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Abstract

Estimating the distance from a current partial-order plan
to the goal state of the plan task is a challenging prob-
lem, with past research achieving only limited success.
In an effort to understand the reasons for this situa-
tion, we investigate the computational complexity of the
partial-order plan viability problem. We define several
boundaries between the tractable and intractable sub-
classes of the problem, from which we identify sev-
eral constraints that contribute to the computational in-
tractability of the problem. These results bring new in-
sights into the design and the development of future
partial-order planning heuristics.

1 Introduction
Planning is defined as the problem of finding at least one se-
quence of events (actions) that will achieve a goal from an
initial state. A partial-order plan compactly defines a collec-
tion of potentially exponentially many total-order plans by
specifying a set of partially ordered events. Each lineariza-
tion of the plan thus corresponds to a total-order plan. With
the strategy of least commitment and constraints posting,
planning based on partial-order representations searches for
solutions through repeatedly refining a current partial-order
plan, which is initially empty.

The nature of planning through refinement enables a
partial-order planner to offer a flexible and intuitive ap-
proach to domains where replanning is frequent due to the
uncertainty of the plan execution environment, and a quick
and clear understanding of the behavior of the planning al-
gorithm by human-beings is critical (Bresina et al. 2005).
Partial-order planning approaches have their unique strength
in domains where plan executions are subject to environ-
mental uncertainty and interactions between planners and
humans are frequent. On the other hand, to perform com-
petitively relative to the total-order planners such as the
GraphPlan or the SATPlan, a partial-order planner has to
be equipped with an effective and fast heuristic to estimate
the viability of a current partially ordered plan w.r.t. the
goal state. It becomes apparent, however, that the design and
the development of partial-order planning heuristic is quite
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tricky (Weld 2011) and research on the domain in the past
decade achieves only limited success (the REPOP planner
introduced in (Nguyen and Kambhampati 2001) is one of
the few examples). Nevertheless, there are recent efforts to-
wards developing heuristics for partial-order planning, e.g.,
(Bercher, Geier, and Biundo 2013).

We believe that a comprehensive study on why determin-
ing the viability/validity of a partial-order plan1 is computa-
tionally difficult would facilitate further practice of partial-
order planning heuristic design and development. Accord-
ingly, we investigate in this paper the source of the com-
putational intractability of the partial-order plan viability
problem, by identifying several different constraints, where
each constraint defines a case that delineates the tractability
boundary.

Study of the complexity of the partial-order plan validity
problem was initiated by (Nebel and Bäckström 1994) in the
context of event systems, which are a variant to the classi-
cal propositional STRIPS representation. The work that we
present in this paper also uses event systems for problem
definitions. It is worth noting that the plan viability prob-
lem in event systems is equivalent to the admissible possi-
ble truth problem, whereas the temporal projection problem
(more precisely, the possible truth problem) as appeared in
(Dean and Boddy 1988) and (Nebel and Bäckström 1994)
allows inadmissibility. Consequently, an event whose pre-
conditions are not satisfied in a state is allowed to occur in
the state, legally but effectlessly.

In this paper, we show that the plan viability problem
maintains its NP-completeness in an almost-simple event
system, a simple event system, or even an almost-simple
event system whose cause-and-effect graph is a directed
acyclic graph (DAG). Nevertheless, the problem is tractable
in a simple event system with a cause-and-effect graph that
is a DAG, whereas the corresponding inadmissible possible
truth problem remains NP-complete. This fact indicates that
the role of admissibility is sometimes critical in bringing the
problem into tractable zones. In addition, many other con-
straints, such as the size of the preconditions lists and effects
lists, the size of the initial set, the topological structure of the

1Informally speaking, plan viability checking involves decid-
ing whether there exists a linearization of the plan that achieves
the given goal, whereas plan validity involves checking whether all
linearizations of the plan achieve the given goal.
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cause-and-effect graph, all contribute to the intractability of
the plan viability problem.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background materials. Major complexity re-
sults are presented in Section 3 and the paper is summarized
in Section 4.

