
Diverse and Additive Cartesian Abstraction Heuristics

Jendrik Seipp and Malte Helmert
Universität Basel

Basel, Switzerland
{jendrik.seipp,malte.helmert}@unibas.ch

Abstract
We have recently shown how counterexample-guided ab-
straction refinement can be used to derive informative Carte-
sian abstraction heuristics for optimal classical planning. In
this work we introduce two methods for producing diverse
sets of heuristics within this framework, one based on goal
facts, the other based on landmarks. In order to sum the
heuristic estimates admissibly we present a novel way of find-
ing cost partitionings for explicitly represented abstraction
heuristics. We show that the resulting heuristics outperform
other state-of-the-art abstraction heuristics on many bench-
mark domains.

Introduction
Recently, we presented an algorithm (Seipp and Helmert
2013) for deriving admissible heuristics for classical plan-
ning based on the counterexample-guided abstraction refine-
ment (CEGAR) methodology (Clarke et al. 2000). Starting
from a coarse abstraction of a planning task, the algorithm
iteratively computes an optimal abstract solution, checks if
and why it fails for the concrete planning task and refines
it so that the same failure cannot occur in future iterations.
After a given time or memory limit is hit, the resulting Carte-
sian abstraction is used as an admissible search heuristic.

As the number of CEGAR iterations grows, one can ob-
serve diminishing returns: it takes more and more iterations
to obtain further improvements in heuristic value. Therefore,
in this work we propose building multiple smaller additive
abstractions instead of a single big one.

The standard way of composing admissible heuristics is
to use the maximum of their estimates. This combination is
always admissible if the component heuristics are. In order
to gain a more informed heuristic it would almost always be
preferable to use the sum of the estimates, but this estimate
is often not admissible. To remedy this problem, we can
use cost partitioning to ensure that each operator’s cost is
distributed among the heuristics in a way that makes the sum
of their estimates admissible.

The notion of cost partitioning has been formally intro-
duced by Katz and Domshlak (2008). They formulate lin-
ear programs that find an optimal admissible cost partition-
ing for a given search state and any number of abstraction

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristics in polynomial time. The practical use of this result
is limited, however, since evaluating the linear programs is
computationally very expensive (Pommerening, Röger, and
Helmert 2013).

Yang et al. (2008) provide an overview of the work on ad-
ditive abstractions and some formal proofs concerning cost
partitionings. They show that distributing the cost among
the heuristics reduces the solving time for many combinato-
rial puzzles, but do not provide an algorithm for finding cost
partitionings.

In this work we introduce the saturated cost partitioning
algorithm that computes cost partitionings for explicitly rep-
resented abstraction heuristics. Iteratively, we find an ab-
straction, reduce the operator costs so that the heuristic es-
timates do not change and use the remaining costs for the
next abstraction. While our algorithm increases the number
of solved benchmark tasks compared to using a single Carte-
sian abstraction, the resulting abstractions focus on mostly
the same parts of the task. Therefore, we propose two meth-
ods for producing more diverse sets of abstractions. The first
strategy computes abstractions for all goal facts separately,
while the second does so for all causal fact landmarks of the
delete-relaxation of the task (Keyder, Richter, and Helmert
2010).

We show that the construction of multiple abstractions in
general and the use of landmarks to diversify the heuris-
tics in particular both lead to a significantly higher num-
ber of solved tasks and let heuristics based on Cartesian ab-
stractions outperform many other state-of-the-art abstraction
heuristics.

The remainder of the paper is organized as follows: first
we give some formal definitions and present our algorithm
for finding cost partitionings for abstraction heuristics. Then
we show that combining multiple heuristics found with the
plain CEGAR algorithm does not improve the overall perfor-
mance much since the calculated abstractions are too similar.
Therefore, we introduce several methods for finding more
diverse abstractions that concentrate on different aspects of
the task. Afterwards, we evaluate our ideas experimentally
and conclude.

Background
We consider optimal planning in the classical setting, using
a SAS+-like (Bäckström and Nebel 1995) representation.

289

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Definition 1. Planning tasks.
A planning task is a 5-tuple Π = 〈V,O, c, s0, s?〉, where:

• V is a finite set of state variables v, each with an associ-
ated finite domain D(v).
A fact is a pair 〈v, d〉 with v ∈ V and d ∈ D(v).
A partial state is a function s defined on a subset of V .
This subset is denoted by Vs. For all v ∈ Vs, we must
have s(v) ∈ D(v). Partial states defined on all variables
are called states, and S(Π) is the set of all states of Π.
Where notationally convenient we treat states as sets of
facts.
The update of partial state s with partial state t, s⊕ t, is
the partial state defined on Vs∪Vt which agrees with t on
all v ∈ Vt and with s on all v ∈ Vs \ Vt.

• O is a finite set of operators. Each operator o has a
precondition pre(o) and effect eff(o), which are partial
states. The cost function c assigns a cost c(o) ∈ N0 to
each operator.

