.2. In contrast, SS-Aux and especially
FSSS-Aux manage the heuristics much better, yielding im-
proved performance over their respective host algorithms.

Sheep Farmer
Sampling-based algorithms are designed to tackle the prob-
lem of intractability in exact methods such as Value Iteration
and Policy Iteration in large domains. In this section, we ex-
amine how SS, FSSS and UCT perform in a collaborative
game called a Sheep Farmer that has over 1011 states.

In this game domain, the planner controls a team of a

0.1 1 10
−250

−200

−150

−100

−50

0

seconds

Optimal
UCT
UCT−Aux
FSSS
FSSS−Aux
SS
SS−Aux

(a) UCT-Aux stumbles with SO0.2

0.1 1 10
−100

−80

−60

−40

seconds

Optimal

SS

SS−Aux

(b) SS-Aux

0.1 1 10
−80

−70

−60

−50

−40

seconds

Optimal

FSSS

FSSS−Aux

(c) FSSS-Aux

Figure 4: Aux algorithms in Obstructed Sailing when cou-
pled with StochOpt0.2.

farmer and his dog to herd a sheep into a pen and kill
two wolves in a maze-like environment (Nguyen, Lee, and
Leong 2012); the sheep and wolves are hereafter referred to
as non-player characters (NPCs). All NPCs run away from
the farmer and dog when close to them, otherwise the wolves
chase the sheep and the sheep runs away from wolves; all
movements succeed with probability 0.9. Both farmer and
dog have 5 moves (no-move, N, S, E and W) but the farmer
has an additional action to inflict damage on a nearby wolf,
hence a total of 6 × 5 = 30 joint actions. The farm-team is
given 5 points for successfully killing wolves and 10 points
for herding sheep into its pen. In the event that the sheep
is killed, the game ends with penalty -10. We used discount
factor γ = 0.99. This domain serves as an example of two-
player collaborative games.

Figure 5: Task decomposition in Sheep Farmer; each task
involves dealing with either one wolf or one sheep.

186

We ran SS, FSSS and UCT side by side with their respec-
tive Aux-bootstrapped versions3 in the map shown in Fig-
ure 5. The optimal policy in this domain was not computed
due to the prohibitively large state space of size 1045 ∗ 32 ≈
1011 (each wolf has two health points). For fairer compari-
son SS agents were implemented using the Iterative Deep-
ening approach with respect to height H of the look-ahead
tree. Each algorithm was allocated a fixed amount of time
per planning step; due to time constraints, we did not run
simulations with more than 50 seconds per planning step. In
a real time game domain like this, the region of interest is
typically from less than 1 to 5 seconds. The experiment was
run 200 times, each with a different randomized starting po-
sition of the characters.

Constructing a heuristic policy The Aux method re-
quires a heuristic policy for the auxiliary arms; one way to
construct a heuristic policy in this domain is via task de-
composition. In particular, the game can be seen as hav-
ing three subtasks: killing one of the two wolves or herd-
ing the sheep, as shown in Figure 5. Each of these sub-
tasks consists of only the farmer, the dog and one of the
NPCs, hence the subtasks are small enough to be solved
offline using Value Iteration. This yields Q-values for the
subtasks, and a heuristic Q-value for the whole game can
now be obtained by taking the average of the subtasks’ Q-
values. Each state s of the game can be projected to a state
si of the ith subtask by ignoring the NPCs not in the sub-
task i. We can then form a goal averaging (GA) heuristic
via QGA(s, a) = 1

m

∑m
i=1Qi(si, a) with m being the num-

ber of subtasks. The corresponding heuristic policy is then
defined as πGA(s) = argmaxaQGA(s, a).

Figure 6: SS, FSSS and UCT variants in Sheep Farmer with
GoalAveraging-heuristic. The charted lines denote the av-
erage accumulated reward of the algorithms in 200 experi-
ments as function of planning time (displayed in log scale).

Experiment results Figure 6 shows how the average
accumulated rewards of SS, FSSS and UCT variants,
the Random-action policy and our GoalAveraging-heuristic
vary with respect to the allocated planning time.

3The implementation of UCT-Aux is the one used by Nguyen et
al. (Nguyen, Lee, and Leong 2012).

