
On MABs and Separation of Concerns
in Monte-Carlo Planning for MDPs

Zohar Feldman and Carmel Domshlak
Technion—Israel Institute of Technology

Haifa, Israel
{zoharf@tx,dcarmel@ie}.technion.ac.il

Abstract

Linking online planning for MDPs with their special case
of stochastic multi-armed bandit problems, we analyze three
state-of-the-art Monte-Carlo tree search algorithms: UCT,
BRUE, and MaxUCT. Using the outcome, we (i) introduce
two new MCTS algorithms, MaxBRUE, which combines uni-
form sampling with Bellman backups, and MpaUCT, which
combines UCB1 with a novel backup procedure, (ii) analyze
them formally and empirically, and (iii) show how MCTS
algorithms can be further stratified by an exploration control
mechanism that improves their empirical performance without
harming the formal guarantees.

Introduction
In online planning for MDPs, the agent focuses on its current
state only, deliberates about the set of possible policies from
that state onwards and, when interrupted, chooses what action
to perform next. In formal analysis of algorithms for online
MDP planning, the quality of the action a, chosen for state s
with H steps-to-go, is assessed in terms of the simple regret
measure, capturing the performance loss that results from
taking a and then following an optimal policy π∗ for the
remaining H − 1 steps, instead of following π∗ from the
beginning (Bubeck and Munos 2010).

Most algorithms for online MDP planning constitute vari-
ants of what is called Monte-Carlo tree search (MCTS) (Sut-
ton and Barto 1998; Péret and Garcia 2004; Kocsis and
Szepesvári 2006; Coquelin and Munos 2007; Cazenave 2009;
Rosin 2011; Tolpin and Shimony 2012). When the MDP
is specified declaratively, that is, when all its parameters
are provided explicitly, the palette of algorithmic choices
is wider (Bonet and Geffner 2012; Kolobov, Mausam, and
Weld 2012; Busoniu and Munos 2012; Keller and Helmert
2013). However, when only a generative model of MDP is
available, that is, when the actions of the MDP are given only
by their “black box” simulators, MCTS algorithms are basi-
cally the only choice. In MCTS, agent deliberation is based
on simulated sequential sampling of the state space. MCTS
algorithms have also become popular in other settings of se-
quential decision making, including those with partial state
observability and adversarial effects (Gelly and Silver 2011;

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sturtevant 2008; Bjarnason, Fern, and Tadepalli 2009;
Balla and Fern 2009; Eyerich, Keller, and Helmert 2010;
Browne et al. 2012).

The popularity of MCTS methods is due in part to their
ability to their ability to deal with generative problem rep-
resentations, but they have other desirable features as well.
First, while MCTS algorithms can natively exploit problem-
specific heuristic functions, their correctness is independent
of the heuristic’s properties, and they can as well be applied
without any heuristic information whatsoever. Second, nu-
merous MCTS algorithms exhibit strong anytimeness: not
only can a meaningful action recommendation be provided at
any interruption point instantly, in time O(1), but the quality
of the recommendation also improves very smoothly, in time
steps that are independent of the size of the explored state
space.

Fundamental developments in the area of MCTS algo-
rithms can all be traced back to stochastic multi-armed bandit
(MAB) problems (Robbins 1952). Here we take a closer
look at three state-of-the-art MCTS algorithms, UCT (Kocsis
and Szepesvári 2006), BRUE (Feldman and Domshlak 2012;
2013), and MaxUCT (Keller and Helmert 2013), linking
them to algorithms for online planning in MABs. This analy-
sis leads to certain interesting realizations about the examined
MCTS algorithms. Taking these realizations as our point of
departure, we:
• Introduce two new MCTS algorithms, MaxBRUE, which

combines uniform sampling with Bellman backups, and
MpaUCT which combines UCB1 with a novel backup
procedure;

• Establish formal guarantees of exponential-rate conver-
gence for MaxBRUE (that turn out to be even stronger
than those known to be provided by BRUE), and a hint
about the polynomial-rate convergence of MpaUCT;
• Demonstrate empirically that, in line with the empiri-

cal analysis of pure exploration in MAB (Bubeck and
Munos 2010), MaxBRUE performs better than MpaUCT
and MaxUCT under a permissive planning-time allowance,
while the opposite holds under short planning times;
• Show how MaxBRUE (and probably other algorithms)

can be stratified by an exploration control mechanism that
substantially improves the empirical performance without
harming the formal guarantees.

