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Abstract

In contingent planning problems, agents have partial infor-
mation about their state and use sensing actions to learn the
value of some variables. When sensing and actuation are sep-
arated, plans for such problems can often be viewed as a tree
of sensing actions, separated by conformant plans consisting
of non-sensing actions that enable the execution of the next
sensing action. This leads us to propose a heuristic, online
method for contingent planning which focuses on identifying
the next useful sensing action. The key part of our planner is
a novel landmarks-based heuristic for selecting the next sens-
ing action, together with a projection method that uses clas-
sical planning to solve the intermediate conformant planning
problems. This allows our planner to operate without an ex-
plicit model of belief space or the use of existing translation
techniques, both of which can require exponential space. The
resulting Heuristic Contingent Planner (HCP) solves many
more problems than state-of-the-art, translation-based online
contingent planners, and in most cases much faster.

1 Introduction
Agents acting under partial observability acquire informa-
tion about the true state of the world through sensing actions
in order to achieve their goals. Planning for such problems
is difficult, as one must consider multiple possible branches
of execution that differ on the sensed values, resulting in po-
tentially large plan trees. While one can generate a complete
plan tree offline, a popular alternative is to replan after ev-
ery observation, thus avoiding the computation of plans for
cases that are not encountered within the current execution.

Existing contingent planners replan following an observa-
tion by computing a plan to achieve the goal under some as-
sumptions on the value of future observations. For example,
Albore, Palacios, and Geffner (2009) allow arbitrary values
to be observed during execution. Thus, the underlying plan-
ner will typically make optimistic assumptions about their
values in order to obtain a solution more quickly. An al-
ternative approach is to make the observations correspond
to some randomly chosen initial state (Shani and Brafman
2011) which is perhaps more realistic. Still, recent planners
produce plans that attempt to achieve the goal, even though
the plan is typically executed only until the next observation.
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Our main contribution is a new online method for finding
the most useful next sensing action, using a novel landmark-
based heuristic. Once this sensing action is selected, we use
a modified version of the planning domain to achieve the
preconditions of that action. The process is repeated until
the goal can be reached without additional information.

Our online Heuristic Contingent Planner (HCP) solves
the original contingent problem using these ideas: repeat-
edly identifying a sensing action and solving the conformant
planning problem of to achieving its preconditions. HCP
is greedy, focusing on the next sensing action only. It is
also approximate. Instead of using a conformant planner, it
uses a classical planner over a projection of the conformant
problem into a classical problem, circumventing the need for
planning in belief-space.

Our approach builds strongly on the results of Bonet
and Geffner (2011) for simple contingent planning domains.
Bonet and Geffner show that simple domains can be solved
using an efficient projection of the problem into classical
planning. While their K-PLANNER plans directly over this
translation, HCP uses this projection in two ways: First, it
extends this projection (in a sound but incomplete manner)
to handle non-simple domains, and uses it to derive land-
marks for the original contingent problem that guide the se-
lection of the next sensing action. Second, it uses this pro-
jection as a simple method for rapid conformant planning.

The sensing-action selection heuristic is the key novel
part of HCP. The heuristic attempts to assess the “value-of-
information” of alternative sensing actions by understanding
their impact on the accumulated information. Specifically,
the heuristic focuses on the number of landmarks achiev-
able following each sensing action. We estimate this set
of landmarks using landmarks of the classical projection of
the original contingent problem. To improve the correspon-
dence between the set of classical plans and the set of contin-
gent plans, we add “inference” actions, that allow the classi-
cal planner to infer additional facts about the world follow-
ing a sensing action. These facts are not explicitly described
in the action’s effects, but can be deduced from the effect
and from information about the initial state.

We empirically evaluate HCP on a set of contingent plan-
ning benchmarks. Our experiments show that HCP is much
faster than state-of-the-art contingent planners. It also cre-
ates shorter plans.
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2 Contingent Planning
Contingent planning problems are characterized by uncer-
tainty about the initial state of the world, partial observabil-
ity, and the existence of sensing actions. Actions may be
non-deterministic, but we, as well as most literature on con-
tingent planning, will assume deterministic actions.

In this paper we focus on a restricted definition for contin-
gent planning in which sensing is separated from actuation,
i.e., an action either changes the world without yielding new
information, or provides new information without changing
the world (i.e., a sensing action). This is not a real restric-
tion, as any planning domain can be transformed to satisfy
the separation of sensing and actuation, and, indeed, all cur-
rent benchmarks have this property.

2.1 Problem Definition
A contingent planning problem is a tuple: π =
〈P,Aact, Asense, ϕI , G〉. P is a set of propositions, Aact

is a set of actuation actions, and Asense is a set of sensing
actions. ϕ is propositional formula that describes the set of
initially possible states. We assume that it is in prime impli-
cate form. G ⊂ P is the goal propositions.

We often abuse notation, treating a set of literals as a con-
junction of the literals in the set, as well as an assignment
of the propositions in it. For example, {p,¬q} will also be
treated as p∧¬q and as an assignment of true to p and false
to q. Given a literal l, we write l ∈ P for a literal l denoting
that the (possibly negated) proposition in l is in P . We use
¬l to denote the negation of a literal where ¬¬p ≡ p.

A state of the world, s, assigns truth values to all p ∈ P . A
belief-state is a set of possible states. The initial belief state,
bI = {s : s |= ϕI} is the set of initially possible states.