Even when coupled with a relatively poor (reward -4)
heuristic πGA, both SS and FSSS improve over their orig-
inal vanilla versions. Moreover, while vanilla FSSS exhibits
much slower convergence to the optimal policy than SS,
FSSS-Aux convincingly dominates all other methods. Be-
tween two state-of-the-art algorithms UCT and FSSS, UCT-
Aux shows improvements much earlier than FSSS-Aux, but
is eventually outperformed by the latter.

This result is the evidence of how differently UCT and
FSSS choose to explore the state space. While UCT’s op-
timism, which distributes an exponentially higher amount
of simulations on currently best-rewarding branches, slows
down its discovery of optimal actions if they lie deep down
the search tree, FSSS takes a more conservative approach
which focuses on branches that are most uncertain. This ap-
proach slows down the process of discovering highly re-
warding branches of vanilla FSSS as compared to that of
UCT, but plays a crucial role in enabling continuing im-
provement of FSSS-Aux, as it keeps exploring and improv-
ing even when a local minimum is discovered by the heuris-
tic, as long as there are still uncertain regions in the search
tree.

Combining UCT and FSSS
In order to get the good performance of UCT initially and
FSSS eventually, we introduce a hybrid algorithm that is
constructed on top of UCT and FSSS with the aim to com-
bine the best parts of both algorithms. Details are furnished
in Algorithm 3.

Input : state s, boolean flag aux

1 sUCT ← UCTNode (s, aux)
2 T ← ∅
3 sFSSS ← FSSSNode (s, aux)

4 while still has time and LH(sFSSS) < UH(sFSSS) do
5 b ∼ Ber(HN (T)) /* Sample the choice

of algorithm */
6 if b = 1 then
7 UCT-Aux-Rollout (sUCT , H)
8 T ← T ∪ LastRollout-RootArm (sUCT)
9 end

10 else
11 FSSS-Aux-Rollout (sFSSS , H)
12 end
13 end
14 aFSSS , VFSSS ← argmaxa,maxaLH(sFSSS , a)
15 aUCT , VUCT ← argmaxa,maxaQUCT (sUCT , a)
16 if VFSSS > VUCT then
17 return aFSSS
18 end
19 return aUCT

Algorithm 3: UCT-FSSS(s, aux)

The idea is to keep track of the distribution p of selected
simulated arms at the root node of UCT tree and sample
UCT less frequently (Line 5) when the choice of arm at the
root node has stabilized. We formalize the uncertainty about

187

actions at the UCT tree root T using the normalized entropy

HN (T) =
−
∑
a∈A p(a) log(a)

log(|A|)
∈ [0, 1]. (2)

The distribution p is initialized to the uniform distribu-
tion by sampling all actions at the root node T once. Af-
ter that the distribution is always updated by normalizing
the numbers of times the different actions at the root node
are sampled. As shown in the algorithm, the more stable
UCT’s choice of root arms is, the more likely FSSS is picked
(Line 5); the distribution shown is Bernoulli distribution
with parameter HN (T). At termination, the algorithm re-
turns the arm that yields highest approximated value among
UCT and FSSS arms; we use lower bounds as the approxi-
mated values for FSSS arms.

The advantages of this mechanism are twofold

1. It never stops sampling UCT and FSSS trees; as such, the
convergence properties of both algorithms are retained.
That means our hybrid algorithm will converge to the op-
timal solution, given enough computational resources.

2. It flexibly focuses less or more simulations on UCT de-
pending on whether UCT has started to converge. If
HN (T) becomes large again, i.e., UCT escapes a local
optimum, the algorithm will sample UCT more often.

Note that the algorithm is not limited to UCT and FSSS
only; it is applicable to any two sampling-based algorithms.
The adaptivity in algorithm selection depends on the conver-
gence of the algorithms.

Figure 7: Average accumulated rewards of FSSS-Aux, UCT-
Aux and the hybrid algorithm of UCT-Aux and FSSS-AUx
in Sheep Farmer.

Figure 7 demonstrates the performance of the hybrid algo-
rithm as compared with its components, i.e., UCT-Aux and
FSSS-Aux, in the Sheep Farmer setup as described in Sec-
tion . As we can see, the hybrid approach is able to mitigate
the slow head start of FSSS-Aux by closing the gap with
UCT-Aux more quickly, while eventually matching FSSS-
Aux’s performance and outperforming UCT-Aux.