120

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Background
Henceforth, the operation of drawing a sample from a distri-
butionD over set ℵ is denoted by∼ D[ℵ], U denotes uniform
distribution, and JnK for n ∈ N denotes the set {1, . . . , n}.
For a sequence of tuples ρ, ρ[i] denotes the i-th tuple along
ρ, and ρ[i].x denotes the value of the field x in that tuple.

Markov Decision Processes. MDP is a standard model
for planning under uncertainty (Puterman 1994). An MDP
〈S,A,P, R〉 is defined by a set of states S, a set of state
transforming actions A, a stochastic transition function P :
S×A×S → [0, 1], and a reward functionR : S×A×S → R.
The states are fully observable and, in the finite horizon
setting considered here, the rewards are accumulated over
some predefined number of steps H . In what follows, s〈h〉
denotes an MDP state s with h steps-to-go, and A(s) ⊆ A
denotes the actions applicable in state s. The objective of
planning in MDPs is to sequentially choose actions so as
to maximize the accumulated reward. The representation
of large-scale MDPs can be either declarative or generative,
but anyway concise, and allowing for simulated execution
of all feasible action sequences, from any state of the MDP.
Henceforce, the state and action branching factors of the
MDP in question are denoted by K = maxs |A(s)| and
B = maxs,a |{s′ | P(s′|s, a) > 0}| respectively.

Simple Regret Minimization in MAB. A stochastic
multi-armed bandit (MAB) problem is an MDP defined over
a single state s. The actions in MABs do not affect the state,
but are associated with stochastic rewards. Most research
on MABs has been devoted to the setup of reinforcement
learning-while-acting, where the cumulative regret is of in-
terest and exploration must be intertwined with exploitation.
For this setup, an action selection strategy called UCB1 was
shown to attain the optimal logarithmic cumulative regret
by balancing the empirical attractiveness of the actions with
the potential of less sampled actions. Specifically, UCB1
samples each action once, and then iteratively selects actions
as

argmax
a

[
µ̂a + α

√
log n

na

]
,

where n is the total number of samples so far, na is the num-
ber of samples that went to action a, and µ̂a is the average
reward of these samples of a. The parameter α is an explo-
ration factor that balances the two components of the UCB1
formula.

In contrast to learning-while-acting, in online planning for
MAB the agent is provided with a simulator that can be used
“free of charge” to evaluate the alternative actions by draw-
ing samples from their reward distributions. An algorithm
for online planning for MAB is defined by an exploration
strategy, used to sample the actions, and a recommendation
strategy, used at the end of the planning to select an action
that is believed to minimize simple regret. Recently, Bubeck
et al. (2010) investigated worst-case convergence-rate guaran-
tees provided by various MAB planning algorithms; their key
findings are depicted in Table 1. Two exploration strategies,
the uniform one and a generalization of UCB1, have been
examined in the context of “the empirical best action” (EBA)

EBA MPA
uniform ©e−©n —
UCB(α) ©n−© ©n−2(α−1)

Table 1: Upper bounds on the expected simple regret of some
online planning algorithms for MAB (Bubeck and Munos
2010)

and “the most played action” (MPA) recommendation strate-
gies. The table provides upper bounds on the expected simple
regret of the considered pairs of exploration (rows) and rec-
ommendation (columns) strategies, whereas the© symbols
are distribution-dependent constants. Bubeck et al. (2010)
also examined these algorithms empirically, and showed that,
in line with the details of their formal analysis, the UCB1-
based exploration strategy outperforms uniform+EBA under
a moderate number of samples, while the opposite holds
under more permissive exploration budgets.

Monte-Carlo Tree Search. MCTS, a canonical scheme
underlying various MCTS algorithms for online MDP plan-
ning, is depicted in Figure 1. MCTS explores the state space
in the radius of H steps from the initial state s0 by iteratively
issuing simulated rollouts from s0. Each such rollout ρ com-
prises a sequence of simulated steps 〈s, a, r, s′〉, where s is a
state, a is an action applicable in s, r is an immediate reward
collected from issuing the action a, and s′ is the resulting
state. In particular, ρ [0] .s = s0 and ρ[t].s′ = ρ[t+1].s for
all t.

Each generated rollout is used to update some variables
of interest. These variables typically include at least the
action value estimators Q̂ (s〈h〉, a), as well as the counters
n(s〈h〉, a) that record the number of times the correspond-
ing estimators Q̂ (s〈h〉, a) have been updated. Instances of
MCTS vary mostly along the different implementation of
the strategies STOP-ROLLOUT, specifying when to stop a
rollout; SELECT-ACTION, prescribing the action to apply in
the current state of the rollout; and UPDATE, specifying how
a rollout should update the maintained variables.