An actuation action a ∈ Aact is a pair, {pre(a), ef-
fects(a)}, where pre(a) is a set of literal preconditions, and
effects(a) is a set of pairs (c, e) denoting conditional ef-
fects. Following traditional classical planning conventions,
all p ∈ pre(a) must be positive. We use a(s) to denote the
state that is obtained when a is executed in state s. If s does
not satisfy all literals in pre(a), then a(s) is undefined. Oth-
erwise, a(s) assigns to each proposition p the same value as
s, unless there exists a pair (c, e) ∈ effects(a) such that s |= c
and e assigns p a different value than s. We assume that a
is well defined, that is, if (c, e) ∈ effects(a) then c∧pre(a)
is consistent, and that if both (c, e), (c′, e′) ∈ effects(a) and
s |= c ∧ c′ for some state s then e ∧ e′ is consistent.

A sensing action a ∈ Asense is a pair, {pre(a), obs(a)},
where pre(a) is identical to the previous definition, and
obs(a) is a set of propositions in P whose value is observed
when a is executed. That is, if p ∈obs(a) then following the
execution of a, the agent will observe p if p holds, and oth-
erwise it will observe ¬p. In contingent planning the agent
must reason about the set of currently possible states, i.e.
the belief state. Clearly, the observations affect the agent’s
belief state. We use ba,o to denote the belief state follow-
ing the execution of a in belief state b and the observation
o: ba,o = {a(s)|s ∈ b, s |= o}. If a is not applicable in all
states in b then ba,o is undefined.

A conformant planning problem is a contingent planning
problem in which there are no sensing actions (Asense = φ).

(a) The 4× 4 Wumpus domain

(b) The Rock Sample domain.
The dotted line shows the range of
the mineral sensor.

Figure 1: Two example domains.
We shall find it useful to separate P into two sets: Pk

contains propositions whose value is always known, and
Pu = P \Pk contains propositions whose value may be un-
known (hidden) throughout the execution of (some parts of)
a plan. These sets can be constructed recursively: p ∈ Pu

if its value is initially unknown as it does not appear in a
unit-clause in ϕI . p ∈ Pu also if there exists an action with
conditional effect (c, p) such that c contains a literal from
Pu. Given Pk and Pu, we can separate ϕ into two sets of
clauses: ϕk consists of unit clauses that assign the initial
value of Pk, and ϕu contains the remaining clauses, con-
straining the values of the propositions in Pu.

We assume deterministic and accurate observations. This
assumption is restrictive if actions are deterministic, but
in non-deterministic domains one can compile away non-
deterministic observations. In any case, deterministic obser-
vations underlie all existing work in contingent planning.

We illustrate these ideas using a 4 × 4 Wumpus do-
main (Albore, Palacios, and Geffner 2009), which will serve
as our running example. Figure 1(a) illustrates this domain,
where an agent is located on a 4×4 grid. The agent can move
in all four directions, and if moving into a wall, it remains in
place. The agent initially is in the low-left corner and must
reach the top-right corner. There are two monsters called
Wumpuses hidden along the grid diagonal, the agent knows
that Wumpus 1 can be at location 3,2 or 2,3, and Wumpus
2 can be at location 4,3 or 3,4. Thus the possible states are:
{wat(3, 2) ∧ wat(4, 3), wat(3, 2) ∧ wat(3, 4), wat(2, 3) ∧
wat(4, 3), wat(2, 3)∧wat(3, 4)}. The stench of a Wumpus
carries to all adjacent locations, and the agent can observe
the stench in order to deduce the whereabouts of the Wum-
puses.
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In this problem Pk contains the current position of the
agent, and Pu contains the possible stenches and Wumpus
locations. Movement actions are in Aact while smelling the
stench of the Wumpus is in Asense.

2.2 Solution Definition
Any plan for a contingent planning problem can be de-
scribed as a tree τ = (N,E). Each node n is labeled by an
action a(n) or by the distinguished action noop, denoting no
operation to be taken by the agent. Each edge, e, is labeled
with an observation o(e). If a(n) is labeled by a noop, it is a
leaf node, denoting the plan termination. If a(n) ∈ Aact is a
non-sensing action, it has a single outgoing edge labeled by
the null observation true. If a(n) ∈ Asense is a sensing ac-
tion, it has one outgoing edge for each possible observation
value, labeled by the corresponding observation.

We define b(n) to be the belief state associated with node
n in the tree. For the root node, b(n) = bI . Let n′ be a child
of n with ingoing edge e. Then b(n′) = b(n)a(n),o(e).

We say that τ is a complete solution plan if for every leaf
node n in τ , b(n) is well defined and b(n) |= G. A par-
tial solution plan is a plan tree where some outgoing edges,
corresponding to possible observations, are missing.

2.3 Simple Contingent Problems
An interesting special case is the class of simple contingent
planning problem (Bonet and Geffner 2011). These prob-
lems are characterized by two features. First, the value of
any proposition that appears within an effect condition is
initially known. This implies that Pk consists of all proposi-
tions whose value is initially known, because if the value of
a variable is initially known, it will always be known. Sec-
ond, constraints on the value of initially unknown proposi-
tions are invariant. Thus, ϕu is always true. An example
of invariant hidden variables are the locations of the Wumpi
above, which are initially unknown, never change, and do
not affect the value of other variables.

3 The Fact Discovery Algorithm
We now formalize a generic, non-deterministic algorithm for
online contingent planning, which we call the fact discov-
ery algorithm (FDP). In each iteration, the algorithm checks
if there is a conformant plan to the goal. If not, it non-
deterministically chooses a sensing action and a conformant
plan that achieves its preconditions, leading to an improved
state of information. Note that there can be many different
conformant plans that achieve an action’s preconditions, and
different choices impact our ability to reach the goal. The
conformant planner returns false whenever no plan exists.