2 Background
Definitions on event systems in this section adapt and extend
the ones in (Nebel and Bäckström 1994).

Definition 1 (Causal Structure) A Causal Structure is de-
fined as a 3-tuple Φ = 〈P, T ,R〉 where P =
{p1, p2, . . . , pn} is a set of propositional atoms (condi-
tions); T = {t1, t2, . . . , tm} is a set of event types; R =
{r1, r2, . . . , rp} is a set of causal rules in the form ri =
〈ti, ϕi, αi, δi〉 where ti ∈ T is the event type that triggers
the application of ri, ϕi ⊆ P is the set of preconditions,
αi ⊆ P is the set of added conditions, δi ⊆ P is the set of
deleted conditions.

The notion of event systems is introduced to describe a set
of actual events that are subject to temporal constraints in
the form of partial orders:
Definition 2 (Event System) An event system is a 6-tuple
Θ = 〈P, T ,R, E ,O, I〉 where P, T ,R are the same as the
ones defined in Φ; and E = {e1, e2, . . . , ep} is a set of actual
events, such that for each ei, type(ei) ∈ T , O is a partial
order on E , and I is the initial state, a subset of P .

Definition 3 (Almost-simple Event System) An event sys-
tem Θ is almost-simple iff it is unconditional (i.e. for each
event type t ∈ T , there exists only one causal rule for
t); |I| ≥ 1; and for each causal rule in the form r =
〈t, ϕ, α, δ〉, |ϕ| = |α| = |δ| = 1, and δ = ϕ.

Note that the definition of almost-simple even systems pro-
vided here is stronger than the one provided in (Nebel and
Bäckström 1994) (Definition 3.1) in the sense that we re-
quire that the size of the precondition is precisely 1.2

Definition 4 (Simple Event System) A simple event system
Θ is an almost-simple event system, with additional con-
straint |I| = 1.

Definition 5 (Cause-and-Effect Graph) A cause-and-
effect graph of an almost-simple event system Θ is a
directed graph. Each node in the graph corresponds to
a condition, whereas each directed edge in the graph
corresponds to a causal rule in Θ.

Informally, the concept of causal structure is introduced to
specify how a given state, which is a subset of P , evolves
over actual occurrences of events. Given a causal struc-
ture Φ and a state State, an actual event ei with event type

2We also remark that, since viability in both event systems are
in NP, and NP-hardness of the stronger version is given in the cur-
rent paper, Theorem 1 (to be provided in Section 3) can also be
applied for almost-simple event systems as defined by (Nebel and
Bäckström 1994). The additional benefit with a stronger version
as presented here in this paper is that, Theorem 5 is thus easier to
prove. Theorem 1 and Theorem 5 altogether enable us to draw one
more edge crossing the tractability line in Figure 5.

ti ∈ T is applicable in State if and only if there exists a
rule ri = 〈t, ϕ, α, δ〉, whereas t = ti and the preconditions
in ϕ are satisfied in State. If applicable, ei changes State by
adding some conditions to State and removing some others
from it, in the way specified by the set of causal rulesR. For
almost-simple event systems, we require that no condition
to be added by ei should already be a member of State.

Formally, let app(State, e) denote the set of all applicable
rules for an event e ∈ E in state State, e is admissible in State
iff app(State, e) 6= ∅. Also, let f = 〈f1, . . . , fk, . . . , fm〉 be
an event sequence, 〈f1, . . . , fk〉 is denoted by f/fk. Further,
we write “f ; g” to denote 〈f1, . . . , fm, g〉.
Definition 6 (Result) The change of states (subset of P)
over event sequences f (initially empty, denoted by 〈〉) is de-
fined recursively as follows

• Result(State, 〈〉) = State,
• Result(State, (f ; g)) = Result(State, f)−
{δ(r)|r ∈ app(Result(State, f), g)} ∪ {α(r)|r ∈
app(Result(State, f), g)}.

Definition 7 (Admissibility) An event sequence f =
〈f1, . . . , fk, . . . , fm〉 is admissible in a state State iff each
fi, for 1 ≤ i ≤ m, is admissible in Result(State, f\fi).

Given an event system Θ, the set of all linearizations of E
with respect to O in Θ is denoted by CS(Θ). Meanwhile,
the subset of CS(Θ), which includes linearizations that are
admissible in I with respect to Θ, is denoted by ACS(Θ).