Notably, in Obstructed Sailing, when coupled with SO0.2,
the hybrid shows to compensate the blunder of UCT-Aux
by leaning more towards FSSS-Aux, as UCT-Aux starts to
converge on highly sub-optimal auxiliary arms guided by

the heuristic. The average accumulated costs are depicted in
Figure 8, with optimal cost being 41.88.

0.1 1 10
−300

−250

−200

−150

−100

−50

0

seconds

Optimal
SO0.2
UCT−Aux
FSSS−Aux
UCT−FSSS−Aux

Figure 8: Average accumulated negative cost of UCT-Aux,
FSSS-Aux and Hybrid (UCT-Aux and FSSS-Aux) when
coupled with SO0.2 in Obstructed Sailing; the hybrid is
marginally affected by the underperformance of UCT-Aux.

Conclusion
In this work, we have examined the Aux technique of boot-
strapping simulation-based algorithms SS and FSSS with
a suboptimal heuristic policy. When coupled with suitable
heuristics, the technique was shown to yield significant im-
provement over the host algorithms in approximating the
optimal action policy, while incurring only negligible over-
head. Among the bootstrapped algorithms, we observed that
FSSS-Aux, inheriting a more conservative approach in ex-
ploration from FSSS than that of UCT, is the preferred al-
gorithm for solving large state-space MDPs when there are
abundant computing resources available. On the other hand,
when the allocated resources are scarce, UCT and its vari-
ants are able to discover a reasonably near-optimal solu-
tion more quickly. Alternatively, one can adopt a hybrid ap-
proach and combine these two sampling-based algorithms to
obtain an algorithm that inherits the good bits of them both:
quick discovery of local optima and steady convergence to
the global optima. Notably, the hybrid variant of UCT-Aux
and FSSS-Aux can also mitigate the under-performance of
UCT-Aux when coupled with unfavorable heuristics. In the
future we would like to investigate the application of Aux-
bootstrapped algorithms in other contexts than MDPs such
as adversarial settings.

Acknowledgments
This work was partially supported by Academic Research
Grants: T1 251RES1005, MOE2010-T2-2-071, and T1
251RES1211 from the Ministry of Education, Singapore.
The authors would also like to thank Northeastern Univer-
sity for partially supporting the work of the first author.

References
Bellman, R. 1957. Dynamic Programming. Princeton, NJ:
Princeton University Press.

188

Chang, H. S.; Fu, M. C.; Hu, J.; and Marcus, S. I. 2005. An
adaptive sampling algorithm for solving Markov Decision
Processes. Operations Research 53(1):126–139.
Chaslot, G.; Fiter, C.; Hoock, J. B.; Rimmel, A.; and Tey-
taud, O. 2010. Adding expert knowledge and exploration
in Monte-Carlo Tree Search. Advances in Computer Games
1–13.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to General Game Playing. In Proceedings of the
23rd National Conference on Artificial Intelligence (AAAI
’08), 259–264. AAAI Press.
Gelly, S., and Silver, D. 2007. Combining online and of-
fline knowledge in UCT. In Proceedings of the 24th In-
ternational Conference on Machine Learning (ICML ’07),
273–280. New York, NY, USA: ACM.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large Markov
Decision Processes. Machine Learning 49(2):193–208.
Keller, T., and Helmert, M. 2013. Trial-based Heuristic
Tree Search for Finite Horizon MDPs. In Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS ’13), 135–143.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In Proceedings of the 17th European con-
ference on Machine Learning (ECML ’06), ECML’06, 282–
293. Berlin, Heidelberg: Springer-Verlag.
Nguyen, T.-H. D.; Lee, W.-S.; and Leong, T.-Y. 2012.
Bootstrapping Monte Carlo Tree Search with an Imperfect
Heuristic. In Proceedings of the 2012 European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD’12), 164–179. Berlin, Heidel-
berg: Springer-Verlag.
Péret, L., and Garcia, F. 2004. On-line search for solv-
ing Markov Decision Processes via heuristic sampling. In
Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), 530–534.
Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. Integrat-
ing sample-based planning and model-based reinforcement
learning. In Proceedings of the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence (AAAI-10).

189