The online planner hence moves from one sensing action
to another, until sufficient information has been gathered in
order to reach the goal with no additional sensing actions.
This is the main idea that underlies all online planners (Al-
bore, Palacios, and Geffner 2009; Bonet and Geffner 2011;
Shani and Brafman 2011; Brafman and Shani 2012a), but in
this section we cast it in a more formal and general manner,
showing that it is sound and complete.

Algorithm 1 Fact Discovery Planner
Input: π = 〈P,Aact, Asense, ϕI , G〉 — a contingent planning

problem
1: b← b0 the initial belief state
2: while b 6|= G do
3: Pconformant ← ChooseConformantPlan(P,Aact, b, G)

4: if Pconformant 6= f alse: goal reachable w/o sensing then
5: Execute(Pconformant)
6: else
7: aobs ← ChooseNextSensingAction(Asense, b)
8: Pconformant ← ChoosetPlan(P,Aact, b, pre(aobs))

9: if Pconformant = false then
10: return fail
11: end if
12: Execute(Pconformant, b)
13: b ← {Pconformant(s)|s ∈ b}: update belief state given

Pconformant
14: Execute(aobs) and observe literal l
15: b← baobs,l : update the belief state given l
16: end if
17: end while

Claim 1. Algorithm 1 is a sound and complete contingent
planning algorithm if the underlying conformant planner is
sound and complete.
Proof. Completeness: Given a solution contingent plan τ ,
every path in τ from the root to a leaf is a sequence of actions
〈a1, ..., an〉, containing k ∈ [0, n] sensing actions. Proof is
by induction on k. If k = 0 then 〈a1, ..., an〉 is a conformant
plan that achieves the goal, which can be chosen in step 3
of the algorithm. Otherwise, when k > 0, let ai be the first
sensing action, where i ∈ [1, n]. FDP can choose ai as its
first aobs in step 7. Then, a0, ..., ai can be chosen in step 8
for achieving the preconditions of ai. After executing ai, we
remain with a sequence containing k−1 sensing actions, and
hence, by induction, FDP can continue making appropriate
choices to complete the sequence and achieve the goal.

Soundness: As the conformant planner is sound, it will
always return a valid conformant plan achieving the precon-
ditions of aobs. Thus, aobs can be soundly executed immedi-
ately after the conformant plan. Hence, all the actions have
well-defined outcomes, and achieve the intended goal.

Of course, non-deterministic planning is of theoretical in-
terest only. Furthermore, iteratively solving a conformant
planning problem is costly. An effective implementation of
FDP must smartly and efficiently choose the next sensing
action and conformant plan. Section 4 will consider meth-
ods for replacing conformant planning with classical plan-
ning. Section 5 will describe a method for replacing the non-
deterministic choice in line 7 with greedy choice informed
by a landmarks-based heuristic.

However, before we consider efficient implementations,
we present another theoretical result, based on ideas appear-
ing in (Bonet and Geffner 2011). We show that in dead-end
free domains, using a greedy choice results in a sound and
complete planning algorithm.

We say that a contingent planning problem
π = 〈P,Aact, Asense, ϕI , G〉 is dead-end free if
〈P,Aact, Asense, b, G〉 is solvable for any belief state
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b reachable from ϕI in π. Define FDP-Progress to be a
deterministic implementation of FDP such that the sensing
action aobs selected in lines 7 senses a proposition whose
value is unknown prior to the execution of aobs, whenever
this is possible. Now, we can prove the following result.
Claim 2. In dead-end free domains, FDP-Progress will lead
to the goal in a finite number of steps.
Proof. First, suppose that in some belief state it is not possi-
ble to learn new information. That is, there is no conformant
plan that achieves the preconditions of any informative sens-
ing action. In that case, since the domain is dead-end free,
there must be a conformant plan that reaches the goal. Oth-
erwise, each call to steps 7 and 8 yields a sensing action,
revealing the value of some unknown proposition l which
reduces the size of the belief state. That is, some states in
b must disagree with the observed l in line 14 (otherwise l
is known prior to the execution of aobs) and these states are
removed from b, reducing its size. After at most |b| − 1 iter-
ations, if the goal is not reached beforehand, we reach a be-
lief state of size 1, in which case the problem is reduced to a
classical setting, which is solvable as there are no dead-ends.
Notice that this proof does not hold when actions have non-
deterministic effects, as the belief state size can grow.

In some domains, identifying an action that reduces the
size of the belief state may require non-trivial effort because
aobs must provide information with respect to the belief state
where it is executed, following the conformant plan, rather
than the belief state where it is chosen. In other domains
(e.g., simple domains) it is easy to identify such actions.

Our actual planner is essentially FDP-Progress with an
efficient heuristic for sensing-action selection and an effi-
cient (incomplete) conformant planner that uses a classical
approximation, which we describe below. As shown in our
experiments, this combination leads to a very efficient and
effective online contingent planner.

4 Classical Projections for Conformant and
Contingent Planning Problems

Contingent planning requires maintaining and manipulating
an implicit or explicit description of the agent’s belief state,
which can be exponential in size. The same holds for con-
formant planning, which can be viewed as a special case of
contingent planning in which there are no sensing actions.
In this section we describe projection techniques for reduc-
ing contingent and conformant planning problems into clas-
sical planning that are based on a transformation introduced
in (Bonet and Geffner 2011) for simple contingent planning
domains. Sometimes, these methods are sound and com-
plete — specifically, in simple domains. In non-simple do-
mains they provide a sound approximation. Our algorithm
uses these techniques in two ways. First, to replace confor-
mant planning with classical planning. Second, to allow the
use of classical landmark detection algorithms (Hoffmann,
Porteous, and Sebastia 2004) to detect landmarks in contin-
gent planning problems. These landmarks play a key role
in our heuristic for selecting the next sensing action (line 7
in the algorithm). When defining projections, we will ini-
tially make various restrictions (e.g., positive preconditions)

to make the definitions simpler to follow, which will gradu-
ally be removed.