Definition 8 (Plan and Planning Task) A planning task Π
is a triple 〈Φ, I,G〉 of a causal structure, an initial state and
a goal state, where I or G is also a subset of P . A plan ∆Φ

is a 3-tuple 〈Φ, E ,O〉.
Definition 9 (Viability and Validity of Plans) Given a
planning task Π = 〈Φ, I,G〉, a condition p ∈ G, and a
partial-order plan ∆Φ = 〈Φ, E ,O〉, we construct an event
system Θ = 〈P, T ,R, E ,O, I〉 = 〈∆Φ, I〉.

The plan ∆Φ is viable for p with respect to Π, written
as p ∈ V iable(Π,∆Φ), iff there exists a linearization f in
ACS(Θ) such that p ∈ Result(I,f).

The plan ∆Φ is valid for p with respect to Π, written as
p ∈ V alid(Π,∆Φ), iff CS(Θ) = ACS(Θ), and for each lin-
earization f in ACS(Θ), we have p ∈ Result(I,f).

3 Complexity of Plan Viability
In the two sections below, five classes of plan viability prob-
lems are considered. Three of them are NP-complete (Theo-
rem 1 to Theorem 3), whereas the other two are polynomial-
time solvable (Theorem 4 and Theorem 5).

3.1 Intractability Results
The proofs for NP-hardness presented in this section are
based on polytime transformations from the NP-complete
DHP problem - more precisely, the variant Directed Hamil-
tonian Path problem where both the starting point and the
ending points are specified in the instance (Garey and John-
son 1979) - to the current problems. Each transformation
converts a directed graphG = (V,E, vx, vy), where V is the
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set of vertices, E is the set of edges, vx is the starting point,
and vy is the ending point, into an event system Θ(G), which
is at least almost-simple, so that its cause-and-effect rela-
tionship can be represented as a directed graph. Proof ideas
are given in this section for the theorems. Detailed proof for
Theorem 1 is provided in particular.

Theorem 1 Given a planing task Π = 〈Φ, I,G〉, a plan
∆Φ = 〈Φ, E ,O〉, a corresponding event system Θ =
〈∆Φ, I〉, and a condition p ∈ G , if Θ is an almost-simple
event system, deciding p ∈ V iable(Π,∆Φ) is NP-complete.

Proof Idea: Here we briefly explain how to generate an
almost-simple event system Θ(G) from a given directed
graph G. From a given node vi in G, we first introduce in
Θ(G) two conditions vi L and vi R, one event type ti L,i R,
and accordingly one and only one event ei L,i R. The condi-
tion vi L is thus a so-called left-node condition whereas vi R

is a so-called right-node condition, respectively. Event-types
in Θ(G) corresponding to nodes in G (e.g., ti L,i R corre-
sponds to vi), are referred to as node event-types. Similarly,
an event like ei L,i R is called a node event.

Note that, in each of the three polytime transformations
for the NP-hardness proofs, we require that each event type
in T corresponds to one and only one actual event in E .

Given (vi, vj) in G, vi L, vi R, ti L,i R, ei L,i R,
vj L, vj R, tj L,j R, and ej L,j R, we introduce the edge
event-type ti R,j L and the edge event ei R,j L. Hence the
graph depicted in Figure 1 is transformed into a cause-and-
effect graph depicted in Figure 2, excluding for the moment
the conditions v2

x R, v2
1 R, and the two event-types (edges)

leaving them.
Building up the set of initial conditions I starts with the

membership of vx L in I.
When constructing the ordering constraints O of Θ(G),

we require that the node event ey L,y R is preceded by all
node events ei L,i R where i 6= y. Hence if there exists
an admissible event sequence f1 from ex L,x R to ey L,y R,
achieving the condition vy R, this sequence must correspond
to a DHP P = (V1, E1) in G from vx to vy . Conversely,
if there exists a DHP P 1 in G from vx to vy , then P 1

corresponds to an admissible sequence f1 from ex L,x R to
ey L,y R in Θ(G).