• s0 ∈ S(Π) is the initial state and s? is a partial state, the
goal.
The notion of transition systems is central for assigning

semantics to planning tasks:

Definition 2. Transition systems and plans.
A transition system T = 〈S, T, s0, S?〉 consists of a finite
set of states S, a set of transitions T , an initial state s0 ∈ S
and a set of goal states S? ⊆ S. A transition s

l,w−−→ s′ ∈ T
from state s ∈ S to state s′ ∈ S has an associated label l
and non-negative weight w.

A path from s ∈ S to any s? ∈ S? following the transi-
tions is a plan for s. A plan is optimal if the sum of weights
along the path is minimal.

A planning task Π = 〈V,O, c, s0, s?〉 induces a transition
system with states S(Π), initial state s0, goal states {s ∈
S(Π) | s? ⊆ s} and transitions {s o,c(o)−−−→ s ⊕ eff(o) | s ∈
S(Π), o ∈ O, pre(o) ⊆ s}. Optimal planning is the problem
of finding an optimal plan in the transition system induced
by a planning task starting in s0, or proving that no such plan
exists.

By losing some distinctions between states we can create
an abstraction of a planning task. This allows us to obtain
a more “coarse-grained”, and hence smaller, transition sys-
tem.

Definition 3. Abstraction.
An abstraction of a transition system T = 〈S, T, s0, S?〉 is a
pairA = 〈T ′, α〉 where T ′ = 〈S′, T ′, s′0, S′?〉 is a transition
system called the abstract transition system and α : S →
S′ is a function called the abstraction mapping, such that

α(s)
l,w−−→ α(s′) ∈ T ′ for all s

l,w−−→ s′ ∈ T , α(s0) = s′0,
and α(s?) ∈ S′? for all s? ∈ S?.

Abstraction preserves paths in the transition system and
can therefore be used to define admissible and consistent
heuristics for planning. Specifically, hA(s), the heuristic
estimate for a concrete state s ∈ S, is defined as the cost
of an optimal plan starting from α(s) ∈ S in the abstract
transition system.

Saturated Cost Partitioning
Using only a single abstraction of a given task is often not
enough to cover all or at least most important parts of the
task in reasonable time. Therefore, it is often beneficial to
build multiple abstractions that focus on different aspects of
the problem (Holte et al. 2006). Since we want the resulting
heuristics to be additive in order to obtain a more informed
overall estimate, we have to ensure that the sum of their in-
dividual estimates is admissible. One way of doing so is
to use a cost partitioning that divides operator costs among
multiple cost functions:

Definition 4. Cost partitioning.
A cost partitioning for a planning task with operator set O
and cost function c is a sequence c1, . . . , cn of cost functions
ci : O → N0 that assign costs to operators o ∈ O such that∑

1≤i≤n ci(o) ≤ c(o) for all o ∈ O.

Cost partitioning can be used to enforce additivity of a
group of heuristics h1, . . . , hn. Each heuristic hi is evalu-
ated on a copy of the planning task with operator cost func-
tion ci. If each hi is admissible for this planning task, then
their sum

∑n
i=1 hi is admissible for the original planning

task due to the way the operator costs are “split” by the cost
partitioning.

The question is: how do we find a cost partitioning that
achieves a high overall heuristic estimate? Our saturated
cost partitioning algorithm iteratively computes hi and as-
sociates with it the minimum cost function ci that preserves
all of hi’s estimates. Therefore, each cost function ci only
uses the costs that are actually needed to prove the esti-
mates made by hi, and the remaining costs are used to define
further cost functions and heuristics that can be admissibly
added to hi.

The following observation forms the basis of our algo-
rithm: given an abstract transition system, we can often re-
duce transition weights without changing any goal distances.
An example of this situation is shown in Figure 1. If we ig-
nore the numbers in brackets and operator labels for now, we
can see that for example the transition from h = 2 to h = 0
with original weight 5 can be assigned a weight of 2 with-
out affecting any goal distances. We formalize the general
insight in the following lemma:

Lemma 5. Distance-preserving weight reduction.
Consider transition systems T and T ′ that only differ in the
weight of a single transition a→ b, which is w in T and w′
in T ′. Let h and h′ denote the goal distance functions in T
and T ′.

If h(a)− h(b) ≤ w′ ≤ w, then h = h′.

Proof. T and T ′ only differ in the weight of a → b, so
it suffices to show h′(a) = h(a). We have h′(a) ≤ h(a)
because w′ ≤ w. It remains to show h′(a) ≥ h(a).

Clearly h′(b) = h(b): we can assume that shortest paths
from b are acyclic, hence do not use the transition a → b,
and all other transitions have the same cost in T ′ and T .

If a shortest path from a in T ′ does not use a → b, then
clearly h′(a) = h(a). If it does, then its cost is h′(a) =
w′ + h′(b) = w′ + h(b) ≥ h(a)− h(b) + h(b) = h(a).

290

h = 3 h = 2

h = 1

h = 4

h = 0

1
o3

4(0)

o4

2
o2

2
o7

7(0)o
6

1 o 5

2 o 7

1
o
3

5(4)

o1

5(
4)

o1

Figure 1: Abstract transition system of an example planning
task. Every transition is associated with an operator and a
weight corresponding to the operator’s cost. The numbers
in brackets show the reduced operator costs that suffice to
preserve all goal distances.