Once interrupted, MCTS uses the information collected
throughout the exploration to recommend an action to per-
form at state s0. The rollout-based exploration of MCTS is
especially appealing in the setup of online planning because
it allows smooth improvement of the intermediate quality
of recommendation by propagating to the root information
from states at deeper levels in iterations of low complexity of
O(H) .

MCTS algorithms: UCT, BRUE, and MaxUCT.
UCT, one of the most popular algorithms for online MDP
planning to date, is depicted in Figure 2 as a particular in-
stantiation of MCTS. In UCT, the rollouts end at terminal
states, i.e., at depthH or at states with no applicable actions.1

Each rollout updates all value estimators Q̂(s〈h〉, a) of the
(s〈h〉, a) pairs encountered along the rollout. The estimators
are updated via the MC-BACKUP procedure, which averages
the accumulated reward of the rollouts from s〈h〉 to terminal
states.

1In a more popular version of UCT, a rollout ends at a newly
encountered node, but this is secondary to our discussion.

121

MCTS: [input: 〈S,A,P, R〉; s0 ∈ S]

while time permits do
ρ← ROLLOUT // generate rollout

UPDATE(ρ)

return arg maxa Q̂(s0〈H〉, a)

procedure ROLLOUT
ρ← 〈〉 ; s← s0; t← 0
while not STOP-ROLLOUT(ρ) do

a← SELECT-ACTION(s, t)
s′ ← SAMPLE-OUTCOME(s, a, t)
r ← R (s, a, s′)
ρ [t]← 〈s, a, r, s′〉
s← s′; t← t+ 1

return ρ

Figure 1: Monte-Carlo tree search

Under this flow, a necessary condition for the value esti-
mators to converge to their true values is that the portion of
samples that correspond to selections of optimal actions must
tend to 1 as the number of samples increases. At the same
time, in order to increase the confidence that the optimal
actions will be recognized at the nodes, all the applicable
actions must be sampled infinitely often. The sampling strat-
egy of UCT, UCB1, aims at achieving precisely that: UCB1
ensures that each action is selected at least a logarithmic
number of times, and that suboptimal actions are selected at
most a logarithmic number of times; thus, the proportion of
best-action selections indeed tends to 1.
UCT has many success stories and much of this success

is accounted for by the exploitative property of UCT. This
property results in skewing towards more attractive actions
right from the beginning of exploration, a protocol that pre-
sumably enables fast homing on “good” actions. However,
Table 1 shows that exploitation may considerably slow down
the reduction of simple regret over time. Indeed, much like
UCB1 for MABs, UCT achieves only polynomial-rate reduc-
tion of simple regret over time (Bubeck, Munos, and Stoltz
2011), and the number of samples after which the bounds of
UCT on simple regret become meaningful might be as high
as hyper-exponential in H (Coquelin and Munos 2007).

Using this observation and following the findings of
Bubeck et al. (Bubeck and Munos 2010), in our earlier
work we introduced the concept of “separation of concerns,”
whereby the first part of each rollout is devoted solely to
the purpose of selecting particular nodes, whereas the sec-
ond part is devoted to estimating their value (Feldman and
Domshlak 2012). We showed a specific algorithm, BRUE,
that implements this concept by always updating value esti-
mators with samples that activate currently best actions only,
but the estimators to be updated are chosen by rolling out
actions uniformly at random. It turns out that, in contrast
to UCT, BRUE achieves an exponential-rate reduction of
simple regret over time, with the bounds on simple regret
becoming meaningful after only exponential in H2 number
of samples. Moreover, BRUE was also shown to be very
effective in practice.

procedure UPDATE(ρ)
r̄ ← 0
for d← |ρ|, . . . , 1 do

h← H − d
a← ρ[d].a
n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
r̄ ← r̄ + ρ [d] .r
MC-BACKUP(s〈h〉, a, r̄)

procedure MC-BACKUP(s〈h〉, a, r̄)
Q̂(s〈h〉, a)← n(s〈h〉,a)−1

n(s〈h〉,a) Q̂(s〈h〉, a) + 1
n(s〈h〉,a) r̄

procedure STOP-ROLLOUT(ρ)
t← |ρ|
return t = H or A(ρ[t].s′) = ∅

procedure SELECT-ACTION(s,d) // UCB

h← H − d
if ∃a : n (s〈h〉, a) = 0 then

return a
return argmaxa

[
Q̂(s〈h〉, a) + c

√
logn(s〈h〉)
n(s〈h〉,a)

]
procedure SAMPLE-OUTCOME(s, a, t)

return s′ ∼ P(S | s, a)

Figure 2: UCT algorithm as a specific set of sub-routines for
MCTS

Finally, BRUE was not the only successful attempt to im-
prove over UCT. In particular, Keller & Helmert (2013)
recently introduced MaxUCT, a modification of UCT in
which MC backups are replaced with Bellman backups us-
ing approximate transition probabilities, and demonstrated
that MaxUCT substantially outperforms UCT empirically. In
terms of formal guarantees, however, there is no dramatic dif-
ference between the convergence rates of the two algorithms.