In general, |E1| < |E|. In other words, f1 does not
include all edge events. As such, in-node event-types are
introduced such that the in-degree of a right-node condi-
tion, for each i excluding y in the cause-and-effect graph,
equals to the condition’s out-degree. However, for the right-
node condition v1

y R, its in-degree is 1 more than its out-
degree, since if we have a linearization f , it finishes with
v1
y R ∈ Result(I,f).

To this end, the cause-and-effect graph is completely con-
structed, as shown in Figure 2. Additionally, the left-node
conditions for these in-node event-types are in the set P and
it is required that these conditions are included in I. It is also
required that all in-node events are preceded by the event
ey L,y R.

Returning to Figure 1, the DHP P in G is
〈vx, v1, v2, vy〉, whereas its corresponding f1 is:

〈e1,1x L,x R, e1,1x R,1 L, e1,11 L,1 R, e1,11 R,2 L, e1,12 L,2 R, e1,12 R,y L, e1,1y L,y R〉,
which can be further extended to a linearization f :
〈e1,1

x L,x R, e
1,1
x R,1 L, e

1,1
1 L,1 R, e

1,1
1 R,2 L, e

1,1
2 L,2 R, e

1,1
2 R,y L,

e1,1
y L,y R, e

2,1
x R,x R, e

1,1
x R,2 L, e

2,1
1 R,1 R, e

1,1
1 R,y L〉.

vyvx

v2

v1

Figure 1: A digraph and its Hamiltonian path

v1y L v1y Rv1x Rv1x L

v12 L v12 R

v11 L v11 R

v2x R

v21 R

Figure 2: The cause-and-effect graph of Θ(G)

Proof. The problem is in NP. Given a tuple 〈Π, p,∆Φ〉 (thus
an event system Θ), and an event sequence f , the member-
ship of f ∈ ACS(Θ) and p ∈ Result(I,f) can be verified
in polytime.

Let G = (V,E, vx, vy) be a digraph, where V =
{v1, ..., vn, vx, vy} and |V | = n + 2, E = {e1, ..., em} and
|E| = m, in(vi) and out(vi) are the number of edges enter-
ing and leaving the node vi, respectively, and vx, vy ∈ V are
the start point and the end point for a DHP, respectively, we
define as follows an almost-simple (as |I| > 1 in general)
event system Θ = 〈P, T ,R, E ,O, I〉 such that
• P = Pnodes ∪ Pin nodes ∪ Pin y where
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– Pnodes = {v1
i L; v1

i R|1 ≤ i ≤ n or i = x or i = y},
– Pin nodes = {vj+1

i R |out(vi) = k, 1 ≤ j < k, 1 ≤ i ≤
n, or i = x} (for any node other than vy , if the out-
degree of vi is k such that k ≥ 2, then (k − 1) extra
conditions, i.e., from v2

i R to vki R, are also created in
P),

– Pin y = {vj+1
y R |out(vy) = k, 1 ≤ j ≤ k} (for vy ,

however, if the out-degree of vy is k such that k ≥ 1,
then k extra conditions, i.e., from v2

i R to vk+1
i R , are also

created in P)
• T = Tedges∪Tnodes∪T1 R∪T2 R∪. . .∪Tn R∪Tx R∪Ty R

where
– Tedges = {t1,1i R,j L|(vi, vj) ∈ E} (edge event-types),

– Tnodes = {t1,1i L,i R|1 ≤ i ≤ n or i = x or i = y} (node
event-types),

– Ti R = {tj,1i R,i R|out(vi) = k, k ≥ 2, 1 < j ≤ k}
(in-node event-types for all i except y),

– Ty R = {tj,1y R,y R|out(vi) = k, k ≥ 1, 1 < j ≤ k + 1}
( in-node event-types for y);

• R = {〈tq,ri,j , {v
q
i }, {vrj}, {v

q
i }〉|t

q,r
i,j ∈ T };

• E = {eq,ri,j |t
q,r
i,j ∈ T }; That is, each event type t in T has

one and only one actual event occurrence e in E .
• O = O1 ∪ O2 where

– O1 = {e1,1
x L,x R ≺ {e|e ∈ E iff t ∈ Tnodes} ≺

e1,1
y L,y R} (the x node event precedes all node events,

which precede the y node event),
– O2 = {e1,1

y L,y R ≺ {e|e ∈ E iff t ∈ Ti R, 1 ≤ i ≤
n or i = x or i = y}} (the y node event precedes all
in-node events);

• I = {v1
x L ∪ {v

j
i R|j > 1, 1 ≤ i ≤ n or i = x or i = y}}

(the left-node condition for the start point vx, and all in-
node conditions, are initially set to true).
There exists a DHP from vx to vy in G iff v1

y R ∈
V iable(Π,∆).

