
Efficient Stubborn Sets:
Generalized Algorithms and Selection Strategies

Martin Wehrle and Malte Helmert
University of Basel, Switzerland

{martin.wehrle,malte.helmert}@unibas.ch

Abstract

Strong stubborn sets have recently been analyzed and suc-
cessfully applied as a pruning technique for planning as
heuristic search. Strong stubborn sets are defined declara-
tively as constraints over operator sets. We show how these
constraints can be relaxed to offer more freedom in choosing
stubborn sets while maintaining the correctness and optimal-
ity of the approach. In general, many operator sets satisfy
the definition of stubborn sets. We study different strategies
for selecting among these possibilities and show that existing
approaches can be considerably improved by rather simple
strategies, eliminating most of the overhead of the previous
state of the art.

Introduction
Heuristic search is a leading approach for classical domain-
independent planning. Recently, for optimal planning, prun-
ing techniques based on partial order reduction have found
increasing attention in the planning community. Partial or-
der reduction mitigates the state explosion problem by re-
ducing the unnecessary blow-up of the state space that is
induced by independent (permutable) operators.

Originally, partial order reduction was proposed by Val-
mari (1989) in the area of computer aided verification in
the form of strong stubborn sets. In the last years, tech-
niques based on partial order reduction have also been inves-
tigated for domain-independent planning, including the ex-
pansion core method (Chen and Yao 2009) and a direct adap-
tation of Valmari’s strong stubborn sets (Alkhazraji et al.
2012). Moreover, the theoretical relationships between dif-
ferent partial order reduction techniques have recently been
investigated (Wehrle and Helmert 2012; Wehrle et al. 2013).
For example, Wehrle et al. (2013) have shown that strong
stubborn sets strictly dominate the expansion core method
in terms of pruning power if the choice points of the strong
stubborn set approach are resolved in a suitable way.

A general question in this context is how to automatically
resolve these choice points in such a way that the resulting
algorithm is powerful (offers significant pruning) and effi-
cient (computes stubborn sets quickly). Recent results in the
model checking community (Geldenhuys, Hansen, and Val-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mari 2009; Laarman et al. 2013) show that different strate-
gies for computing stubborn sets vary widely in terms of the
resulting pruning power. Recent results in planning (Wehrle
et al. 2013) show that current algorithms for computing
strong stubborn sets can offer significant improvements of
total performance on a large benchmark suite. However,
they also demonstrate a nontrivial performance penalty in
cases where little or no pruning occurs, leading to fewer
problems solved in 5 out of 44 benchmark domains. Ul-
timately, one seeks for strategies that combine significant
pruning power with low computational overhead.

In this paper, we make two contributions towards this re-
search goal. Firstly, we introduce and prove the correctness
of a generalization of the strong stubborn set approach that
allows us to reduce the sets of operators that need to be
considered when verifying the constraints that characterize
strong stubborn sets. The resulting sets are smaller than with
the original definition, which makes them faster to compute
and potentially stronger in terms of pruning power.

Secondly, we investigate different strategies for resolving
the choice points in the computation of strong stubborn sets.
In particular, we investigate strategies for computing neces-
sary enabling sets and to approximate the interference rela-
tion for operator dependencies. We also briefly investigate
the impact of active operators, which have been used as a
pruning technique in addition to strong stubborn sets.

Our experiments show that rather simple strategies are
sufficient for matching the pruning power of recent success-
ful stubborn set approaches for domain-independent plan-
ning. In addition, the experiments show that the closer ap-
proximation of interfering operators afforded by our gener-
alized definition of stubborn sets significantly reduces the
overhead of stubborn set computation, almost completely
eliminating the performance penalty in planning domains
where little or no pruning occurs.

Preliminaries
We consider classical planning in a notational variant of
the SAS+ formalism (e.g., Bäckström and Nebel 1995), ex-
tended with nonnegative operator costs. States of the world
are described with a finite set of state variables V . Every
variable v ∈ V has a finite domain D(v). A partial state s
is a function defined on a subset of V , denoted as vars(s),
which maps every variable v ∈ vars(s) to an element of

323

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



its domain D(v). We write s[v] for the value to which
v is mapped. If a partial state is defined on all variables
(vars(s) = V), it is called a state.

Definition 1 (planning task). A planning task is a 4-tuple
Π = (V,O, s0, s?), where V is a finite set of finite-domain
variables, O is a finite set of operators, s0 is a state called
the initial state, and s? is a partial state called the goal.

Each operator o has an associated partial state pre(o)
called its precondition, an associated partial state eff (o)
called its effect, and an associated nonnegative number
cost(o) ∈ R+

0 called its cost.

The precondition variables prevars(o) of an opera-
tor o are the variables for which pre(o) is defined, i.e.,
prevars(o) = vars(pre(o)). Similarly, the effect variables
of o are defined as effvars(o) = vars(eff (o)).

A pair (v, d) with v ∈ V and d ∈ D(v) is called a fact.
We follow the convention of considering functions as sets
of pairs, so (v, d) ∈ s and s[v] = d are interchangeable
notations. If f is a fact and o is an operator with f ∈ eff (o),
then o is called an achiever of f . Operators which achieve
only one fact are called unary.

An operator o is applicable in a state s if pre(o) ⊆ s.
In this case, the successor state o(s) of s for operator o is
defined as the state that is obtained by updating s according
to eff (o): o(s)[v] = eff (o)[v] for all v ∈ effvars(o) and
o(s)[v] = s[v] for all v /∈ effvars(o). If o is not applicable
in s, the successor state o(s) is undefined. We denote the set
of applicable operators in s with app(s).