4.1 Conformant Planning Approximations
Definition 1. Let π = 〈P,Aact, ϕ,G〉 be a conformant plan-
ning problem. The classical projection of π is a classical
problem 〈P,Aact, I, G〉 where: I = ϕk ∧

∧
p∈Pu

¬p.
That is, propositions in Pu are all assigned false, initially,

while those in Pk are initialized as in π. Intuitively, the
weak projection makes a pessimistic assumption concerning
the hidden variables, assuming all their values to be initially
false. This assumption is pessimistic because we assume
positive (pre)conditions only, so with negative values, we
restrict our ability to apply actions.
Lemma 1 (Bonet&Geffner 2011). ρ is a conformant plan
for a simple conformant planning problem iff it is a classical
plan for its classical projection.

We can now define FDP-classical-project to be a variant
of FDP in which conformant planning is performed over the
classical projection of the problem and conclude:
Corollary 1. Under the corresponding assumptions on the
classical planner, FDP-classical-project is a sound and com-
plete online contingent planner for simple contingent plan-
ning problems.

4.2 Contingent Planning Approximations
Moving from conformant to contingent problems, we must
extend the definition of the classical projection to handle ob-
servations. Intuitively, a projection not only maps a contin-
gent planning domain into a classical planning domain, but
also associates a branch in a (possibly partial) solution tree
with a (classical) plan generated for the projection. This cor-
respondence is typically straightforward (e.g., a one-to-one
mapping of actions), so we will not define it formally.

We start with the special case of simple contingent do-
mains (Bonet and Geffner 2011). We use a three-valued
representation of each proposition, denoting three possibili-
ties: p is true in all possible states, p is false in all possible
states, and p has different values in different currently pos-
sible states. This provides a rough approximation of the be-
lief state of the agent, which in simple contingent domains
is sufficient. To simplify the notation, we treat p as a 3-
valued variable, p∗, with possible values {t, f, u}, which
is a syntactic sugar for the of use two variables: Kp and
K¬p, where p∗ = t denotes Kp ∧ ¬K¬p, p∗ = f denotes
K¬p ∧ ¬Kp, and p∗ = u denotes ¬Kp ∧ ¬K¬p. We will
abuse notation writing l∗ = t, f, u implying p∗ = t, f, u if
l = p and p∗ = f, t, u for l = ¬p. Finally, for p ∈ Pk, p = u
never holds, so we can treat it as a standard proposition, but
for the sake of uniformity, we will not make this distinction.

The Simple Weak Projection
Definition 2. Let π = 〈P,Aact, Asense, ϕ,G〉 be a sim-
ple contingent planning problem. The simple weak con-
tingent projection of π is a classical problem 〈P ∗, A′act ∪
A′sense, X, ϕk ∧

∧
p∈Pu

p = u,G∗〉, where:

• P ∗ = {p∗|p ∈ P}
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• A′act contains an action a′ for every a ∈ Aact, replacing
every p in a by p∗ = t in a′ and every ¬p with p∗ = f .
• G∗ = {g∗ = t|g ∈ G}.
• For each action a ∈ Asense and every observable propo-

sition p ∈ obs(a) there are two corresponding actions a+
p

and a−p inA′sense. Both a+
p and a−p have the same precon-

ditions as a, except that l is replaced by l∗ = t, as well as
one additional precondition p∗ = u. The effect of a+

p is
p∗ = t, and the effect of a−p is p∗ = f .
• X is a set of axioms (Thiébaux, Hoffmann, and Nebel

2005). For each invariant clause c ∈ ϕu and each literal l
in c we create an axiom xc,l ∈ X . The axiom’s precondi-
tions are

∧
l′∈c,l′ 6=l l

′∗ = f and its effect is l∗ = t.
• I assigns t to p∗ if ϕ |= p, f if ϕ |= ¬p, and u, otherwise.

The axioms provide a method for reasoning about the
value of propositions given observations and the invari-
ant statements in ϕu. While axioms can be implemented
as simple actions, the benefit of using axioms is that we
get a cleaner correspondence between classical plans and
branches of (possibly partial) contingent plans. Recall that
in simple domains, all clauses in ϕu are invariant.

The Weak Projection To ensure that the weak projec-
tion is sound in general (possibly non-simple) contingent
domains, we need to enhance the projection by allowing
known variables to become unknown. We assume here that
effect conditions are conjunctions of literals (straightforward
to generalize). Let c = l1 ∧ · · · ∧ lk be an effect condition.
We define c = u ≡

∨
i(li = u). Intuitively, c = u holds if

the value of c is not the same in all possible states.
Definition 3. The (general) weak projection is identical to
the simple weak projection, except that the actions are mod-
ified as follows:
• For every conditional effect (c, l), add a new conditional

effect (c = u ∧ l∗ = f, l∗ = u).
When the contingent domain is simple, the weak projec-

tion is equivalent to the simple weak projection, which is the
encoding used by K-PLANNER to handle simple domains.
However, the (general) weak projection can be used in any
contingent planning domain.