(⇒): If there exists a DHP P from vx to vy in G, then
an admissible event sequence in Θ from edge event e1,1

x L,x R

to edge event e1,1
y L,y R, say f1, which starts with initial con-

dition v1
x L and achieves condition v1

y R in the end, can be
constructed accordingly. Since P is a DHP, all node events
will occur, and occur exactly once, in f1, making the or-
dering constraint O1 satisfied. After f1, all in-node events,
which are required by O2 to be preceded by the edge event
e1,1
y L,y R, can occur, enabling the remaining edge events that

have not occurred in f1 to occur admissibly, and occur ex-
actly once (note that, for all i except y, exactly out(vi) − 1
in-node events are introduced to achieve the ith right-node
condition out(vi)− 1 times). Hence, f1 can be extended to
an f such that f ∈ ACS(Θ) and v1

y R ∈ Result(I,f).
(⇐): Assume there exists an admissible event sequence

f ∈ ACS(Θ) such that v1
y R is achieved after f , i.e., v1

y R ∈
Result(I,f). Due to the specifications of the initial condi-
tions I and the partial ordering constraintsO, we know that,

first, the edge event e1,1
x L,x R must be the first event of f ; sec-

ond, the subsequence f/e1,1
y L,y R, (from e1,1

x L,x R to e1,1
y L,y R

inclusive in f , written as f1), must include all node events
and some edge events, but exclude any in-node events. Since
f1 is admissible, it corresponds to a Hamiltonian path from
vx to vy in G. �

Theorem 2 Deciding p ∈ V iable(Π′,∆Φ′), where Θ′ is a
simple event system, is NP-complete.

Proof Idea: We continue with the previous example to ex-
plain the basic proof idea. Θ(G) is further transformed into
a simple event system Θ′(G), where |I ′| = 1 and v1

x L ∈ I ′.
We know that, whenever there exists an admissible event

sequence f
′

1 in Θ(G), v1
y R holds after f

′

1. Since Θ′(G) is
a simple event system, in-node conditions (v2

x R and v2
1 R in

Figure 2 and Figure 3) are not included in I ′. Alternatively,
we use v1

y R repeatedly as a hub (kind of) to achieve them.
More precisely, for each in-node condition vji R, we intro-
duce the leaves-y event-type t1,jy R,i R, which achieves vji R if
v1
y R holds. Leaves-y event-types are marked by the numbers

“1” and “6” in Figure 3.
From an in-node condition vji R, an edge-event, which

leaves v1
i R and is not included in f

′

1, is able to occur af-
ter f

′

1. After the occurrence of this edge-event, we need
to find a way to achieve v1

y R again so that the remaining
edge events could also be added to construct f

′
from f

′

1.
As such, out-node event-types are introduced such that the
out-degree of a left-node condition, for each i excluding x
in the cause-and-effect graph, equals to the condition’s out-
degree. For the left-node condition v1

x L, its out-degree is 1
more than its in-degree, since if we have a linearlization f

′
,

it starts with v1
x L ∈ I ′. Out-node event types are marked

by the numbers “4” and “9” in Figure 3. For each out-node
condition vji L, we introduce returns-to-y event-type tj,1i L,y R,
which achieves v1

y R if vji L holds. Returns-to-y event-types
are marked by the numbers “5” and “10” in Figure 3. The
cause-and-effect graph, as shown in Figure 3, is completely
constructed.

Note that, O′ extends O by including additional con-
straints that e1,1

y L,y R precedes all in-node events, out-node
events, all leaves-y events, and all returns-to-y events.