Definition 2 (plan, solvable, optimal). Let Π =
(V,O, s0, s?) be a planning task and let s be one of its
states. A plan or solution for s is a finite sequence π =
o1, . . . , on of operators of Π such that applying these oper-
ators to s in sequence leads to a state that includes the goal,
i.e., s? ⊆ on(on−1(. . . (o1(s)) . . . )). The cost of π is defined
as

∑n
i=1 cost(oi).

We call a state s solvable if a plan for s exists and unsolv-
able otherwise. A plan for s is optimal if its cost is minimal
among all plans for s. We write h∗(s) to denote the cost of
an optimal plan for s, setting h∗(s) =∞ if s is unsolvable.

In this paper we consider optimal planning, which is the
problem of finding an optimal plan for the initial state of a
planning task or proving that the initial state is unsolvable.

Successor Pruning
Strong stubborn sets are an example of a state-based succes-
sor pruning method, used within a state-space search algo-
rithm such as A∗ (Hart, Nilsson, and Raphael 1968). In this
section, we introduce a general notion of successor pruning
functions and describe conditions under which they preserve
the optimality of A∗-style algorithms. In the following sec-
tion, we will describe a generalization of strong stubborn
sets that satisfies these conditions.

Definition 3 (successor pruning function). Let Π be a plan-
ning task with states S and operators O. A successor prun-
ing function for Π is a function succ : S → 2O such that
succ(s) ⊆ app(s) for all s ∈ S.

s1 s2

s3

c : 1 d : 1

a : 0

b : 0

Figure 1: Example for unsafe pruning with zero-cost opera-
tors. Operators a and b start optimal plans in s1 and s2, but
setting succ(s1) = {a} and succ(s2) = {b} makes the task
unsolvable.

Successor pruning functions are used within search algo-
rithms to modify the state expansion step: when generating
the successor states of a given state s, instead of consider-
ing the complete set of applicable operators app(s), we only
consider the subset succ(s). The other applicable operators
are said to be pruned.

For optimal planning, we are interested in successor prun-
ing functions which guarantee that optimal solutions for the
planning task can still be found with this kind of pruning.
We call such successor pruning functions safe.

Definition 4 (safe). Let succ be a successor pruning func-
tion for a planning task Π. We say that succ is safe if for
every state s, the cost of an optimal solution for s is the
same when using the pruned state space induced by succ as
when using the full state space induced by app.

It is easy to see that general optimal search algorithms
such as A∗ with an admissible heuristic remain optimal
when using a safe successor pruning function: general
search algorithms like A∗ treat the state space as a black
box, so the known properties of A∗ apply, except that the
algorithm uses the pruned state space instead of the original
one. Therefore, if the initial state is solvable A∗ will find a
solution which is optimal in the pruned state space. With a
safe successor pruning function such a solution is also opti-
mal in the full state space.

In general, it is of course difficult to determine if a given
successor pruning function is safe. Therefore, we will try
to find sufficient conditions for safety. As a first attempt
to make the definition more operational, we might believe
that a successor pruning function is safe if, in every solvable
non-goal state, it includes at least one operator that starts an
optimal plan from this state. Indeed, in the absence of zero-
cost operators, this is a sufficient and necessary criterion for
safety.

However, in the general case this criterion is not suffi-
cient, as illustrated in Fig. 1. In state s1, π1 = a, d is an
optimal plan, and in state s2, π2 = b, c is an optimal plan.
However, if we use a successor pruning function based on
the first operators of these plans (i.e., succ(s1) = {a} and
succ(s2) = {b}), it is no longer possible to reach the goal
state s3 from the other states. The underlying problem here
is that applying zero-cost operators from an optimal plan
does not necessarily make progress towards the goal. Fortu-
nately, we can work around this problem by paying special
attention to operators of cost 0.

324



Definition 5 (strongly optimal). Let Π be a planning task
and s be one of its states. We say that a plan for s is strongly
optimal if it is optimal for s and includes a minimal number
of 0-cost state transitions among all optimal plans for s.

Strongly optimal plans can be understood as plans that
are optimal under a modified cost function where opera-
tors of original cost 0 incur a very small cost ε, chosen
small enough to only affect tie-breaking between plans of
the same original cost. It is easy to see that every operator
in a strongly optimal plan “takes us closer to the goal” in
a quantifiable way (either h∗(s) or the number of required
0-cost transitions decreases at each step), from which we
obtain the following result.
Proposition 1. Let succ be a successor pruning function
such that for every solvable non-goal state s, succ(s) con-
tains at least one operator which is the first operator in a
strongly optimal plan for s. Then succ is safe.

Generalized Strong Stubborn Sets
Strong stubborn sets have been defined in three recent papers
on AI planning (Wehrle and Helmert 2012; Alkhazraji et al.
2012; Wehrle et al. 2013). All three definitions are subtly
different, and the definition of generalized strong stubborn
sets we present in this section generalizes all of them.

Intuitively, the previous definitions ensure that the follow-
ing property holds: for every plan π for the current state,
there exists a permutation of π which is not pruned. Our
generalization only requires that in a solvable state, for at
least one strongly optimal plan, there exists a permutation
which is not pruned.

As a first step, we define interfering operators, which are
related to the notion of permuting plans.
Definition 6 (interference). Let o1 and o2 be operators of a
planning task Π, and let s be a state of Π. We say that o1
and o2 interfere in s if they are both applicable in s, and
• o1 disables o2 in s, i.e., o2 /∈ app(o1(s)), or
• o2 disables o1, or
• o1 and o2 conflict in s, i.e., s12 = o2(o1(s)) and s21 =
o1(o2(s)) are both defined and differ: s12 6= s21.
This definition follows our earlier work (Wehrle and

Helmert 2012), except that the earlier definition is based on
a global notion of interference rather than interference in a
particular state. The other two cited papers define interfer-
ence as a syntactic approximation of our definition. In par-
ticular, under their definitions, operators can interfere even
if they are never jointly applicable (for example because of
contradictory preconditions).