In transition systems of planning task abstractions,
weights are induced by operator costs. Lemma 5 therefore
implies that we can reduce the cost of some operators with-
out changing the heuristic estimates of the abstraction. One
option is to substitute the task’s cost function with the satu-
rated cost function:

Definition 6. Saturated cost function.
Let Π be a planning task with operator set O and cost func-
tion c. Furthermore, let T be an abstract transition system
for Π with transitions T and goal distance function h.

Then we define the saturated cost function ĉ(o) for o ∈ O
as ĉ(o) = max

a
o,w−−→b∈T

max{0, h(a)− h(b)}.

The saturated cost function assigns to each operator the
minimum cost that preserves all abstract goal distances. In
the example abstraction in Figure 1 we show the reduced op-
erator costs assigned by the saturated cost function in brack-
ets. Note that the transition from h = 2 to h = 0 must
have at least a weight of 4 when we take the operator labels
into account. Otherwise, the transition between h = 4 and
h = 0, which is induced by the same operator, would also be
assigned a weight smaller than 4 and thus the goal distance
for h = 4 would decrease.

Theorem 7. Minimum distance-preserving cost function.
Let Π be a planning task with operator set O and cost func-
tion c. Furthermore, let T be an abstract transition system
for Π with transitions T and goal distance function h. Then
for the saturated cost function ĉ we have:

1. ĉ preserves the goal distances of all abstract states.
2. For all other cost functions c′ that preserve all goal dis-

tances we have c′(o) ≥ ĉ(o) for all operators o ∈ O.

Proof. 1. Starting from the transition system T , we can re-
peatedly apply Lemma 5 to reduce the weight of every
transition a → b to max{0, h(a) − h(b)} without affect-
ing the h values. Let T ′ be the resulting transition system.
In a second step, we replace the weights of all transitions
a

o,w−−→ b of T ′ by the maximum weight of all transitions
with label o, which is the saturated cost ĉ(o). Let T ′′ be
the resulting transition systems.
By Lemma 5, the goal distances in T and T ′ are the same.
All label weights in T ′′ are bounded by the label weights
of T ′ from below and T from above, which means that
goal distances in T ′′ must also be the same.

2. By contradiction: let c′(o) < ĉ(o) for some operator o ∈
O. By definition of ĉ(o) and because costs must be non-
negative, this means c′(o) < max

a
o,w−−→b∈T

(h(a)−h(b)),

and hence there exists a transition a
o,w−−→ b ∈ T with

c′(o) < h(a) − h(b). This implies h(a) > c′(o) + h(b),
which violates the triangle inequality for shortest paths in
graphs.

Splitting the cost of each operator o into the cost needed
for preserving the goal distances ĉ(o) and the remaining
cost c(o)− ĉ(o) produces the desired cost partitioning: after
heuristic h has been computed we associate with it the satu-
rated cost function ĉ(o) and use the remaining operator cost
c(o)− ĉ(o) to define further heuristics that can be admissibly
added to h.

The procedure can be used for any abstraction heuristic
with a suitably small number of abstract states and where
the transition system is either explicitly represented or eas-
ily enumerable (such as pattern databases). We apply it to
Cartesian abstractions (Seipp and Helmert 2013), which use
explicitly represented transition systems.

Multiple Abstractions
Having discussed how we can combine multiple abstraction
heuristics, the natural question is how to come up with dif-
ferent abstractions to combine. As discussed previously, we
build on our earlier CEGAR approach for Cartesian abstrac-
tions (Seipp and Helmert 2013). In our earlier work, we used
a timeout of 900 seconds to generate the single abstraction.
The simplest idea to come up with n additive abstractions,
then, is to repeat the CEGAR algorithm n times with time-
outs of 900/n seconds, computing the saturated cost func-
tion after each iteration, and using the remaining cost in sub-
sequent iterations.

Table 1 shows the number of solved tasks from previ-
ous IPC challenges for different values of n. All versions
are given a time limit of 30 minutes (of which at most 15
minutes are used to construct the abstractions) and 2 GB of
memory to find a solution.

We see that increasing the number of abstractions from 1
to 2 is mildly detrimental. It increases coverage in 2 out
of 44 domains, but reduces coverage in 6 domains. The
total coverage decreases from 562 to 559. However, us-
ing even more abstractions increases coverage, with peaks
around 566 solved tasks for 10–20 abstractions. It is also

291

Abstractions
Coverage 1 2 5 10 20 50

airport (50) 19 19 20 19 20 21
driverlog (20) 10 10 10 11 10 10
logistics-00 (28) 14 16 16 16 16 16
logistics-98 (35) 3 4 4 4 4 4
miconic (150) 55 55 56 56 55 55
mprime (35) 27 26 26 26 26 25
nomystery-11 (20) 10 9 10 10 10 9
pipesworld-t (50) 11 11 11 11 11 10
rovers (40) 6 6 6 7 7 7
sokoban-08 (30) 21 20 20 20 20 19
sokoban-11 (20) 18 17 17 17 18 16
tidybot-11 (20) 13 13 13 14 14 14
trucks (30) 6 6 7 7 7 7
wood-08 (30) 9 9 9 9 9 10
wood-11 (20) 5 4 4 4 4 4
zenotravel (20) 9 8 9 9 9 9
. .