One possible event sequence f
′

transformed from the
DHP P in G = {vx, v1, v2, vy} (Figure 1) is
〈e1,1

x L,x R, e
1,1
x R,1 L, e

1,1
1 L,1 R, e

1,1
1 R,2 L, e

1,1
2 L,2 R, e

1,1
2 R,y L,

e1,1
y L,y R, e

1,2
y R,x R, e

2,1
x R,x R, e

1,1
x R,2 L, e

1,2
2 L,2 L, e

2,1
2 L,y R,

e1,2
y R,1 R, e

2,1
1 R,1 R, e

1,1
1 R,y L, e

1,2
y L,y L, e

2,1
y L,y R〉, where the

last ten events in f
′
, from e1,2

y R,x R to e2,1
y L,y R, are marked

according in Figure 3, from “1” to “10”.

Theorem 3 Deciding p ∈ V iable(Π
′′
,∆Φ′′ ), where Θ

′′

is an almost-simple event system and the cause-and-effect
graph is a DAG,3 is NP-complete.

3From the transformation we will see that the DAG is in partic-
ular a forest of trees.

310



v1y L v1y Rv1x Rv1x L

v12 L v12 R

v11 L v11 R

v2x R

v21 R

v22 L

v2y L

1

2 3

4

5

6

7

8

9 10

Figure 3: The cause-and-effect graph of Θ′(G)

Proof Idea: Given G = (V,E, vx, vy), we now construct
Θ
′′

, which is a modification of Θ (see the proof section for
Theorem 1, for the definition of Θ). More specifically, the
T ′′edges in T ′′ of Θ

′′
(also see the proof section for Theo-

rem 1, for the definitions of T and Tedges in Θ) is defined
alternatively as follows.

T
′′

edges = {t1,Li R,i j ; t
R,1
i j,j L|(vi, vj) ∈ E}.

That is, each edge in E is cut into two segments, corre-
sponding to a left-edge event-type and a right-edge event-
type in T ′′ . Accordingly, we have two new conditions: vLi j

and vRi j , reflecting the fact that two new nodes will be cre-
ated after cutting an edge (vi, vj) in E of G. Two new ac-
tual events, a left-edge event e1,L

i R,i j and a right-edge event
eR,1
i j,j L will be created accordingly in E ′′ of Θ

′′
.

The set of partial order O′′ of Θ
′′

is the union of O of Θ
and O3, where

O3 = {e1,L
i R,i j ≺ e

R,1
i j,j L|(vi, vj) ∈ E}.

The initial state I ′′ extends I by further including all right-
edge conditions: vRi j , for all i and j such that (vi, vj) ∈ E.
Note again that these “cutting activities” create a forest of
trees as the cause-and-effect graph for Θ

′′
.

Given an admissible event sequence f
′′

1 , from ex L,x R

to ey L,y R, achieving the condition vy R, we know that 1)
the first occurrence of an edge-event in f

′′

1 must be a left-
edge event, otherwise O′′ will be violated; 2) since any of
the other left-edge events must occur after some occurrence
of a right-edge event, the first left-edge event actually must

be e1,L
x R,x i for some i, which is the last event in an event

segment that achieves vLx i from v1
x L(in the example of Fig-

ure 4, i = 1); 3) the event right after e1,L
x R,x i must be a

right-edge event, because vLx i enables no event and all other
conditions that are true in the state reached by e1,L

x R,x i are
right-edge conditions and those in-node conditions, which
enable events that are not allowed to occur in f

′′

1 because of
O; 4) that right-edge event must be eR,1

x i,i L, otherwise again
O′′ will be violated. Based on the above observations we can
use mathematical-induction to prove that a right-edge event
occurs right after its corresponding left-edge events in f

′′

1 .
Hence, it is still safe to claim that, as in the case for Θ, there
is a DHP P = (V1, E1) in G from vx to vy iff in Θ