Next, we give a definition of necessary enabling sets,
which are the second important ingredient for the compu-
tation of strong stubborn sets.
Definition 7 (necessary enabling set). Let Π be a planning
task, let o be one of its operators, and let Seq be a set of
operator sequences applicable in the initial state of Π.

A necessary enabling set (NES) for o and Seq is a set N
of operators such that every operator sequence in Seq which
includes o as one of its operators also includes some opera-
tor o′ ∈ N before the first occurrence of o.

Necessary enabling sets are closely related to disjunc-
tive action landmarks (e.g., Helmert and Domshlak 2009),
which are sets of operators that contain at least one operator
from every plan. Our definition of necessary enabling sets
differs from previous ones by allowing to restrict attention
to an arbitrary set of operator sequences. In previous defi-
nitions, Seq must either be the set of all applicable operator
sequences (Alkhazraji et al. 2012) or all solutions (Wehrle
and Helmert 2012; Wehrle et al. 2013).

We can now give the definition of generalized strong stub-
born sets.
Definition 8 (generalized strong stubborn set). Let Π =
(V,O, s0, s?) be a planning task, and let s be a state of Π.

A generalized strong stubborn set (GSSS) in s is a set of
operators G ⊆ O with the following properties.

If s is an unsolvable state or a goal state, every setG ⊆ O
is a GSSS.

If s is a solvable non-goal state, then G has an associated
set of operators E ⊆ O (called the envelope of G). Let
ΠE

s = (V, E, s, s?), let Opt be the set of strongly optimal
plans for ΠE

s , and let SOpt be the set of states that are visited
by at least one plan in Opt. The following conditions must
be true for G to be a GSSS:

1. E includes all operators from at least one strongly opti-
mal plan for s (in task Π).

2. G contains at least one operator from at least one strongly
optimal plan for ΠE

s .
3. For every o ∈ G that is not applicable in s, G contains a

necessary enabling set for o and Opt.
4. For every o ∈ G that is applicable in s, G contains all

operators in E that interfere with o in any state s′ ∈ SOpt.
Note that computing a GSSS (or verifying that a given

set is a GSSS) does not require complete knowledge of the
sets Opt and SOpt: if conditions 1.–4. can be verified for an
overapproximation of these sets, they must also hold for the
actual sets.

Before showing that this definition gives rise to a safe
pruning method, we briefly discuss how it generalizes ear-
lier definitions of strong stubborn sets. The first difference of
Def. 8 to previous definitions is the newly introduced notion
of envelopes. An envelope is an operator set that is known
to be sufficient in the sense that we can safely treat all oper-
ators outside the envelope as if they did not exist. Note that
it is always possible to pick the set of all operators as the en-
velope, but tighter envelopes might permit more pruning. In
particular, we hope that the notion of envelopes might help
combine stubborn sets with other pruning techniques, for ex-
ample based on symmetry elimination (e.g., Pochter, Zohar,
and Rosenschein 2011).

Two of the earlier definitions (Wehrle and Helmert 2012;
Wehrle et al. 2013) included the notion of active operators,
which allow disregarding operators that are not part of any
plan. Envelopes generalize this by only requiring us to con-
sider operators from one plan that is strongly optimal (Con-
dition 1). While this extension might appear obvious, care
must be taken regarding the details: as seen in the previous
section, it is of critical importance that we consider strongly
optimal rather than merely optimal plans here.

325



Related to this, the second difference of Def. 8 to previous
definitions is that Condition 2 only requires that the stubborn
set contains one operator from one strongly optimal plan,
while previous definitions require inclusion of a disjunctive
action landmark, which means including one operator from
every plan, including nonoptimal plans. While we do not
exploit this generalization algorithmically in this paper, we
think that it could be usefully integrated with the notion of
intended effects by Karpas and Domshlak (2012).

The final difference to previous definitions is that Def. 8
considers necessary enabling sets and operator interference
at a finer level of detail, restricting attention to strongly op-
timal plans and the states they visit. We will later see that
using a more fine-grained notion of interference here than in
the work of Wehrle et al. can lead to significant performance
improvements in the computation of strong stubborn sets.

We conclude this section by showing that successor prun-
ing based on generalized strong stubborn sets is safe.

Theorem 1. Let succ be a successor pruning function de-
fined as succ(s) = G(s) ∩ app(s), where G(s) is a gener-
alized strong stubborn set in s. Then succ is safe.

Proof: Let s be a state and G be a GSSS in s. We show that
if s is a solvable non-goal state, then G contains an operator
which is the first operator in a strongly optimal plan for s.
The claim then follows with Proposition 1.

Let E denote the envelope of G, and let ΠE
s , Opt and SOpt

be defined as in Def. 8. In the following, we refer to the four
conditions of Def. 8 as C1–C4.

Every plan of ΠE
s (for its initial state s) is a plan for state

s of Π because the two tasks only differ in their initial states
and in the set of operators, and the operator set E of ΠE

s is
a subset of the operator set O of Π. Further, because of C1
at least one strongly optimal plan for s in Π is also present
in ΠE

s . It follows that strongly optimal plans for ΠE
s are

also strongly optimal for state s in Π. Hence it is sufficient
to show that G contains the first operator of some strongly
optimal plan for ΠE

s .
Let π = o1, . . . , on be a strongly optimal plan for ΠE

s
of which at least one operator is contained in G. Such a
plan must exist because of C2. Let k ∈ {1, . . . , n} be the
minimal index for which ok ∈ G.