Sum (1396) 562 559 564 566 566 562

Table 1: Number of solved tasks for a growing number of
Cartesian abstractions. Domains in which coverage does not
change are omitted. Best results are highlighted in bold.

apparent that performance drops off when too many abstrac-
tions are used.

Overall, we note that using more Cartesian abstractions
can somewhat increase the number of solved tasks, but com-
puting too many abstractions is not beneficial. We hypothe-
size that this is the case because the computed abstractions
are too similar to each other, focusing mostly on the same
parts of the problem. Computing more abstractions does
not yield a more informed additive heuristic and instead just
consumes time that could have been used to produce fewer,
but more informed component heuristics.

To see why diversification of abstractions is essential,
consider the extreme case where two component heuristics
h1 and h2 are based on exactly the same abstraction. Let c1
and c2 be the corresponding cost functions. Then the sum of
heuristics h1 + h2 is dominated by the heuristic that would
be obtained by using the same abstraction only once with
cost function c1 + c2. (This follows from the admissibility
of cost partitioning.) So we need to make sure that the ab-
stractions computed in different iterations of the algorithm
are sufficiently different.

There are several possible ways of ensuring such diver-
sity within the CEGAR framework. One way is to make
sure that different iterations of the CEGAR algorithm pro-
duce different results even when presented with the same
input planning task. This is quite possible to do because the
CEGAR algorithm has several choice points that affect its
outcome, in particular in the refinement step where there are
frequently multiple flaws to choose from. By ensuring that
these choices are resolved differently in different iterations
of the algorithm, we can achieve some degree of diversifi-
cation. We call this approach diversification by refinement
strategy.

Abstractions
Coverage 1 2 5 10 20 50

airport (50) 19 19 20 20 20 20
driverlog (20) 10 10 10 10 9 9
logistics-00 (28) 15 18 18 18 18 17
logistics-98 (35) 4 5 5 5 5 5
miconic (150) 55 58 59 59 59 58
mprime (35) 26 26 25 25 25 25
nomystery-11 (20) 9 10 11 12 12 9
pipesworld-nt (50) 16 15 15 15 15 15
pipesworld-t (50) 12 11 11 11 11 11
rovers (40) 6 7 7 7 7 7
sokoban-08 (30) 21 21 20 20 20 20
sokoban-11 (20) 18 18 17 17 17 16
tidybot-11 (20) 13 13 14 14 14 14
tpp (30) 6 7 7 7 7 7
trucks (30) 6 9 9 9 9 9
. .

Sum (1396) 565 576 577 578 577 571

Table 2: Number of solved tasks for a growing number of
Cartesian abstractions preferring to refine facts with higher
hadd values. Domains in which coverage does not change are
omitted. Best results are highlighted in bold.

Another way of ensuring diversity, even in the case where
the CEGAR algorithm always generates the same abstrac-
tion when faced with the same input task, is to modify the
inputs to the CEGAR algorithm. Rather than feeding the ac-
tual planning task to the CEGAR algorithm, we can present
it with different “subproblems” in every iteration, so that it
will naturally generate different results. To ensure that the
resulting heuristic is admissible, it is sufficient that every
subproblem we use as an input to the CEGAR algorithm is
itself an abstraction of the original task. We call this ap-
proach diversification by task modification. We will discuss
these two approaches in the following sections.

Diversification by Refinement Strategy
A simple idea for diversification by refinement strategy is to
let CEGAR prefer refining for facts with a higher hadd value
(Bonet and Geffner 2001), because this refinement strategy
(unlike the strategy used in our original CEGAR algorithm)
is affected by the costs of the operators, which change from
iteration to iteration as costs are used up by previously com-
puted abstractions. This inherently biases CEGAR towards
regions of the state space where operators still have high
costs.

Table 2 shows the results for this approach. We see that
the hadd-based refinement strategy leads to better results than
the original CEGAR algorithm on average: 3 more tasks
are solved in the basic case of only one abstraction, and for
larger values of n we obtain 9–17 additional solved tasks
compared to the corresponding columns in Table 1. We also
see that the best values of n lead to a larger improvement
over a single abstraction (+13 tasks) than with the original
refinement strategy (+4 tasks). However, as in Table 1, the

292

maximum number of solved tasks is obtained with 10–20 ab-
stractions and calculating more than that leads to a decrease
in total coverage.

Overall, we see that using a refinement strategy that takes
into account the operator costs and hence interacts well with
cost partitioning can lead to better scalability for additive
CEGAR heuristics. However, the improvements obtained in
this way are quite modest, which motivates the alternative
approach for diversification which we discuss next.