′′
there

exists an f
′′

1 .
Example cause-and-effect graph is illustrated in Figure 4,

where one possible event sequence f
′′

transformed from the
DHP P in the graph G as shown in Figure 1 is
〈e1,1

x L,x R, e
1,L
x R,x 1, e

R,1
x 1,1 L, e

1,1
1 L,1 R, e

1,L
1 R,1 2, e

R,1
1 2,2 L,

e1,1
2 L,2 R, e

1,L
2 R,2 y, e

R,1
2 y,y L, e

1,1
y L,y R, e

2,1
x R,x R, e

1,L
x R,x 2,

eR,1
x 2,2 L, e

2,1
1 R,1 R, e

1,L
1 R,1 x, e

R,1
1 y,y L〉.

v1y L v1y Rv1x Rv1x L

v12 L v12 R

v11 L v11 R

v2x R

v21 R

vL1 2

vR1 2

vLx 2

vRx 2

vL1 x

vR1 yvLx 1

vRx 1

vL2 y

vR2 y

Figure 4: The cause-and-effect graph of Θ
′′
(G)

3.2 Tractability Results
We turn now to identifying tractable classes of the problems
we have been considering.

Theorem 4 Deciding p ∈ V iable(Π
′′′
,∆Φ′′′ ), where Θ

′′′

is a simple event system and the cause-and-effect graph G
′′′

for the set of event types T ′′′ in the causal structure Φ
′′′

of
Π
′′′

is a DAG, is polytime solvable.
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Proof Idea: Although we are here proving a tractable plan
viability result, it is safe to assume that each t ∈ T ′′′ has
only one unique occurrence e ∈ E ′′′ , since
• if there exist two events e1 and e2 both corresponding

to a particular event type tL,R, no admissible event se-
quence with respect to the event system Θ

′′′
can then

achieve the condition tL twice, since Θ
′′′

is simple and
G
′′′

is a DAG. Hence, the set ACS(Θ
′′′

) is empty and thus
p 6∈ V iable(Π′′′ ,∆Φ′′′ ) for any condition p;

• if an event type tL,R does not have an actual event occur-
rence, then simply remove it from T ′′′ .

It is also safe to assume that, for any two event types t1 and
t2 in G

′′′
, there exists at least a path in between (a path from

t1 to t2, or a path from t1 to t2, but not both), otherwise,
there does not exist an Euler path for G

′′′
. Consequently,

p 6∈ V iable(Π′′′ ,∆Φ′′′ ).
With these assumptions, the problem becomes trivial. The

in-degree and out-degree of any condition pi in G
′′′

are at
most one: if two event types, say t1 and t2, both achieve, or
falsify, i, then there does not exist a path between t1 and t2 in
G
′′′

. Hence G
′′′

is actually simply a chain and consequently
the satisfiability of O′′′ can be checked in linear time.

The following theorem states that, when constraints of
partial orders are not present, plan viability problems are
polynomial time solvable.
Theorem 5 Deciding p ∈ V iable(Π∗,∆Φ∗), where Θ∗ is
an almost-simple event system and the partial-order O∗ in
Θ∗ is empty, is polytime solvable.
Proof Idea: Since O∗ is empty, we need to find here an
admissible complete sequence that achieves p. Since in
Θ∗, an event type might have more than one actual event
occurrences, we can transform the cause-and-effect graph
Θ∗(G) built from the set of causal rules, to a multi-graph
Θ∗(G∗), where edges are actual events and multi-edges re-
flect those multiple actual event occurrences. The problem is
then equivalent to the polytime problem of finding an Euler
tour in Θ∗(G∗) from multiple start points (the initial state)
to multiple end points (the goal state). In particular, the plan
is viable iff 1) the out-degree is one more than the in-degree
for start points; 1) the out-degree is one less than the in-
degree for end points; 3) p is one of the end points; 4) the
out-degree equals its in-degree for any other vertices in the
graph. Note that, for the algorithm to work properly, the size
of the current state should not vary in any time touring the
graph. In other words, a condition is currently true should
not be achieved again by another event.

4 Summary and Discussion
The results are summarized graphically in Figure 5, in which
an arrow connects a problem to its extension (in the sense of
additional restrictions). Our major observations are:
• NP-completeness of the problem for unconditional event

systems (the top-left box in the figure) is demonstrated by
Theorem 6.4 in (Nebel and Bäckström 1994) (referred to
in that paper as the admissible possible truth problem).