We show by contradiction that ok is applicable in s. As-
sume it were not applicable. Because ok ∈ G, C3 guaran-
tees that G contains a necessary enabling set for ok and Opt.
Opt contains the plan π, so by the definition of necessary
enabling sets, G must contain one of the operators in π that
occur before ok. This is a contradiction to the choice of k. It
follows that ok is applicable in s.

Let s0, . . . , sn be the sequence of states visited by π: s0 =
s, and si = oi(s

i−1) for all 1 ≤ i ≤ n. Because π is
strongly optimal, all these states are contained in SOpt.

It follows that ok does not interfere with any of the op-
erators o1, . . . , ok−1 in any of the states sj : if it did, then
from C4 (with o = ok), the interfering operators would be
contained in G, again contradicting the minimality of k.

We now show that if ok is not already the first operator in
π, it can be shifted to the front of π. Consider the case where
k > 1 (otherwise ok is already at the front). We already

know that ok is applicable in s0; also, o1 is applicable in
s0 (or π would not be applicable in s). Because o1 and ok
do not interfere in s0, it follows that o1 does not disable ok,
and hence ok is also applicable in s1. This argument can be
repeated to show that ok is applicable in all states sj with
j < k. In particular, it is applicable in sk−2, the state right
before the one in which it is applied in π. Therefore, in this
state, ok−1 and ok are both applicable and do not interfere,
so they can be applied in either order, leading to the same
state: sk = ok(ok−1(sk−2)) = ok−1(ok(sk−2)). Hence we
can swap ok−1 and ok in π and still have a valid plan.

This argument can be repeated to swap ok to position
k − 2, k − 3 and so on, until we end up with the plan
π′ = ok, o1, . . . , ok−1, ok+1, . . . , on. Because π′ is a per-
mutation of π, it has the same cost and same number of 0-
cost operators as π and consists of the same set of operators,
so it is also a strongly optimal plan for ΠE

s . Its first operator,
ok, belongs to G. We have found a strongly optimal plan for
ΠE

s whose first operator is in G, concluding the proof.

Strategies for Computing GSSSs
In this and the following sections, we investigate different
methods for computing generalized strong stubborn sets that
exploit the degrees of freedom given by the definition. To
keep our discussion from becoming too lengthy, we will fo-
cus on the strategies, i.e., what is computed rather than how
it is computed. Our implementations build on the strong
stubborn set implementation by Wehrle et al. (2013).

We will vary three aspects of the algorithm: the enve-
lope (Condition 1), the way that interference is approxi-
mated (Condition 4), and the choice of seed operators and
necessary enabling sets (Conditions 2 and 3).

Envelope Strategies
We consider two strategies for choosing the envelope of a
GSSS. The first strategy is to use the full envelope which in-
cludes all operators of the planning task. This requires no
computation, but means that we might compute unnecessar-
ily large stubborn sets because we need to add interfering
operators that are not actually relevant, whose addition can
in turn cause further operators to be added.

The second strategy is to use the set of active operators as
the envelope. Restricting stubborn sets to active operators is
not a new idea, but the impact of such a restriction has not
been previously evaluated in isolation.

Previous papers give different definitions of active opera-
tors. Wehrle and Helmert (2012) define operators as active
if they can be part of a plan from the current state. This is
a quite informative notion, but intractable to compute. The
definition of Wehrle et al. (2013) considers an operator ac-
tive if it is active, according to the earlier definition, in all
single-variable projections of the planning task. We adopt
the latter definition in this paper.

Strategies for Approximating Interference
The exact notion of operator interference in our generalized
strong stubborn set definition is intractable to compute, so
practical approaches need to overapproximate it. Recent

326



work in model checking shows that fine approximations of
interference can improve pruning power of stubborn set ap-
proaches (Geldenhuys, Hansen, and Valmari 2009), but does
not suggest strategies that are at the same time powerful and
efficiently computable.

We will consider two strategies. The first strategy is the
purely syntactic approximation of operator interference that
has been used in previous implementations of strong stub-
born sets in planning (Alkhazraji et al. 2012; Wehrle et al.
2013). Under this definition, o1 is considered to disable
operator o2 if there exists a variable v ∈ effvars(o1) ∩
prevars(o2) such that eff (o1)[v] 6= pre(o2)[v], and o1 and
o2 conflict if there exists a variable v ∈ effvars(o1) ∩
effvars(o2) with eff (o1)[v] 6= eff (o2)[v]. Operators inter-
fere if they conflict or either disables the other; the notion is
not state-dependent.

The second strategy additionally employs mutex reason-
ing: if operators o1 and o2 have mutually exclusive pre-
conditions, they can never be simultaneously applicable and
hence cannot interfere. Apart from this additional test, inter-
ference is computed as in the syntactic approach. In our im-
plementation, we use the mutex information provided by the
Fast Downward planner (Helmert 2009) to determine mutu-
ally exclusive preconditions.

Seed Operators and Necessary Enabling Sets

The remaining major choice points when computing gener-
alized strong stubborn sets that we explore in this paper is
the choice of seed operators, i.e., the operator(s) that are in-
cluded in the stubborn set to satisfy Condition 2 of Def. 8,
and the choice of necessary enabling set for inapplicable op-
erators in Condition 3. These two choices are related: for
seed operators, we need operators that can help us towards
achieving currently unsatisfied goal conditions, while nec-
essary enabling sets consist of operators that can help us
towards achieving currently unsatisfied operator precondi-
tions. Due to this similarity, we handle these choice points
together.

All previous approaches for computing strong stubborn
sets in planning resolve these choice points in a similar way:
for Condition 2, they select a variable v with a defined goal
value where the current state has a different value for v, and
then include all achievers of this variable in the stubborn
set. For Condition 3, they select a variable v for which the
given operator has an unsatisfied precondition in the current
state and then include all achievers of this precondition in
the stubborn set.