Beyond our generalization of the projection method,
which we use to handle arbitrary contingent domains, there
is an important difference in how the projections are used
by K-PLANNER and our planner. K-PLANNER uses the pro-
jection in the contingent case in order to generate a plan for
the contingent problem. We generate plans only for the in-
termediate, shorter and simpler conformant problems, using
the classical projection, which is simpler than the weak pro-
jection of the general contingent problem. We use the weak
projection of the contingent problem only as a tool for ap-
proximating the set of landmarks of the contingent problem.
This set of landmarks is used to inform our heuristic choice
of the next sensing action, as described in the next section.
Moreover, unlike K-PLANNER , the projection of sensing ac-
tions is not used to make optimistic assumptions concerning
the path to the goal by the planner, but rather to capture all
possible paths to the goal, and our heuristic will weigh all
possible outcomes of a sensing action.

4.3 Soundness and Completeness
The weak projection provides a general technique for gen-
erating a classical approximation of a contingent planning
problem. Unfortunately, the correspondence between classi-
cal solutions of the projection and plan branches in the con-
tingent solution, is not straight forward, even though each
projection action corresponds to a contingent action. This
is because, in some cases, the observations selected in the
projection plan may not correspond to the execution of the
corresponding contingent branch in any possible initial state.
On the other hand, there can be branches in the contingent
tree that do not correspond to any valid plan of the projec-
tion. Still, we can formalize a correspondence between pro-
jection plans and contingent branches.

There is a natural “belief-state” associated with each clas-
sical state of the projected problem — given a classical state
s over the variables P ∗, bc(s) will be used to denote the set
of states over the original propositions in P that agree with
s on all variables assigned t and f . I.e., if p∗ = t, bc(s)
contains only states in which p holds, and if p∗ = f , bc(s)
contains only states in which ¬p holds. Otherwise, when
p∗ = u, there are no constraints on the value of p.

Let bāo be the belief state in the contingent problem do-
main π, following the execution of a sequence āo of actions
and observations. Let sāo be the classical state in some clas-
sical projection πc. We say that the projection is sound if for
every sequence āo, we have that bāo ⊆ bc(sāo).

Interestingly, we do not necessarily need to generate an
interpretation that satisfies b(s) = b to faithfully model a
problem. A classical projection is complete when b(s) |= l
iff b |= l, for every literal l that appears in an action’s precon-
dition or in G. Completeness does not imply that the classi-
cal projection maintains the same state, but that it maintains
enough information to ensure that the plan it generates is
indeed executable, and that it achieves the goal.

Although their definitions are somewhat different than
ours, the theorems of (Bonet and Geffner 2011) imply:
Lemma 2 (BG11). Weak projections are sound and com-
plete for simple contingent planning domains.

For the general case we can show:
Lemma 3. The (general) weak projection is sound.

The proof is by induction on the length of the action se-
quence An obvious implication of soundness is that when a
plan for a sound projection achieves the goal, and the obser-
vations along this plan are consistent with some initial state
s, then the execution of the corresponding plan branch when
s is the true initial state will also achieve the goal.

4.4 Stronger Projections
The weak projection is, in general, incomplete. That is,
many valid branches of contingent plans do not correspond
to a valid plan of the projected problem. Some methods can
generate a sound and complete approximation for general
contingent planning domains — specifically, the transfor-
mations used by CLG (Albore, Palacios, and Geffner 2009)
and SDR (Brafman and Shani 2012b). Unfortunately, these
methods generate exponentially larger classical problems.
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Algorithm 2 Heuristic Contingent Planner
Input: π — a contingent planning problem
1: πenhanced ← the enhanced weak projection of π
2: L← the set of landmarks for πenhanced

3: s← all known literals at the initial state
4: while there is no solution to the classical projection of π do
5: aobs ← ChooseNextSensingAction(π, L, s)
6: P ← a conformant plan for πclassical, withG = pre(aobs)
7: s′ ← Execute(P, s)
8: Execute(aobs) and observe literal l
9: s← s′ ∪ {l}

10: end while
11: P ← a conformant plan for the classical projection of π
12: Execute(P, s)

It is thus natural to seek stronger projections, in the sense
that more branches of contingent plans correspond to plans
of the projection, while maintaining an economical projec-
tion size, preferably linear. A projection becomes stronger
as it reduces the difference between b(s) and b, that is, it al-
lows us to rule out additional states that are in b(s), but not in
b. One can generate stronger sound approximations by, e.g.,
adding additional sound inference axioms to the projection.

Formally, let πc1 and πc2 be two sound classical projec-
tions of π. We say that πc1 is at least as strong as πc2 if
bc1(sāo) ⊆ bc2(sāo).

The obvious benefit of strengthening the approximation
is that more problems become solvable. That is, stronger
approximations may be able to generate plans that corre-
spond to observation sequences that the weaker approxima-
tion cannot handle, and will always be able to handle obser-
vation sequences that the weaker approximation handles.

We now suggest one class of projected actions that can be
used to strengthen the weak approximation; in some bench-
marks the observed values conditionally depend on a pre-
viously executed action. Learning about the observed value
can then help us deduce knowledge over the effect condition.
We illustrate this idea using the RockSample domain (Smith
and Simmons 2004; Brafman and Shani 2012b).

In this domain, the rover must sample rocks containing a
desirable mineral in a grid (Figure 1(b)). The rocks locations
are known, but the agent must sense for the mineral using a
long range sensor. The sensor reports the existence of the
mineral in some rock within its range.