The proof of the theorem employs a special event system
whose set of partial order is empty (top-right box). This is
a clear indication that other constraints, not partial order
alone, are also the sources of the intractability.

• In problems without a partial order (right column of the
figure), the intractability boundary occurs between uncon-
ditional event systems and almost-simple event systems,
which means that the size of preconditions and effects in
the causal rules also contribute to the intractability.

• The topological structure of the cause-and-effect graphs
and the size of the initial conditions both contribute to
the intractability. This is indicated by the fact that apply-
ing the DAG constraints and |I| = 1 (i.e., simple event
system) alone can not bring the problem into polytime-
solvable zone, whereas when applied together, the prob-
lem becomes tractable.

• Considering the tractable problems (left-bottom box), if
we do not require admissibility, then the revised prob-
lem corresponds to the problem studied in (Nebel and
Bäckström 1994), which is NP-complete.4 This means
that “inadmissibility” contributes to the intractability as
well.

• The inadmissable but effectless occurrence of events can
alternatively be interpreted as disjunctive (i.e, condi-
tional) preconditions for event-types, i.e., each event-type
is associated with an additional causal rule, where the sets
ϕ, α, δ are all empty.
In summary, the partial-order plan viability problem is

NP-complete and our work indicates that all of the follow-
ing constraints contribute to the computational intractabil-
ity of the problem: 1) partial orders, 2) conditionality of the
causal rules, 3) size of the preconditions and the effects of
the causal rules, 4) size of the initial conditions, 5) topologi-
cal structure of the cause-and-effect graphs, and 6) inadmiss-
ability.

It is shown in (Helmert 2004) that use of planning heuris-
tics, which are based on decomposing the causal graph of
a planning task, brings substantial improvement in solving
practical instances of planning existence problems. Never-
theless, in (Jonsson, Jonsson, and Lööw 2013), it is demon-
strated that plan existence problems are still computationally
difficult in the worst cases (PSPACE-complete), even when
the causal graph of a given planning problem is a DAG. This
paper might shed some light on the design and development
of new planning heuristics that are based on constraints other
than DAG.

Because the plan viability problem and the admissible
possible truth problem are equivalent, results in this paper
are applicable to the admissible possible truth problem, as
shown in (Tan 2012). Further, restricted classes on the cause-
and-effect graphs, and on partial orders, are investigated in
(Tan 2012) and (Tan and Gruninger 2009), in order to estab-
lish a partial borderline between tractability and intractabil-
ity, for the inadmissible possible truth problem.

4General versions are presented in (Dean and Boddy 1988),
most restricted version is presented as Theorem 3.3 in (Nebel and
Bäckström 1994).
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Figure 5: The computational hierarchy of the partially-
ordered plan viability problems

Since the formalism adopts a propositional STRIPS-like
presentation, an event system can be easily specified in the
Planning Domain Definition Language (PDDL) (Russell and
Norvig 2003), as PDDL includes sublanguages for STRIPS,
among others such as the Action Description Language
(ADL). Hence, the complexity analysis presented here can
be easily extended to the benchmark planning problems ex-
pressed in PDDL, with minimal additional effort required.

In the context of plan execution monitoring, the partial-
order plan viability problem is defined in Proposition 1 of
(Muise, McIlraith, and Beck 2011) as checking the existence
of a linearization f with respect to a state s, whereas at least
one suffix of f can achieve the goal state from s. All our
complexity results remain applicable to this variant defini-
tion, as we can easily generate worst cases where a plan
is only possibly viable through its complete linearizations,
instead of through any suffix of any linearization. In those
cases, regression would not be able to generate promising
intermediate states, which lead to the goal state. Addition-
ally, as stated in Proposition 5.2 and Theorem 5.9 of (Nebel
and Bäckström 1994), the plan validity problem is co-NP-
complete for general causal structures but is polytime solv-
able for unconditional causal structures. Hence, computa-
tionally efficient regression-based approaches on plan valid-
ity problems might exist for cases where plan viability prob-
lems are intractable.

Finally, we note one interesting implication of Theorem 3
– in a system containing topologically isolated local cause-
and-effect diagrams, predicting consequence is still compu-
tationally challenging as long as these diagrams remain tem-
porally related.
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