Diversification by Task Modification
Diversification by task modification is a somewhat more
drastic approach than diversification by refinement strategy.
The basic idea is that we identify different aspects of the
planning task and then generate an abstraction of the orig-
inal task for each of these aspects. Each invocation of the
CEGAR algorithm uses one of these abstractions as its input
and is thus constrained to exclusively focus on one aspect.

We propose two different ways for coming up with such
“focused subproblems”: abstraction by goals and abstrac-
tion by landmarks.

Abstraction by Goals
Our first approach, abstraction by goals, generates one ab-
stract task for each goal fact of the planning task. The num-
ber of abstractions generated is hence equal to the number
of goals.

If 〈v, d〉 is a goal fact, we create a modified planning task
which is identical to the original one except that 〈v, d〉 is the
only goal fact. This means that the original and modified
task have exactly the same states and transitions and only
differ in their goal states: in the original task, all goals need
to be satisfied in a goal state, but in the modified one, only
〈v, d〉 needs to be reached. The goal states of the modified
task are hence a superset of the original goal states, and we
can conclude that the modification defines an abstraction in
the sense of Def. 3 (where the abstraction mapping α is the
identity function).

Abstracting by goals has the obvious drawback that it only
works for tasks with more than one goal fact. Since any task
could potentially be reformulated to only contain a single
goal fact, a smarter way of diversification is desirable.

Abstraction by Landmarks
Our next diversification strategy solves this problem by us-
ing fact landmarks instead of goal facts to define subprob-
lems of a task. Fact landmarks are facts that have to be true
at least once in all plans for a given task (e. g., Hoffmann,
Porteous, and Sebastia 2004). Since obviously all goal facts
are also landmarks, this method can be seen as a generaliza-
tion of the previous strategy.

More specifically, we generate the causal fact landmarks
of the delete relaxation of the planning task with the algo-
rithm by Keyder, Richter, and Helmert (2010) for finding hm
landmarks with m = 1. Then for each landmark l = 〈v, d〉
we compute a modified task that considers l as the only goal
fact.

Without further modifications, however, this change does
not constitute an abstraction, and hence the resulting heuris-
tic could be inadmissible. This is because landmarks do not
have the same semantics as goals: goals need to be satisfied
at the end of a plan, but landmarks are only required at some
point during the execution of a plan.

Existing landmark-based heuristics address this diffi-
culty by remembering which landmarks might have been
achieved en route to any given state and only base the
heuristic information on landmarks which have not yet
been achieved (e. g., Richter, Helmert, and Westphal 2008;
Karpas and Domshlak 2009). This makes these heuristics
path-dependent: their heuristic values are no longer a func-
tion of the state alone.

Path-dependency comes at a significant memory cost for
storing landmark information, so we propose an alternative
approach that is purely state-based. For every state s, we
use a sufficient criterion for deciding whether the given land-
mark might have been achieved on the path from the initial
state to s. If yes, s is considered as a goal state in the modi-
fied task and hence will be assigned a heuristic value of 0 by
the associated abstraction heuristic.

Without path information, how can we decide whether a
given landmark could have been reached prior to state s?
The key to this question is the notion of a possibly-before
set for facts of delete relaxations, which has been previously
considered by Porteous and Cresswell (2002). We say that
a fact f ′ is possibly before fact f if f ′ can be achieved in
the delete relaxation of the planning task without achieving
f . We write pb(f) for the set of facts that are possibly be-
fore f ; this set can be efficiently computed using a fixpoint
computation shown in Alg. 1 (function POSSIBLYBEFORE).
From the monotonicity properties of delete relaxations, it
follows that if l is a delete-relaxation landmark and all facts
of the current state s are contained in pb(l), then l still has
to be achieved from s.

Based on this insight, the modified task for landmark l
can be constructed as follows. First, we compute pb(l). The
modified task only contains the facts in pb(l) and l itself; all
other facts are removed. The landmark l is the only goal.
The initial state and operators are identical to the original
task, except that we discard operators whose preconditions
are not contained in pb(l) (by the definition of possibly-
before sets, these can only become applicable after reach-
ing l) and for all operators that achieve l, we make l their
only effect. (Adapting such operators is necessary because
they might have other effects that fall outside pb(l). Note
that such operators are guaranteed to achieve a goal state,
and for an abstraction heuristic it does not matter which ex-
act goal state we end up in.) The complete construction is
shown in Alg. 1.

We write S(l) for the set of states of the modified task.
These are exactly the states s of the original planning task
where s ⊆ pb(l) ∪ {l}. The abstraction function that is as-
sociated with the modified task maps every state in S(l) to
itself. In all other states the landmark might potentially have
been achieved, so they should be mapped to an arbitrary goal
state of the modified task. We remark that this mapping is
easy to represent within the framework of Cartesian abstrac-

293

Algorithm 1 Construct modified task for landmark 〈v, d〉.
function LANDMARKTASK(Π, 〈v, d〉)
〈V,O, c, s0, s?〉 ← Π
V ′← V
F ← POSSIBLYBEFORE(Π, 〈v, d〉)
for all v′ ∈ V ′ do
D′(v′)← {d′ ∈ D(v′) | 〈v′, d′〉 ∈ F ∪ {〈v, d〉}}