From MAB to MDP
Relating between online planning for MAB and for more
general MDPs, we begin by drawing ties between

(i) MCTS rollout sampling strategies and arm exploration
strategies in MAB, and

(ii) MCTS selection of actions used to update search nodes
and arm recommendation strategies in MAB.

Considering the three algorithms discussed above in that
perspective, the picture appears to be as follows.

• UCT combines MC backups with a rollout sampling driven
by the UCB1 action-selection strategy. Interestingly, there
is no perfect analogy between UCT and a reasonable algo-
rithm for pure exploration in MAB. This is because, at all
nodes but the root, UCB1 de facto drives both UCT’s roll-
out sampling and node updates, yet recommending an arm
in MAB according to UCB1 does not have well justified
semantics.

122

EBA MPA UCB1

Uniform BRUE, MaxBRUE — —

UCB1 MaxUCT MpaUCT UCT

Table 2: MCTS algorithms for MDPs through the lens of the
MAB exploration topology. Rows are exploration strategies,
and columns are recommendation strategies.

• BRUE is analogous to uniform exploration with empirical
best action recommendation: Applying the principle of
separation of concerns, nodes are reached by selecting
actions uniformly, and the samples used in the MC backups
are generated by selecting the empirical best actions.

• MaxUCT is analogous to UCB(α) exploration with best
empirical action recommendation: With Bellman backups,
the updated value corresponds to the value of the action
with the best empirical value. Interestingly, this perspec-
tive reveals that switching from MC backups to Bellman
backups in MaxUCT essentially constitutes another way
to separate concerns in the sense discussed above.

Building on this link between online planning for MAB
and general MDPs, in what follows we present and analyze
two new MCTS algorithms for MDP planning. The union of
the known and new algorithms is depicted in Table 2, with
the names of the new algorithms underscored.

The first algorithm, MpaUCT, is analogous to UCB(α)
exploration with “most played action” recommendations in
MAB. This algorithm is inspired by the findings of Bubeck
et al. (Bubeck, Munos, and Stoltz 2011) that, unlike all
other bounds shown in Table 1, the convergence rate of
UCB(α)+MPA planning on MAB can be bounded indepen-
dently of the problem parameters.

A simple adaptation of the MPA recommendation strategy
to MDPs is a modification of the Bellman backup: Instead
of folding up the value of the empirically best action, we
propagate the value of the action that was updated the most.
Ties are broken in favor of actions with better empirical value.
The resulting algorithm is depicted in Figure 3, and later on
we present our empirical findings with it.

The second algorithm, MaxBRUE, is—like BRUE—
analogous to uniform exploration with EBA recommenda-
tions, but it employs Bellman backups rather than MC back-
ups. MaxBRUE is depicted in Figure 4. As we show in
the proof of Theorem 1 below, not only does MaxBRUE
achieve exponential-rate reduction of simple regret similarly
to BRUE, but the particular parameters of the convergence
bounds are more attractive than those currently known for
BRUE. Basically, Theorem 1 positions MaxBRUE as the
worst-case most efficient MCTS algorithm for online MDP
planning to date.

Theorem 1 Let MaxBRUE be called on a state s0 of an
MDP 〈S,A,P, R〉 with rewards in [0, 1], and finite hori-
zon H . After n ≥ 1 iterations of MaxBRUE, we have the

procedure UPDATE(ρ)
for d← |ρ|, . . . , 1 do

h← H − d
a← ρ[d].a
s′ ← ρ[d].s′

n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1

R̂(s〈h〉, a) = R̂(s〈h〉, a) + ρ[d].r
MPA-BACKUP(s〈h〉, a)

procedure MPA-BACKUP(s〈h〉, a)

Q̂(s〈h〉, a)← R̂(s〈h〉,a)
n(s〈h〉,a)

υ ← 0
for s′ ∈ {s′ | n(s〈h〉, a, s′) > 0} do

A← argmaxa′ n(s′〈h− 1〉, a′)
a∗ ← argmaxa′∈A Q̂(s′〈h− 1〉, a′)
υ ← υ + n(s〈h〉,a,s′)

n(s〈h〉,a) Q̂(s′〈h− 1〉, a∗)
Q̂(s〈h〉, a)← Q̂(s〈h〉, a) + υ

Figure 3: MpaUCT as UCT with a modified UPDATE proce-
dure

probability perr of sub-optimal action choice being bounded
as perr ≤ αe−βn, and the expected simple regret ∆ be-
ing bounded as ∆ ≤ Hαe−βn, where α = 3K (3BK)