We follow the same approach in this paper and inves-
tigate different strategies for deciding which unsatisfied
goal/precondition variable to choose in cases where there
are multiple options. Different strategies for resolving these
choices have not yet been compared in previous work, but as
we will see in the following, resolving these choices in a rea-
sonable way can be rather critical for performance. Because
we discuss this choice point more thoroughly than envelopes
or interference relations, it deserves its own section, which
comes next.

Strategies for Choosing Unsatisfied Conditions
In this section, we investigate various strategies for selecting
from a set of unsatisfied conditions (either operator precon-
ditions or goals). As discussed in the previous section, this
is a subproblem that arises within strategies for determining
seed operators or necessary enabling sets.

Roughly speaking, the choice of unsatisfied condition de-
termines which subproblem the search algorithm should fo-
cus on next. For example, in a planning task with two un-
satisfied and causally unrelated goals, the stubborn set will
only contain operators that are relevant to the chosen goal.

Previous work in AI planning has not given this question
much consideration. In the SSS-EC algorithm by Wehrle et
al. (2013), unsatisfied conditions are chosen in such a way
that dominance over the Expansion Core algorithm (Chen
and Yao 2009) is guaranteed, but Expansion Core itself re-
solves choices of this kind arbitrarily. In the only other paper
that reports experimental results for a stubborn set method
(Alkhazraji et al. 2012), the question is not considered at
all. A look at the implementations of both algorithms shows
that (apart from the special considerations in SSS-EC related
to the Expansion Core algorithm), when choosing between
conditions on two variables v and v′, the one that occurs ear-
lier in the variable order of the underlying Fast Downward
planner is preferred. The variable order in Fast Downward
is in turn based on an approximate topological sorting of
the causal graph of the task (Helmert 2006). In the follow-
ing, we refer to these selection strategies as SSS-EC and Fast
Downward.

Static Variable Orderings
Intuitively, it appears attractive to select unsatisfied con-
ditions in such a way that the search algorithm does not
“jump” between different goals and subgoals too often.
Again considering the case of two causally unrelated goals,
if the search algorithm selects the same unsatisfied goal in a
child state as in its parent whenever possible, then the search
algorithm will solve the two subtasks sequentially, which ap-
pears to be a very reasonable approach.

One simple way to ensure that the same condition is cho-
sen in parent and child states most of the time is to define a
fixed ordering between variables and prefer unsatisfied con-
ditions on variables that are minimal according to this or-
dering. We call such a strategy a static variable ordering
strategy. The Fast Downward strategy discussed above is a
static variable ordering strategy.

In our experiments, we will compare the Fast Downward
order to a natural baseline variable ordering called static
small. Under the static small ordering, variables that appear
in the effects of fewer operators are always preferred over
variables that appear in the effects of more operators.

We now give a simple example illustrating how static vari-
able orderings can lead to exponentially smaller state spaces
than other strategies for choosing unsatisfied conditions.

Example 1. Let Π = (V,O, s0, s?) be a planning task with

• V = {v1, . . . , vn}
• O = {oji | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}

327



• pre(o1i ) = {vi 7→ 0}, eff (o1i ) = {vi 7→ 1} for 1 ≤ i ≤ n
• pre(o2i ) = {vi 7→ 1}, eff (o2i ) = {vi 7→ 0} for 1 ≤ i ≤ n
• pre(o3i ) = {vi 7→ 1}, eff (o3i ) = {vi 7→ 2} for 1 ≤ i ≤ n
• cost(o) = 1 for all o ∈ O
• s0 = {vi 7→ 0 | 1 ≤ i ≤ n}
• s? = {vi 7→ 2 | 1 ≤ i ≤ n}

We assume a GSSS algorithm that uses the full envelope.
When expanding state s, the GSSS computation will select
a variable vi with s[vi] 6= 2, and it will generate exactly
the applicable operators that modify the selected variable
vi. (Note that o2i and o3i interfere in s if s[vi] = 1.)

If the unsatisfied goal vi 7→ 2 is selected according to a
static variable order, the size of the reachable state space
is only Θ(n): only states along a single optimal solution
are generated. (All states generated via operators o2i are
duplicates in this case.)

However, without a static order, it is possible that Ω(2n)
states are generated. To see this, let σ0, . . . , σ2n−1 be a
Gray code sequence over {0, 1}n with σ0 = (0, . . . , 0),
i.e., a sequence of n-tuples over {0, 1} where each possi-
ble n-tuple occurs exactly once and consecutive elements
differ in exactly one position. (It is well-known that such se-
quences exist.) We identify such n-tuples with states of Π
where s[vi] ∈ {0, 1} for all 1 ≤ i ≤ n. Consider a goal
selection strategy which, in a state s which corresponds to
the tuple σm with m < 2n − 1 selects the unsatisfied goal
vi 7→ 2 where i is the unique tuple position in which σm and
σm+1 differ. It is easy to verify that all 2n states in the Gray
code sequence are part of the reachable state space.

Relationship to Tunnel Macros
The idea to avoid jumping around unnecessarily in a state-
space search has also motivated other pruning methods (not
based on stubborn sets). One such method is action tunnel-
ing, a pruning technique that has originally been proposed
for the Sokoban puzzle by Junghanns and Schaeffer (2001),
generalized to domain-independent planning with unary tun-
neling operators by Coles and Coles (2010), and further gen-
eralized by Nissim, Apsel, and Brafman (2012). Here we
follow the definition of Coles and Coles for unary operators,
which is sufficient for the following discussion.