O′← {o ∈ O | pre(o) ⊆ F}
for all o ∈ O′ do

if 〈v, d〉 ∈ eff(o) then
eff(o)← {〈v, d〉}

return 〈V ′,O′, c, s0, {〈v, d〉}〉

function POSSIBLYBEFORE(Π, 〈v, d〉)
〈V,O, c, s0, s?〉 ← Π
F ← s0
while F has not reached a fixpoint do

for all o ∈ O do
if 〈v, d〉 /∈ eff(o) ∧ pre(o) ⊆ F then
F ← F ∪ eff(o)

return F

x = 0 x = 1 x = 2
o0 o1

Figure 2: Example task in which operators o0 and o1 change
the value of the single variable x from its initial value 0 to 1
and from 1 to its desired value 2.

tion (Seipp and Helmert 2013) because S(l) is a Cartesian
set and its complement can be represented as the disjoint
union of a small number of Cartesian sets (bounded by the
number of state variables of the planning task). Hence the
modified task construction can be easily integrated into the
Cartesian CEGAR framework.

Abstraction by Landmarks: Improved
In the basic form just presented, the tasks constructed for
fact landmarks do not provide as much diversification as we
would desire. We illustrate the issue with the example task
depicted in Figure 2. The task has three landmarks x = 0,
x = 1 and x = 2 that must be achieved in exactly this
order in every plan. When we compute the abstraction for
x = 1, the underlying CEGAR algorithm has to find a plan
for getting from x = 0 to x = 1. Similarly, the abstraction
procedure for x = 2 has to return a solution that takes us
from x = 0 to x = 2. Since going from x = 0 to x = 2
includes the subproblem of going from x = 0 to x = 1, we
have to find a plan from x = 0 to x = 1 twice, which runs
counter to our objective of finding abstractions that focus on
different aspects on the planning task.

To alleviate this issue, we propose an alternative construc-
tion for the planning task for landmark l. The key idea is
that we employ a further abstraction that reflects the intu-
ition that at the time we achieve l, certain other landmarks

have already been achieved.
In detail, the alternative construction proceeds as follows.

We start by performing the basic landmark task construction
described in Alg. 1, resulting in a planning task for landmark
l which we denote by Πl.

Furthermore, we use a sound algorithm for computing
landmark orderings (e. g., Hoffmann, Porteous, and Sebastia
2004; Richter, Helmert, and Westphal 2008) to determine a
set L′ of landmarks that must necessarily be achieved before
l. Note that, unless l is a landmark that is already satisfied
in the initial state (a trivial case we can ignore because the
Cartesian abstraction heuristic is identical to 0 in this case),
L′ contains at least one landmark for each variable of the
planning task because initial state facts are landmarks that
must be achieved before l.

Finally, we perform a domain abstraction (Hernádvölgyi
and Holte 2000) that combines, for each variable v′, all the
facts 〈v′, d′〉 ∈ L′ based on the same variable into a single
fact.

For example, consider the landmark l = 〈x, 2〉 in the
above example. We detect that 〈x, 0〉 and 〈x, 1〉 are land-
marks that must be achieved before l. They both refer to the
variable x, so we combine the values 0 and 1 into a single
value. The effect of this is that in the task for l, we no longer
need to find a subplan from x = 0 to x = 1.

Experiments
We implemented additive Cartesian abstractions in the Fast
Downward system and compare them to state-of-the-art ab-
straction heuristics already present in the planner: hiPDB

(Haslum et al. 2007; Sievers, Ortlieb, and Helmert 2012),
the two merge-and-shrink heuristics that competed as com-
ponents of planner portfolios in the IPC 2011 sequential op-
timization track, hm&s

1 and hm&s
2 (Nissim, Hoffmann, and

Helmert 2011) and the hCEGAR heuristic (Seipp and Helmert
2013) using a single abstraction. These heuristics can be
found in the left part of Table 3.

In the middle part we evaluate three different ways of
creating subproblems: abstraction by goals (hCEGAR

s?), ab-
straction by landmarks (hCEGAR

LM) and improved abstraction
by landmarks (hCEGAR

LM+). The right-most part of Table 3 will
be discussed below.

We applied a time limit of 30 minutes and memory limit
of 2 GB and let all versions that use CEGAR refine for at
most 15 minutes. For the additive CEGAR versions we dis-
tributed the refinement time equally among the abstractions.

Table 3 shows the number of solved instances for the com-
pared heuristics on all supported IPC domains. If we look
at the results for hCEGAR and hCEGAR

s? we see that decompos-
ing the task by goals and finding multiple abstractions sep-
arately instead of using only a single abstraction raises the
number of solved problems from 562 to 627. This big im-
provement is due to the fact that all domains except Mprime
and Sokoban profit from using hCEGAR

s? . While hCEGAR has a
lower total coverage than hiPDB and hm&s

2 , hCEGAR
s? performs

better than all compared abstraction heuristics from the lit-
erature.

294

hCEGAR
LM+s?