A natural formalization of this domain may have an ac-
tion activate-sensor-at-2-3 with preconditions at-2-3 and
conditional effects good-rock1 → good-rocks-in-range and
good-rock2 → good-rocks-in-range, and an additional ac-
tion observe-rocks-in-range which observes the good-rocks-
in-range proposition which signifies the sensor’s output.
While these are separate actions, used together they allow
us to reason about which rocks contain the good mineral. In
this case, at-x-y is always known, good-rocks-in-range is un-
known but directly observable, and good-rocki is unknown
and not directly observable. To address this, we generate
a new action that corresponds to the sequential activation
of these two actions — activate-sensor and observe-good-
rocks-in-range — with effects reflecting the knowledge ob-
tained by the latter observation.
Definition 4. Let a be an action with conditional effects

Algorithm 3 Choosing the Next Sensing Action
Input: πclassical — a classical projection, L a set of landmarks, s

the set of currently known literals
1: s′ ← the set of achievable literals using πclassical starting

from s (approximated using delete-relaxation)
2: Ω← {a : a ∈ Asense, pre(a) ∈ s′, obs(a) /∈ s′}
3: for each action a ∈ Ω do
4: p← obs(a), s′+ ← s′ ∪ {p}, s′− ← s′ ∪ {¬p}
5: s′′+ ← the set of possible literals given πclassical and s′+
6: s′′− ← the set of possible literals given πclassical and s′−
7: hlm(a)← # possible landmarks in s′′+ and s′′−, but not in s′

8: hli(a)← # possible literals in s′′+ and s′′−, but not in s′

9: hobs(a)← # possible sensing actions in s′′+ and s′′−, but not
in s′

10: hcost(a) ← # required actions from s before a can be exe-
cuted in πclassical

11: h(a)← 〈hlm(a), hli(a), hobs(a), hcost(a)〉
12: end for
13: return argmaxa∈Ωh(a)

(c, p) and (¬c,¬p) where c is an unknown and unobserv-
able literal and p is observable through aobs, and a does
not negate any precondition of aobs and does not change the
value of c. Define the classical action a ◦ a+

obs as follows:
pre(a◦a+

obs) = pre(a)∪pre(aobs), and effects(a◦a+
obs) =

effects(a) ∧ p ∧ c, where effectsu(a) are the unconditional
effects of a, replacing in the process every occurrence of
a literal l with l∗ = t and every ¬l with l∗ = f (as in
the definition of the weak projection). Similarly, define
pre(a◦a−obs) = pre(a)∪pre(aobs), and effects(a◦a−obs) =
effects(a) ∧ ¬p ∧ ¬c, again with literals in Pu treated as
above. The enhanced weak projection of a contingent prob-
lem is its weak projection, enhanced with these actions.

More generally, when c =
∨
ci is a disjunction of literals,

define ai ◦ a+
obs as above, except that the preconditions of

a ◦ aobs contain
∧

j 6=i ¬cj as well. The effect is now ci,
rather than c. And similarly for ai ◦ a−obs

In the small RockSample example in Figure 1(b) we have
two such joined actions with preconditions at-2-3 ∧ ¬good-
rockj and effect good-rocki where i = 1, j = 2 or i =
2, j = 1 (the observation good-rocks-in-range is removed in
the classical projection).

For clarity of the correspondence definition, note that the
additional actions a ◦ a+/−

obs are similar to a+
p and a−p .

Lemma 4. The enhanced weak projection is a sound approx-
imation which is at least as strong as the weak projection.

The idea behind this enhancement can be farther general-
ized as follows:1 Assume a sequence of unobservable propo-
sitions p1, ..., pk and a set of actions ai with conditional ef-
fects (pi, pi+1), and an observation action that applies only
to pk. Having observed pk, we can deduce that all pi hold,
whereas the above inference action allows deducing pk−1

only. We note that the localize domain exhibits such behav-
ior, while many others (e.g. medpks, rock-sample) require
only actions of the form a ◦ aobs as above.

1This generalization was not implemented.
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Table 1: Comparing the performance of contingent planners. We report only the largest instances that were solved of each benchmark. Blank
cells represent problems that the planners were unable to solve. CSU denotes models that CLG can solve but cannot simulate execution for.
PF denotes planner failure. N/A denotes that the planner is inapplicable for that domain. Results are averaged over 50 executions, and we
report standard error in parenthesis.

HCP MPSR SDR CLG K-PLANNER
Name Landmarks Actions Time Actions Time Actions Time Actions Time Actions Time

cloghuge 9 53.55 1.8 PF 61.17 117.13 51.76 8.25 N/A
(0.11) (0.019) (0.44) (4.19) (0.33) (0.08)

ebtcs-70 3 34.5 0.36 44.5 22.4 35.52 3.18 36.52 73.96 N/A
(0.17) (0.015) (0.7) (0.3) (0.75) (0.07) (0.86) (0.14)

elog7 5 19.9 0.084 23.5 1.4 21.76 0.85 20.12 1.4 N/A
(0.056) (0.004) (0.1) (0.1) (0.07) (0.01) (0.05) (0.08)

CB-9-5 29 320 57.7 PF 392.16 505.48 CSU 358.08 94.18
(0.31) (0.132) (2.81) (8.82) (15.8) (3.31)