H ,
β = ε2

4K(4BK)HH2 , and ε is the simple regret of the second-
best action at s0〈H〉.
Proof: A key sub-claim we prove first is that, at any iteration
of the algorithm, for all h ∈ JHK, all states s reachable from
s0 in H − h steps, all actions a ∈ A(s), and any δ > 0, it
holds that

P
{∣∣∣Q̂ (s〈h〉, a)−Q (s〈h〉, a)

∣∣∣ ≥ δ} ≤ 2 (3KB)
h
e
− 2δ2n(s〈h〉,a)

(4BK)hh2 . (1)

The proof of this sub-claim is by induction on h. Starting
with h = 1, by Hoeffding concentration inequality, we have
that

P
{∣∣∣Q̂ (s〈1〉, a)−Q (s〈1〉, a)

∣∣∣ ≥ δ} ≤ 2e−2δ
2n(s〈1〉,a).

Now, assuming Eq. 1 holds for h′ ≤ h, we prove it holds
for h+ 1. From the induction hypothesis, we have

P
{∣∣∣Q̂ (s〈h〉, a)−Q (s〈h〉, a)

∣∣∣ ≥ δ}
≤ P

{
n(s〈h〉, a) ≤

n(s〈h〉)
2K

}
+

P
{∣∣∣Q̂ (s〈h〉, a)−Q (s〈h〉, a)

∣∣∣ ≥ δ ∣∣∣∣ n(s〈h〉, a) > n(s〈h〉)
2K

}

≤ e−
n(s〈h〉)
2K2 + 2 (3BK)

h
e
− 2δ2n(s〈h〉)

2K(4BK)hh2

≤
(
1 + 2 (3BK)

h
)
e
− δ2n(s〈h〉)
K(4BK)hh2 ,

which implies

P
{∣∣∣max

a
Q̂ (s〈h〉, a)−Q (s〈h〉, π∗(s))

∣∣∣ ≥ δ}
≤ K

(
1 + 2 (3BK)h

)
e
− δ2n(s〈h〉)
K(4BK)hh2 .

(2)

123

procedure UPDATE(ρ)
for d← |ρ|, . . . , 1 do

h← H − d
a← ρ[d].a
s′ ← ρ[d].s′

n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1

R̂(s〈h〉, a) = R̂(s〈h〉, a) + ρ[d].r
BELLMAN-BACKUP(s〈h〉, a)

procedure BELLMAN-BACKUP(s〈h〉, a)

Q̂(s〈h〉, a)← R̂(s〈h〉,a)
n(s〈h〉,a)

υ ← 0
for s′ ∈ {s′ | n(s〈h〉, a, s′) > 0} do

υ ← υ + n(s〈h〉,a,s′)
n(s〈h〉,a) maxa′ Q̂(s′〈h− 1〉, a′)

Q̂(s〈h〉, a)← Q̂(s〈h〉, a) + υ

procedure STOP-ROLLOUT(ρ)
t← |ρ|
return t = H or A(ρ[t].s′) = ∅

procedure SELECT-ACTION(s,t) // uniform

return a ∼ U [A(s)]

procedure SAMPLE-OUTCOME(s,a,t)
return s′ ∼ P(S | s, a)

Figure 4: MaxBRUE algorithm as a specific set of sub-
routines for MCTS

Denoting p̂s,a,s′ = n(s〈h+1〉,a,s′)
n(s〈h+1〉,a) and p̂diff

s,a,s′ = p̂s,a,s′ −
P(s′|s, a), it holds that

∣∣∣Q̂ (s〈h+ 1〉, a)−Q (s〈h+ 1〉, a)
∣∣∣

=

∣∣∣∣∣∑
s′

p̂s,a,s′

[
R
(
s, a, s′

)
+max

a′
Q̂
(
s′〈h〉, a′

)]

−
∑
s′

P(s′|s, a)
[
R
(
s, a, s′

)
+Q

(
s′〈h〉, π∗(s′)

)]∣∣∣∣∣
≤

∣∣∣∣∣∑
s′

(
p̂s,a,s′ − P(s′|s, a)

) [
R
(
s, a, s′

)
+Q

(
s′〈h〉, π∗(s′)