Coverage hiPDB hm&s
1 hm&s

2 hCEGAR hCEGAR
s? hCEGAR

LM hCEGAR
LM+ random hadd ↑ hadd ↓

airport (50) 21 22 15 19 31 31 27 33 36 32
barman-11 (20) 4 4 4 4 4 4 4 4 4 4
blocks (35) 28 28 20 18 18 18 18 18 18 18
depot (22) 7 7 6 4 5 4 6 7 4 6
driverlog (20) 13 12 12 10 10 10 10 10 12 11
elevators-08 (30) 20 1 12 16 21 20 17 17 18 18
elevators-11 (20) 16 0 10 13 18 17 15 15 15 15
floortile-11 (20) 2 2 7 2 2 2 2 2 2 2
freecell (80) 20 16 3 15 15 15 29 28 27 50
grid (5) 3 2 3 2 2 2 2 2 2 2
gripper (20) 7 7 20 7 7 7 7 7 7 7
logistics-00 (28) 21 16 20 14 20 21 16 20 20 20
logistics-98 (35) 4 4 5 3 6 6 6 7 6 8
miconic (150) 55 50 74 55 67 68 68 69 69 69
mprime (35) 23 23 11 27 25 25 25 25 25 26
mystery (30) 16 16 7 17 17 17 17 17 17 17
nomystery-11 (20) 16 12 18 10 16 14 14 14 14 14
openstacks-06 (30) 7 7 7 7 7 7 7 7 9 7
openstacks-08 (30) 19 9 19 19 19 19 19 19 19 19
openstacks-11 (20) 14 4 14 14 14 14 14 14 14 14
parcprinter-08 (30) 12 15 17 11 13 12 17 17 18 22
parcprinter-11 (20) 8 11 13 7 9 8 13 13 14 17
parking-11 (20) 5 5 0 0 0 0 0 0 0 0
pathways (30) 4 4 4 4 4 4 4 4 4 4
pegsol-08 (30) 6 2 29 27 27 27 27 27 27 27
pegsol-11 (20) 0 0 19 17 17 17 17 17 17 17
pipesworld-nt (50) 17 15 8 14 15 16 15 15 15 15
pipesworld-t (50) 17 16 7 11 12 12 12 12 12 12
psr-small (50) 49 50 49 49 49 49 48 49 49 49
rovers (40) 7 6 8 6 7 7 7 7 7 7
satellite (36) 6 6 7 6 6 6 6 6 6 6
scanalyzer-08 (30) 13 6 12 12 12 12 12 13 13 12
scanalyzer-11 (20) 10 3 9 9 9 9 9 10 10 9
sokoban-08 (30) 29 3 23 21 20 21 22 22 23 22
sokoban-11 (20) 20 1 19 18 17 18 19 19 19 19
tidybot-11 (20) 14 13 0 13 14 14 14 14 14 14
tpp (30) 6 6 7 6 10 7 6 7 7 7
transport-08 (30) 11 11 11 11 11 11 11 11 11 11
transport-11 (20) 6 6 7 6 6 6 6 6 6 6
trucks (30) 8 6 8 6 9 10 9 11 12 12
visitall-11 (20) 16 16 9 9 9 9 9 9 16 9
wood-08 (30) 7 14 9 9 10 11 11 11 11 11
wood-11 (20) 2 9 4 5 5 6 6 6 6 6
zenotravel (20) 11 9 12 9 12 12 12 12 12 12

Sum (1396) 600 475 578 562 627 625 635 653 667 685

Table 3: Number of solved tasks by domain for different heuristics. Best values are highlighted in bold.

295

0 200 400 600
0

200

400

600

hCEGAR
LM+s? with hadd ↓

h
C

E
G

A
R

h(s0)

Figure 3: Comparison of the heuristic estimates for the ini-
tial state made by hCEGAR and hCEGAR

LM+s? with hadd ↓ on the
tasks from Table 3. We omit the results for the ParcPrinter
domain since it has much higher costs. Points below the di-
agonal represent tasks for which hCEGAR

LM+s? with hadd ↓ makes
a better estimate than hCEGAR.

In total hCEGAR
s? and hCEGAR

LM solve roughly the same num-
ber of problems (627 and 625) and also for the individual
domains coverage does not change much between the two
heuristics. Only when we employ the improved hCEGAR

LM+
heuristic that uses domain abstraction to avoid duplicate
work during the refinement process, the number of solved
problems increases to 635.

Abstraction by Landmarks and Goals
We can observe that hCEGAR

s? and hCEGAR
LM+ outperform each

other on many domains: for maximum coverage hCEGAR
s? is

preferable on 7 domains, whereas hCEGAR
LM+ should be pre-

ferred on 9 domains. This suggests trying to combine the
two approaches.

We do so by first computing abstractions for all sub-
problems returned by the abstraction by landmarks method.
If afterwards the refinement time has not been consumed,
we also calculate abstractions for the subproblems returned
by the abstraction by goals decomposition strategy for the
remaining time. The results for this approach (hCEGAR

LM+s? -
random) are shown in the third from last column in Table 3.
Not only does this approach solve as many problems as the
better performing ingredient technique in many individual
domains, but it often even outperforms both original diver-
sification methods, raising the total number of solved tasks
to 653.