CB-9-7 37 425 161.5 PF 487.04 833.52 CSU 458.36 116.63
(0.243) (0.137) (2.95) (15.82) (14.64) (3.24)

doors15 16 143 17.7 262.2 190 143.24 268.16 PF 150.88 55.24
(0.201) (0.0.061) (1.9) (3.3) (1.36) (3.78) (4.7) (2)

doors17 18 184 46.11 368.25 335.3 188 416.88 PF 188.8 79.24
(0.23) (0.205) (3.4) (5.3) (1.64) (6.16) (5.79) (2.62)

localize17 N/A 59.8 230.4 45 928.56 CSU N/A
(0.9) (7.7) (0.86) (33.2)

unix3 1 42.0 0.67 69.7 5.2 56.32 5.47 51.32 18.56 45.48 16.87
(0.19) (0.021) (1.7) (0.1) (1.72) (0.18) (0.97) (0.05) (4.59) (1.56)

unix4 1 76.55 7.25 158.6 30.4 151.72 35.22 90.8 189.41 87.04 38.81
(0.286) (0.074) (4.3) (1.1) (4.12) (0.94) (2.12) (0.6) (8.54) (3.53)

Wumpus15 36 65.08 2.33 65 126.6 120.14 324.32 101.12 330.54 107.64 7.17
(0.223) (0.049) (1.6) (3.1) (2.4) (7.14) (0.67) (0.25) (4.6) (0.6)

Wumpus20 46 90 5.16 71.6 261.1 173.21 773.01 155.32 1432 151.52 16.03
(0.273) (0.075) (1.2) (7) (3.4) (20.78) (0.95) (0.47) (6.29) (1)

RockSample 20 115 0.50 PF 127.24 113.4 N/A N/A
8-12 (0.135) (0.005) (0.68) (0.79)

RockSample 22 135 0.65 PF 142.08 146.75 N/A N/A
8-14 (0.144) (0.015) (0.8) (1.19)

4.5 Approximate Landmarks through Projections

We have seen the correspondence between plans for sound
projections and branches of plan tree for contingent prob-
lems. This motivates a simple and useful technique for gen-
erating an approximate set of landmarks for the contingent
planning by computing the set of landmarks of a classical
projection. The advantage of this reduction is that, again, we
can employ off-the-shelf techniques for classical landmark
generation to generate an approximate set of landmarks for
the contingent problem. This set will be used to guide the
selection of the next sensing action.

In simple domains, as the weak projection is sound and
complete, the landmarks detected over the projection are the
true landmarks of the contingent problem. In non-simple do-
mains, however, there is no clear relationship between land-
marks of the classical projection and landmarks of the orig-
inal contingent problem. The reason is that some classical
solutions may not correspond to any branch of any solution
plan, and that some branches of a solution plan may not cor-
respond to classical solutions. Still, the landmarks of the
classical projection are a strong heuristic for the contingent
problem, as our experiments demonstrate.

5 The Heuristic Contingent Planner
We now present our online contingent planner (Algo-
rithm 2). The planner progresses by repeatedly identifying a
reachable sensing action that heuristically provides valuable
information towards the achievement of the goal. The plan-
ner then plans in the classical projection for the achieving
the preconditions of the observation action. The plan is exe-
cuted, followed by the observation action. Now, the process
repeats with the additional information that was provided by
the observation action. This process is repeated until the
goal can be achieved without any additional sensing actions.

Algorithm 3 shows the process for selecting the next
sensing action. It estimates the myopic value of informa-
tion of the observation action, i.e., how much value will be
achieved from executing the action, ignoring future obser-
vations. This value is estimated using the number of dis-
junctive action landmarks that can be achieved following the
sensing actions. The set of landmarks computed is the set of
landmarks for the enhanced weak projection.

First, we compute the set of achievable literals in the clas-
sical projection, that is, without any sensing actions. Then,
we see which observation actions that sense the value of
some unknown proposition can be executed given the set of
achievable literals. These are the candidate actions to be re-
turned by the algorithm. To choose the heuristically best
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observation action, we analyze the value of observing p, by
assuming once that we have observed p, and once ¬p and
computing which literals become reachable in each case.

Our policy for returning the heuristically best action first
looks at the number of satisfiable landmarks following the
observation. Given multiple observation actions that satisfy
the same number of landmarks, we break ties by looking
at the sum of the number of literals and new observation
actions that become achievable following the execution of
the observation action. Finally, we break ties in favor of the
action which we estimate (using delete-relaxation) to require
the minimal number of actions to execute.

As we explained above, the planner is sound and com-
plete for simple domains, but can be used in non-simple do-
mains. In non-simple domains the classical projection we
use to compute a conformant plan to the next sensing action
can be incomplete. We did not run across this problem in
our experiments, and theoretically, one can call a true con-
formant planner if the classical projection fails to plan for a
sensing action’s preconditions or the goal.

As the classical projection is sound, the returned plan is
also sound, and achieves the preconditions of the sensing
action. On the other hand, it may well be that the execu-
tion of the sensing action will not provide the intended new
information. This is because the choice of the conformant
plan may be critical for obtaining new information, and the
classical projection may fail to identify such useful plans. In
these cases, our algorithm may be unable to discover new
information, rendering it incomplete yet sound.

6 Empirical Evaluation
We compare HCP to state-of-the-art online contingent plan-
ners, CLG (Albore, Palacios, and Geffner 2009), SDR (Braf-
man and Shani 2012b), MPSR (Brafman and Shani 2012a),
and K-PLANNER (Bonet and Geffner 2011). The experi-
ments were conducted on a Windows Server 2008 machine
with 2.66GHz cores and 32GB of RAM. The underlying
classical planner is FF (Hoffmann and Nebel 2001) — trans-
lated problems are written to PDDL and then FF is run in a
different process. To test the soundness of action precondi-
tions, and whether the goal was obtained, we use regression
(Shani and Brafman 2011).