Definition 9 (tunnel macro, based on Coles & Coles 2010).
Let Π = (V,O, s0, s?) be a planning task, and let o ∈ O be
an operator with eff (o) = {v 7→ d}. Let smin := {(v, d)}∪
{(v′, d′) ∈ pre(o) | v′ 6= v} (this is a set of facts guaranteed
to hold in the successor state o(s)).

Then o allows a tunnel if s?(v) 6= d and every operator
o′ with pre(o′)[v] = d is unary1, has an effect on v, and
pre(o′) ⊆ smin . If o allows a tunnel, then only these opera-
tors o′ may be applied after o.

1Coles and Coles give a slightly more general definition that
additionally allows o′ to affect variables of irrelevant resources.
However, as noted by Nissim, Apsel, and Brafman (2012), these
are essentially variables that are useless and can be removed from
the planning task.

The previous example suggests similarities between tun-
neling and stubborn set methods with static variable orders:
in both cases, after setting variable vi to the “intermediate”
value 1, vi must be modified again immediately afterwards.
However, we will show that the two techniques are incom-
parable: either can lead to exponentially smaller reachable
state spaces than those obtained by the other method.

For one direction of this argument, we again refer to Ex-
ample 1. As discussed there, stubborn-set techniques with a
static variable order only generate a reachable state space
of size Θ(n). While tunneling can skip over states with
s[vi] = 1, it will generate all 2n possible states where vari-
ables have values in {0, 2}.

The following example shows that there are also cases
where the reachable state space of the stubborn set method
(even with a static variable order) is larger than for tunneling
by an exponential factor in the size of the planning task.
Example 2. Let Π = (V,O, s0, s?) be a planning task with
• V = {v1, . . . , vn, g}
• O = {oji | 1 ≤ i ≤ n, 1 ≤ j ≤ 4}
• pre(o1i ) = {vi 7→ 0}, eff (o1i ) = {vi 7→ 1}
• pre(o2i ) = {vi 7→ 1}, eff (o2i ) = {vi 7→ 2}
• pre(o3i ) = {vi 7→ 2}, eff (o3i ) = {vi 7→ 3}
• pre(o4i ) = {vi 7→ 3}, eff (o4i ) = {g 7→ 1}
• cost(o) = 1 for all o ∈ O
• s0 = {v 7→ 0 | v ∈ V}
• s? = {g 7→ 1}

Strong stubborn sets obtain no pruning: in a non-goal
state, every disjunctive action landmark includes either o4i
or (if s[vi] 6= 3) one of the operators “on the way” to o4i .
After adding necessary enabling sets for inapplicable op-
erators, the stubborn set includes all applicable operators.
Hence, states with all value combinations of all vi are reach-
able, and the size of the reachable state space is Θ(4n).

In contrast, with action tunneling, all applicable opera-
tors in s0 induce a tunnel that avoids the exponential blow-
up induced by “intermediate” states with variable values in
{1, 2}: in a state where s[vi] ∈ {1, 2}, this variable must
be increased immediately afterwards, so at most one vari-
able can hold a value in {1, 2} in a reachable state. The size
of the reachable state space is therefore reduced to Θ(n2n)
(where the factor n is caused by the fact that one of the n
variables can hold a value in {1, 2}).

Note that the example assumes a non-generalized strong
stubborn set approach where the computed stubborn set
must be seeded by a disjunctive action landmark. Better
pruning, on par with tunneling, can be obtained with the
generalized approach by setting a tight envelope or seed-
ing the stubborn set with a non-landmark to satisfy Condi-
tion 1 of the GSSS definition. However, in both cases the
required knowledge that the GSSS constraints are satisfied
would need to come from an additional source of informa-
tion (such as symmetry reduction techniques).

We conclude from the two examples:
Proposition 2. Strong stubborn sets and action tunneling
are incomparable techniques in terms of pruning power.

328



Dynamic Strategies
In contrast to a static variable order, dynamically choosing
unsatisfied conditions in every state offers more flexibility
– obviously, every static strategy can be trivially simulated
with a dynamic approach.

Perhaps the simplest conceivable dynamic strategy is the
random one, which always selects among unsatisfied con-
ditions uniformly randomly. Following the previous discus-
sion, we would expect this random strategy to jump between
subgoals more than a static variable order would, and we
expect that this would be detrimental to performance. We
include the random strategy in our experimental evaluation
to test this hypothesis and to serve as a baseline for more
sophisticated approaches.

The SSS-EC strategy used by Wehrle et al. (2013) men-
tioned at the beginning of this section is also an example of
a dynamic strategy. The precise choice is quite complicated
and depends on the current state of the stubborn set compu-
tation (see Rule SSS5 in their paper). The reason for their
complicated rule is that it partially mimics design aspects of
the Expansion Core algorithm, as the objective of SSS-EC is
to find a stubborn set method that dominates the Expansion
Core method in terms of pruning power.

The last two strategies we consider are motivated by the
idea that an intuitive measure for the quality of a stubborn
set is its size: all other things being equal, it seems reason-
able to prefer smaller stubborn sets because they are likely
to contain fewer applicable operators, maximizing pruning.

The first of these strategies is called dynamic small and is
a dynamic counterpart of the static small strategy discussed
previously. Whenever we must select a fact from a set of
unsatisfied conditions, we count the achievers for each fact
that are not already part of the currently computed stubborn
set. Facts minimizing this number are preferred.

The second strategy, which we call the Laarman strategy,
comes from the model checking literature (Laarman et al.
2013). It takes into account that only applicable operators
in the stubborn set affect the amount of pruning and hence
counts inapplicable operators less heavily than applicable
ones when selecting among unsatisfied conditions. In more
detail, it assigns a weight to a necessary enabling set, defined
as the sum of weights of the contained operators, where the
weight of operator o is defined as

weight(o, s,G) :=

{
1, if o /∈ app(s) and o /∈ G
K, if o ∈ app(s) and o /∈ G
0, otherwise

,

where G is the GSSS currently being computed and K ≥ 1
is a parameter of the method. In our experiments, we use
K = 10.2 Note that it is reasonable to assign a non-zero
weight to inapplicable operators because including them in
the stubborn set can indirectly lead to the inclusion of further
applicable operators.