)]∣∣∣∣∣
+

∣∣∣∣∣∑
s′

p̂s,a,s′

∣∣∣∣max
a′

Q̂
(
s′〈h〉, a′

)
−Q

(
s′〈h〉, π∗(s′)

)∣∣∣∣
∣∣∣∣∣ ,

and thus
P
{∣∣∣Q̂ (s〈h+ 1〉, a)−Q (s〈h+ 1〉, a)

∣∣∣ ≥ δ}
≤ P


∣∣∣∣∣∣
∑
s′
p̂

diff
s,a,s′

[
R
(
s, a, s

′)
+Q

(
s
′〈h〉, π∗(s′)

)]∣∣∣∣∣∣ ≥ δ

2


+ P

∑
s′
p̂s,a,s′

∣∣∣∣max
a′

Q̂
(
s
′〈h〉, a′

)
−Q

(
s
′〈h〉, π∗(s′)

)∣∣∣∣ ≥ δ

2


≤ 2e

− δ
2n(s〈h+1〉,a)

2(h+1)2

+
∑
s′

P


∣∣∣∣max
a′

Q̂
(
s
′〈h〉, a′

)
−Q

(
s
′〈h〉, π∗(s′)

)∣∣∣∣ ≥ δ

2
√
Bp̂s,a,s′

 .

(3)

In the last bounding of Eq. 3, the first term is due to Hoeffd-
ing and the second term is justified by noting that the solution
to the problem

maximize
p

B∑
i=1

√
cpi subject to

B∑
i=1

pi = 1

is p =
(
1
B , . . . ,

1
B

)
, with value

∑B
i=1

√
c
B =

√
cB.

From Eq. 2 we have

∑
s′

P


∣∣∣∣max
a′

Q̂
(
s
′〈h〉, a′

)
−Q

(
s
′〈h〉, π∗(s′)

)∣∣∣∣ ≥ δ

2
√
Bp̂s,a,s′


≤
∑
s′
K
(
1 + 2 (3BK)

h
)
e
− δ2n(s′〈h〉)

(4BK)h+1h2p̂
s,a,s′

≤ BK
(
1 + 2 (3BK)

h
)
e
− δ

2n(s〈h+1〉,a)
(4BK)h+1h2 .

(4)

Returning now to Eq. 3, we have

P
{∣∣∣Q̂ (s〈h+ 1〉, a)−Q (s〈h+ 1〉, a)

∣∣∣ ≥ δ}
≤ 2e

− δ
2n(s〈h+1〉,a)

2(h+1)2 +BK
(
1 + 2(3BK)h

)
e
− δ

2n(s〈h+1〉,a)
(4BK)h+1h2

≤ (3BK)h+1e
− δ2n(s〈h+1〉,a)

(4BK)h+1(h+1)2 ,
(5)

finalizing the proof of the induction step. Now, given the sub-
claim around Eq. 1 and denoting Qdiff

a = |Q̂(s0〈H〉, a) −
Q(s0〈H〉, a)|, the first part of Theorem 1 is concluded by

perr ≤
∑
a

P
{
Qdiff

a ≥
ε

2

}
≤
∑
a

[
P
{
n(s0〈H〉, a) ≤

n(s0〈H〉)
2K

}
+

P
{
Qdiff

a ≥
ε

2

∣∣∣ n(s0〈H〉, a) > n

2K

}]
≤
∑
a

[
e
− n

2K2 + 2 (3BK)H e
− ε2n

4K(4BK)HH2

]
≤ 3K (3BK)H e

− ε2n
4K(4BK)HH2

(6)

The second part of Theorem 1 is obtained from the fact
that the maximal loss from choosing a sub-optimal action at
s0〈H〉 is H .

124

MaxBRUE+: Controlled Exploration
At any non-terminal node s〈h〉, the inaccuracy of theQ-value
estimators in Bellman-based MaxUCT and MaxBRUE stems
from two sources: The inaccuracy in the estimation of the
action transition probabilities, and the inaccuracy of the value
estimators that are folded up to s〈h〉 from its immediate suc-
cessors. The former is reduced with sampling actions at s〈h〉,
and the latter is reduced with sampling s〈h〉’s successors.

If we wish to optimize the formal guarantees on the conver-
gence rate, it is ideal to have these two sources of inaccuracy
balanced. This can be achieved by equating the number of
samples of the node with the number of samples of its im-
mediate successors. In fact, this is precisely what is done by
the seminal sparse sampling algorithm of Kerns et al. (2002)
for PAC (probably approximately correct) MDP planning.
However, the PAC setting does not require smooth improve-
ment of the quality of recommendation over time, and thus
the nodes can be sampled in a systematic manner. In con-
trast, in the online setup, smooth convergence is critical, and
rollout-based exploration seems to serve this purpose quite
effectively. At the same time, rollout-based exploration of
MCTS leads to unbalanced node sampling.