Table 1 shows the runtime of the planners (including the
time required to identify landmarks for HCP), showing HCP
to be much faster than all other planners on almost all prob-
lems. The plan quality (number of actions) of HCP is also
good. The only domain that could not be solved by HCP
is localize, because it does not conform to our assumptions
concerning reasoning about the hidden propositions. We
also report the number of landmarks discovered by HCP in
each problem. As can be seen, even in domains like Unix,
which have no useful landmarks, HCP still works very well
due to the other heuristic components.

As Algorithm 3 has several heuristic components, we an-
alyze the components separately in Table 2. C denotes the
minimal cost heuristic (Line 10), P denotes the number of
literals heuristic (Line 8), A denotes the number of sensing
actions heuristic (Line 9), and L denotes the number of land-
marks heuristic (Line 7). In this problem, using the sensing

Table 2: Evaluating heuristic components for Wumpus 15. We
show the average number of actions and sensing actions to the goal,
and the time for completion.

Heuristic Actions Sensing Time
C 225 22 57.3
P 138 25 13.5
A 349 22 11.1
L 162 7 3.43

L,C 81 6 3.09
L,C,P 65 5 2.33

All 65 5 2.33

action with the minimal cost (C) performs the worst, because
it always selects the nearest sensing which is not always
very useful. Looking at the number of additional available
sensing actions (A) is also not useful here. The number of
new achievable literals following the sensing action (P) and
the number of new landmarks (L) both result in relatively
shorter plans, where the number of literals is somewhat bet-
ter. Looking at the total time, though, we can see that the
landmarks approach works much faster. This is because the
landmarks heuristic uses much less sensing actions, as the
selection of each sensing action requires the relatively costly
heuristic estimation in Algorithm 3, then less sensing actions
result in faster computation. Furthermore, we can see that
the combination of the various heuristics greatly improve on
the overall runtime, by combining the strengths of the vari-
ous components.

7 Discussion and Related Work
Bonet and Geffner (2000) were the first to propose using
heuristic search in belief space. Since then, several heuris-
tics for belief states were proposed. Bryce, Kambhampati,
and Smith (2006) argue that belief space heuristics typi-
cally aggregate distance estimates from the individual states
within the belief state to the goal. For example, the DNF
planner (To, Pontelli, and Son 2009) uses a heuristic based
on the number of satisfied goals, the cardinality of the belief
state, and the sum of the number of unsatisfied goals in each
individual state in the belief state.

HCP is related to these planners as it also searches in be-
lief space, although it doesn’t explicitly represent and rea-
sons about it. Our use of landmark detection is more useful
than existing heuristics of other belief search planners, and
it is hard to see it as aggregating heuristic estimates of indi-
vidual states. HCP is also one of the first belief-space search
planners to use online planning – indeed, the focus on of-
fline search by previous planners in this class reduced their
scalability.

A second popular approach to contingent planning is the
compilation-based approach (Albore, Palacios, and Geffner
2009; Shani and Brafman 2011; Brafman and Shani 2012a;
Bonet and Geffner 2011) in which a contingent problem is
translated into a classical planning problem. This method
allows leveraging advances in classical planning, such as re-
cent, powerful heuristic generation methods. Online meth-
ods employing compilation are popular, planning only for
reachable branches of the plan tree given the true hidden
state at runtime. HCP uses translation techniques to solve
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the intermediate conformant planning problems.
We leverage both the theoretical and the practical ideas

presented by Bonet and Geffner (2011). First, we use their
compilation techniques to apply classical landmark detec-
tion to contingent problems, through the K-PLANNER trans-
lation. Furthermore, instead of using a sound and complete,
and therefore slower, conformant planner, we plan in the
classical projection, which was presented by K-PLANNER
, and extended here to some non-simple problems. In a way,
at least for simple problems, our approach can be considered
as introducing a landmark heuristic into K-PLANNER . An
important part of K-PLANNER is the use of the projection
to provide an efficient belief maintenance technique. This
technique, however, is incomplete for non-simple domains,
losing much information. We do not maintain an explicit
belief-state, but instead use regression to verify properties
of the current belief state required for planning.

In classical planning, landmarks were initially used to
identify subgoals. Later on, researchers achieved better re-
sults by using landmarks as a heuristic for guiding the search
(Richter and Westphal 2010). In this paper we return to the
idea of using landmarks to identify subgoals, which are in
our case observation actions. We speculate that our online
replanning approach, where new information is discovered
throughout the execution, is much more suitable for subgoal-
ing than classical planning, where the results of applying an
action are always known offline. In our replanning approach,
where sensing actions are separated by conformant plans,
treating the next sensing action as a subgoal greatly reduces
the search space in the conformant space, which is exponen-
tially larger than that of the classical underlying problem.

In Section 4.4 we suggest how some actions can be com-
posed to create a new projected action. There is ongoing
interest in planning research in identifying macro actions,
composed of a number of atomic actions (Newton 2009).
Our method is however much simpler, focusing on a popu-
lar specific action composition, as opposed to more general
methods that automatically identify sequences of actions to
be composed into macro actions. It is possible that smarter
identification of macro actions can be further used to allow
us to solve additional contingent domains.

8 Conclusion and Future Work
We introduced a new approach to contingent planning, rely-
ing on heuristics computed over a projection of the domain
description, without maintaining a belief state explicitly, or
translating the problem into classical planning, which are the
two popular approaches to contingent planning under partial
observability.

Our planner, HCP, leverages properties of many bench-
marks in order to compute landmarks. Domains which do
not conform to these properties (e.g. Localize), cannot be
solved by HCP. In the future we will create stronger projec-
tions, allowing us to solve additional domains.
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