2Laarman et al. do not give conclusive evidence regarding good
parameter choices; in our experiments, we use K = 10 (we ob-
served very similar coverage results for K = 5, K = 20, and
K = 100, which differed at most by 1 compared to K = 10).

envelope/ static orders dynamic orders
interference FD small random small Laarman SSS-EC
full/syntactic 801 801 759 789 789 798
full/mutex 808 806 778 796 795 814
active/syntactic 802 803 765 793 792 800
active/mutex 807 809 784 799 797 813
baseline (no successor pruning): 763

Table 1: Coverage results overview. Best configuration in
bold, previous algorithms from the literature (Alkhazraji et
al. 2012; Wehrle et al. 2013) in italics.

Experimental Evaluation
We now experimentally evaluate the GSSS strategies pre-
sented in the previous two sections. To summarize, we vary
the following three different aspects of the computation:
• envelope: full or active

• interference: syntactic or mutex

• unsatisfied condition choice: static strategies FD (Fast
Downward) and static small; dynamic strategies random,
SSS-EC, dynamic small and Laarman
We evaluate all 24 possible configurations, as well as a

baseline algorithm without successor pruning, in the con-
text of an A∗ search with the LM-Cut heuristic (Helmert
and Domshlak 2009). The base implementation is identi-
cal to Wehrle et al. (2013), where in particular the interfer-
ence relation of the operators is computed in a preprocessing
step. The combination full-syntactic-FD is the algorithm by
Alkhazraji et al. (2012), and active-syntactic-SSS-EC is the
algorithm by Wehrle et al. (2013).

We used Intel Xeon E5-2660 CPUs (2.2 GHz) with a 30
minute timeout and 2 GB memory bound. We tested all tasks
from all IPC 1998–2011 domains supported by the planner.
Overall Coverage. Table 1 shows an overview of coverage,
i.e., total number of tasks solved within the given time and
memory bounds. Coverage is a commonly used measure for
evaluating optimal planners. For example, it was used at the
previous two IPCs to rank optimal planners.

We remark that even small improvements in coverage are
hard to achieve for optimal planners on this benchmark suite
because tasks tend to increase in difficulty rapidly. For ex-
ample, at IPC 2011, the planners ranked 2nd to 5th were
separated by less than 2% in terms of coverage. (The win-
ner was set off by a larger margin of 9–10%, but it was a
portfolio system, while we compare individual algorithms.)

The table shows the following trends:
• Using the active operator envelope instead of the full en-

velopes is mildly beneficial in most cases. In 10 of the
12 settings for the other parameters, more tasks (between
1–6) are solved when using active operators, whereas the
performance decreases in two settings (by 1). Unfortu-
nately, a performance decrease in particular occurs in the
configuration which is best overall. All in all, using active
operators appears at best mildly beneficial.

• Using the mutex-based interference criterion instead of
the syntactical criterion used in previous work leads to

329



substantial improvements of 5–19 tasks in all 12 combi-
nations of the other parameters. This includes significant
gains (13–16 tasks) for some of the best configurations.
This technique clearly seems to be worth using.

• To choose between unsatisfied conditions, the random
strategy is worst by a wide margin. For all four com-
binations of the other parameters, it solves 13–30 tasks
fewer than the second-worst strategy, and in the combi-
nation with a full envelope and syntactic interference it is
even worse than the baseline which does not perform any
successor pruning (759 vs. 763 solved tasks).
Among the other strategies, the ones using static variable
orders (FD and small) and the dynamic strategy SSS-EC
perform best, outperforming the ones that attempt to mini-
mize the size of stubborn sets dynamically (dynamic small
and Laarman).

• The new best approach, full-mutex-SSS-EC solves 814
tasks, compared to 801 (Alkhazraji et al. 2012) or 800
(Wehrle et al. 2013) for the previous state of the art and to
763 without successor pruning.
As a baseline, we also report experimental results for

blind search, which solves 510 tasks without successor prun-
ing. Applying SSS-EC with the full envelope yields a cov-
erage of 524 and 550 (with syntactic and mutex-based in-
terference, respectively), whereas SSS-EC with the active
operator envelope yields a coverage of 526 and 552 (syn-
tactic/mutex). Overall, we observe similar trends as with
LM-Cut: SSS-EC is beneficial, active operators are mildly
beneficial, whereas the mutex-based operator interference
increases coverage more significantly.
Amount of Pruning. To get some estimate of the amount
of pruning obtained by each of the methods, Table 2 shows
the number of generated states for each algorithm. Results
are reported as the geometric average over all tasks solved
by all approaches, including the non-pruning baseline. Note
that the true advantage of the pruning methods is larger be-
cause there are many cases in which pruning is immensely
beneficial but which do not show up in the averages because
they cannot be solved by the baseline.