Subproblem Orderings
Since the cost saturation algorithm is influenced by the or-
der in which the subproblems are considered, we evaluate

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

hCEGAR
LM+s? with hadd ↓

h
C

E
G

A
R

Time for Computing Abstractions (secs)

Figure 4: Comparison of the time taken by hCEGAR and
hCEGAR

LM+s? with hadd ↓ to compute all abstractions on the tasks
from Table 3. Points above the diagonal represent tasks for
which hCEGAR

LM+s? with hadd ↓ needs less time for the computa-
tion than hCEGAR.

the impact of three different orderings. All previously dis-
cussed results were obtained with the random ordering that
randomly shuffles the subproblems before passing them to
the cost saturation algorithm. We hypothesize that it could
be beneficial to order the subproblems either with ascending
or descending difficulty. Therefore, we test two orderings
hadd ↑ and hadd ↓ that order the subproblems by the hadd

value (Bonet and Geffner 2001) of the corresponding goal
fact or landmark. This allows us to work on facts closer to
the initial state or closer to the goal first.

The results for the different orderings with hCEGAR
LM+s? can be

seen in the three right-most columns in Table 3. The random
ordering solves more tasks than the two ordering methods
based on hadd values only in the Depot domain. Everywhere
else at least one of the two principled sortings solves at least
as many tasks as the random one. However, none of them
outperforms the other on all domains. hadd ↑ solves more
tasks than hadd ↓ in 7 domains but hadd ↓ also has a higher
coverage than hadd ↑ in 6 domains. Both principled orderings
raise the total coverage over the random one: hadd ↑ solves
667 problems whereas hadd ↓ finds the solution for 685 tasks.

Our new best method hCEGAR
LM+s? with hadd ↓ solves 123 more

tasks than our previous method hCEGAR (685 vs. 562). This
coverage improvement of 21.9% is substantial because in
most domains solving an additional task optimally becomes
exponentially more difficult as the tasks get larger.1

1For comparison, if we look at the non-portfolio planners in
IPC 2011 (sequential optimization track), the best one only solved
1.8% more problems than the fourth-best one. If we also include
portfolio systems, the winner solved “only” 11.4% more problems
than the 6th-placed system.

296

The big increase in coverage can be explained by the fact
that hCEGAR

LM+s? with hadd ↓ estimates the solution cost much bet-
ter than hCEGAR as shown in Figure 3. One might expect that
the increased informedness would come with a time penalty,
but in Figure 4 we can see that in fact hCEGAR

LM+s? with hadd ↓
takes less time to compute the abstractions than hCEGAR.
Since all individual CEGAR invocations only stop if they
run out of time or find a concrete solution, Figure 4 tells
us that for most tasks hCEGAR does not find a solution, but
instead uses the full 15 minutes for the refinement whereas
hCEGAR

LM+s? with hadd ↓ almost always needs less time.

Conclusion
We presented an algorithm that computes a cost partitioning
for explicitly represented abstraction heuristics and showed
that it performs best when invoked for complementary ab-
stractions. To this end, we introduced several methods
for generating diverse abstractions. Experiments show that
the derived heuristics often outperform not only the single
Cartesian abstractions, but also many other state-of-the-art
abstraction heuristics.

Future research could try to use our cost saturation algo-
rithm to build additive versions of other abstraction heuris-
tics such as pattern databases or merge-and-shrink abstrac-
tions.

Acknowledgments
The Swiss National Science Foundation (SNSF) supported
this work as part of the project “Abstraction Heuristics for
Planning and Combinatorial Search” (AHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
Emerson, E. A., and Sistla, A. P., eds., Proceedings of the
12th International Conference on Computer Aided Verifica-
tion (CAV 2000), 154–169.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Hernádvölgyi, I. T., and Holte, R. C. 2000. Experiments
with automatically created memory-based heuristics. In
Choueiry, B. Y., and Walsh, T., eds., Proceedings of the
4th International Symposium on Abstraction, Reformulation
and Approximation (SARA 2000), volume 1864 of Lecture
Notes in Artificial Intelligence, 281–290. Springer-Verlag.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.

Holte, R.; Felner, A.; Newton, J.; Meshulam, R.; and Furcy,
D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. Artificial Intelligence 170(16–
17):1123–1136.
Karpas, E., and Domshlak, C. 2009. Cost-optimal plan-
ning with landmarks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1728–1733.
Katz, M., and Domshlak, C. 2008. Optimal additive com-
position of abstraction-based admissible heuristics. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Pro-
ceedings of the Eighteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2008), 174–181.
AAAI Press.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364.
Porteous, J., and Cresswell, S. 2002. Extending land-
marks analysis to reason about resources and repetition. In
Proceedings of the 21st Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG ’02), 45–54.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Borrajo, D.; Kambham-
pati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013), 347–351. AAAI Press.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Borrajo, D.; Felner, A.; Korf, R.; Likhachev,
M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SoCS 2012), 105–111. AAAI Press.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research 32:631–662.

297