While we might see unbalanced node sampling as an in-
evitable cost for a justified cause, this is not entirely so. The
overall convergence rate with rollout-based exploration is
dictated by the accuracy of the estimates at the nodes that
are farther towards the horizon from s0〈H〉. Due to branch-
ing, these nodes are expected to be sampled less frequently.
However, since the search spaces induced by MDPs most typ-
ically form DAGs (and not just trees), a node with multiple
ancestors might possibly be sampled more than each of its
ancestors. In terms of the formal guarantees, the latter type
of imbalance is worthless, and samples are better be diverted
to nodes that are sampled less than their immediate ancestors.

A rather natural way to control this type of imbalance is by
modifying the protocol for stopping a rollout. Given the last
sample 〈s, a, r, s′〉 along the ongoing rollout, if the number
of samples n(s〈h〉, a) is smaller than the number of samples
n(s′〈h− 1〉, a′) of some action a′ ∈ A(s′) applicable at the
resulting state s′, the rollout is stopped. Supported by the
formal analysis of MaxBRUE in the proof of Theorem 1, we
slightly modify the latter condition as follows:

• We replace the requirement depicted above with a weaker
one whereby the overall number of updates n (s′〈h− 1〉)
of the resulting state s′ is at least K times larger than
n (s〈h〉, a).

• We multiply the counter n (s〈h〉, a) by B · P(s′|a, s′). If
P(S|a, s′) induces a uniform distribution over the plausi-
ble outcomes of a at s, this modification changes nothing.
At the same time, for more/less probable outcomes s′, this
modification implies a stronger/weaker condition, respec-
tively.

The substitution of the sub-procedure STOP-PROBE of
MaxBRUE with that depicted in Figure 5 constitutes the
stratified algorithm MaxBRUE+.

Note that, in the proof of Theorem 1, we make use of the
fact that n(s′〈h− 1〉) ≥ n(s〈h〉, a, s′) to replace the former

procedure STOP-ROLLOUT(ρ)
d← |ρ|
h← H − d
s← ρ[d].s
a← ρ[d].a
s′ ← ρ[d].s′

S(s, a)← {s′ | n(s〈h〉, a, s′) > 0}
if n (s′〈h− 1〉) > K · |S(s, a)| · n (s〈h〉, a, s′) then

return true
return (d = H or A(ρ[d].s′) = ∅)

Figure 5: MaxBRUE+ as MaxBRUE with a modified STOP-
PROBE procedure

with the latter in the bounding in Eq. 4. Therefore, enforc-
ing the more conservative n(s′〈h− 1〉) ≤ K · |S(s, a)| ·
n(s〈h〉, a, s′) does not affect the bound. At the same time,
it is easy to see that (i) the two sources of inaccuracy are
balanced when n(s′〈h− 1〉) = K · |S(s, a)| · n(s〈h〉, a, s′),
and (ii) beyond this point, the node accuracy is surpassed by
the accuracy of its children.

Experimental Evaluation
Our empirical study comprises two sets of experiments, com-
paring four algorithms: MaxUCT (Keller and Helmert 2013),
MpaUCT, MaxBRUE, and MaxBRUE+. In the first set, we
evaluate the four algorithms in terms of their reduction of
simple regret in the Sailing domain (Péret and Garcia 2004).
In this domain, a sailboat navigates to a goal location on an 8-
connected grid, under fluctuating wind conditions. At a high
level, the goal is to reach a concrete destination as quickly
as possible, by choosing at each grid location a neighbor
location to move to. The duration of each such move depends
on the direction of the move (ceteris paribus, diagonal moves
take
√

2 more time than straight moves), the direction of the
wind relative to the sailing direction (the sailboat cannot sail
against the wind and moves fastest with a tail wind), and
the tack. In Figure 6, we plot the empirical simple regret
for increasing deliberation times for two grid sizes, 20× 20
and 40 × 40, averaged over 2000 runs with varying origin
and goal locations. It is interesting to see that MaxBRUE
clearly dominates MaxUCT (and MpaUCT), right from the
beginning, unlike the case of BRUE and UCT whereby UCT
performs better until some point.2 Figure 6 also demonstrates
the benefit of the exploration control of MaxBRUE+, as well
as the benefit of using the MPA-backup of MpaUCT.