The contribution of active operator envelopes is again
marginal. Interestingly, the same holds for mutex-based in-
terference, which significantly improves coverage. The ex-
perimental data reveals that the tighter interference relation
can reduce the overhead of the stubborn set computation
rather than cause more pruning. A closer look at the results
reveals the following reasons. First, applying the mutex-
based interference relation can reduce the size of the stub-
born sets, especially with respect to the number of inappli-
cable operators. We observe a particularly large reduction in
the Logistics00 domain: for example, the size of the strong
stubborn sets in the initial states is roughly cut in half in
the largest instances 15-0 and 15-1 (158 vs. 83 operators).
An additional reason for the reduced overhead (on a more
technical level) is the reduced number of operator process-
ing steps during the fixed-point computation of SSS-EC. In
particular, the SSS-EC implementation requires processing
the operators disabled by an operator already contained in
the set, and fewer dependencies in turn require fewer such

envelope/ static orders dynamic orders
interference FD small random small Laarman SSS-EC
full/syntactic 10252 10022 13088 8917 9252 9261
full/mutex 9521 9333 12075 8995 9333 9261
active/syntactic 10099 9976 12816 8912 9252 9252
active/mutex 9403 9308 11594 8992 9330 9252
baseline (no successor pruning): 15840

Table 2: Generated states (geometric mean on commonly
solved tasks). Best configurations in bold, previous algo-
rithms (Alkhazraji et al. 2012; Wehrle et al. 2013) in italics.

full active
coverage baseline syntactic mutex syntactic mutex
airport (50) 28 29 29 29 29
logistics00 (28) 20 20 21 20 21
openstacks-opt08 (30) 19 19 22 20 22
openstacks-opt11 (20) 14 14 17 15 17
parcprinter-08 (30) 18 30 30 30 30
parcprinter-opt11 (20) 13 20 20 20 20
parking-opt11 (20) 3 2 2 2 2
rovers (40) 7 10 10 10 10
satellite (36) 7 11 12 11 12
scanalyzer-08 (30) 15 12 15 12 15
scanalyzer-opt11 (20) 12 9 12 9 12
sokoban-opt08 (30) 30 29 30 29 30
visitall-opt11 (20) 11 10 11 10 10
woodworking-opt08 (30) 17 27 27 27 27
woodworking-opt11 (20) 12 19 19 19 19

Sum (424) 226 261 277 263 276
Overall sum (1396) 763 798 814 800 813

Table 3: Coverage details for SSS-EC. Best results in bold.
Domains where all algorithms perform identically are not
shown individually, but included in the overall sum.

processing steps. Finally, with fewer dependencies the al-
gorithm can afford to precompute the operator interference
relation more often within the memory bounds, allowing us
to solve the additional instances in the Scanalyzer domain.
Overall, we observe that applying the mutex-based interfer-
ence makes an efficient implementation of strong stubborn
sets easier to achieve.

Comparing strategies for selecting unsatisfied conditions,
we see that the dynamic small approach, which attempts to
minimize the stubborn set, obtains most pruning, followed
by Laarman and SSS-EC. The inferior coverage of small and
Laarman compared to FD and SSS-EC can be explained by
the (considerable) overhead incurred by dynamically count-
ing how many new operators would need to be added to the
stubborn set at every stage. The random strategy offers much
less pruning than all other methods, even though it still of-
fers substantial pruning compared to the baseline.

Per-Domain Coverage. We conclude our discussion of ex-
perimental results with a look at per-domain coverage for
the SSS-EC strategy (Table 3). We focus on three config-
urations: baseline (no successor pruning), active/syntactic
(the state-of-the-art algorithm by Wehrle et al., 2013), and
full/mutex (the best strategy introduced in this paper).

330



The new approach solves 51 more tasks than the base-
line (spread over 10 domains) and 14 more tasks than the
previous state of the art (in 8 domains). The new approach
actually dominates the previous state of the art on a per-task
basis: every task solved by the Wehrle et al. approach is
solved by the new method. A similar dominance result over
the baseline without successor pruning is almost obtained:
there is a single task in the parking-opt11 domain that can
be solved by the baseline, but not by the stubborn set ap-
proach. A look at the detailed experimental results reveals
that no pruning occurs in this domain and the baseline re-
quires more than 1791 seconds to solve this task. With an
overall timeout of 1800 seconds, it is clear that even a very
modest overhead of the stubborn set approach is enough to
leave this task unsolved.

Conclusions
We provided a generalization and unification of earlier defi-
nitions for strong stubborn sets and performed the first com-
parison of different strategies for computing stubborn sets.
Our experiments show that the performance of existing ap-
proaches can be improved with rather simple methods like
the mutex-based interference criterion.

For the future, it would be interesting to exploit the ad-
ditional freedom in our generalized definition to combine
stubborn-set approaches with other pruning methods. Tun-
nel macros are particularly promising in this regard because
we have shown that there are cases where they offer expo-
nentially more pruning than stubborn sets (and vice versa).

Acknowledgments
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Safe Pruning in
Optimal State-Space Search (SPOSSS)”.

References
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
Proc. ECAI 2012, 891–892.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Proc. IJCAI 2009,
1659–1664.
Coles, A. J., and Coles, A. 2010. Completeness-preserving
pruning for optimal planning. In Proc. ECAI 2010, 965–966.
Geldenhuys, J.; Hansen, H.; and Valmari, A. 2009. Ex-
ploring the scope for partial order reduction. In Proc. ATVA
2009, 39–53.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing
general single-agent search methods using domain knowl-
edge. AIJ 129(1–2):219–251.
Karpas, E., and Domshlak, C. 2012. Optimal search with
inadmissible heuristics. In Proc. ICAPS 2012, 92–100.
Laarman, A.; Pater, E.; van de Pol, J.; and Weber, M. 2013.
Guard-based partial-order reduction. In Proc. SPIN 2013,
227–245.
Nissim, R.; Apsel, U.; and Brafman, R. I. 2012. Tunneling
and decomposition-based state reduction for optimal plan-
ning. In Proc. ECAI 2012, 624–629.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In
Proc. AAAI 2011, 1004–1009.
Valmari, A. 1989. Stubborn sets for reduced state space
generation. In Proc. APN 1989, 491–515.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. ICAPS 2012.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn sets
and expansion core. In Proc. ICAPS 2013, 251–259.

331