The second set of experiments compares between the em-
pirical reward collected by the four algorithms on five IPPC-
2011 domains, Game-of-Life, SysAdmin, Traffic, Crossing,
and Navigation. (Almost all of the tasks in these domains
are simply too large for us to examine simple regret.) From
each domain, we chose four tasks, I1, I3, I5, I10, with higher
indexes corresponding to tasks of higher complexity. Each
algorithm was given a deliberation budget that decreased
linearly from 10 seconds in the first step to 1 second in the

2For simple regret analysis on the Sailing domain with longer
deliberation times, we refer the reader to Feldman & Domshlak
(2013).

125

K B H
Sailing 8 3 4p

Navigation 5 2 40
Crossing 5 2p 40

SysAdmin p 2p 10

Game-of-Life p2 2p
2

10

Traffic 2p
2

22p 10

(a) Domain parameters (b) Navigation (c) Crossing

(d) SysAdmin (e) Game-of-Life (f) Traffic

Figure 7: (a) Structural and experimental parameters of the Sailing and IPPC-2011 domains, and (b-f) scores for the different
MCTS algorithms as their normalized improvement over a trivial baseline

last step. For each domain, Figure 7(a) depicts the general
bound on the state branching factor K and the action branch-
ing factor B, as well as the specific horizon H used in the
experiments, all as functions of a domain-specific parameter
p that scales linearly with the instance index. (H > 10 was
used in goal-oriented domains.)

Figures 7(b-f) plot the score of the four algorithms based
on 700 samples, normalized between 0 and 1 as their average
improvement over a trivial baseline of random action selec-
tion. With the exception of the SysAdmin domain3, it appears
that the results are quite similar for all algorithms. However,
the relative performance differences seem to comply with the
analysis of Bubeck et al. (2010) for online planning in MABs.
Specifically, Bubeck et al. (2010) observed that, despite the
superior convergence rate of uniform sampling in general,
the bounds provided by the UCB(α)-based exploration can
be more attractive if the sample allowance is not permissive
enough with respect to the number of actions K. In case
of more general MDPs, the “structural complexity” of the
problem is determined not only by K, but also by the ac-
tion branching factor B and the horizon H . In that respect,
considering the “structural complexity” of the domains de-
picted in Figure 7(a), the results in Figures 7(b-f) are in line
with the relative pros and cons of the uniform and UCB(α)
explorations.

3At this stage, the dramatically superior performance of
MaxBRUE+ instance I10 of the Navigation domain should be
considered a positive anomaly, and not given any deep generalizing
explanations.

• In Sailing, Navigation, and Crossing, both K and B grow
reasonably slowly with the size of the problem. This makes
our fixed time budget reasonably permissive (and thus
gives the advantage to uniform exploration) across the
instances.

• In the domains of intermediate structural complexity,
Game-of-Life and SysAdmin, the same time budget ap-
pears to be reasonably permissive on the smaller instances,
giving an advantage to uniform exploration, but then the in-
stances grow rather fast, giving an advantage to the UCB1-
based algorithms.

• In Traffic, both K and B grow exponentially fast with the
size of the problem, making the time budget we fixed to
be too small for the uniform exploration to shine even on
the smallest instance.

Summary
By drawing ties between online planning in MDPs and
MABs, we have shown that the state-of-art MC planning
algorithms UCT, BRUE and MaxUCT, as well as the two
newly introduced MaxBRUE and MpaUCT, borrow the the-
oretical and empirical properties of their MAB counterparts.
In particular, we have proven that the exponential conver-
gence of uniform exploration with recommendation of the
empirically best action in MABs applies also to MaxBRUE,
resulting in the best known convergence rates among online
MCTS algorithms to date. Moreover, in line with MAB re-
sults, the superiority of MaxBRUE with a permissive budget
as well as the superiority of the UCB(α)-based exploration

126

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time (sec.)

MaxUCT
MpaUCT
MaxBRUE
MaxBRUE+

20× 20

0 10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Time (sec.)

MaxUCT
MpaUCT
MaxBRUE
MaxBRUE+

40× 40

Figure 6: Simple regret reduction over time in the Sailing
domain by different MCTS algorithms

algorithms MaxUCT and MpaUCT with a moderate budget
has been demonstrated empirically. We have also shown
that a particular exploration control mechanism applied to
MaxBRUE substantially improves its performance. We be-
lieve that this mechanism and variations of it can be valuable
to other online planning algorithms as well. Finally, other
exploration strategies that are found appealing in the context
of MABs can also be ”converted” to MDPs following the
lines of this work.

Acknowledgements This work was partially supported by
the EOARD grant FA8655-12-1-2096, and the ISF grant
1045/12.

References
Balla, R., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In IJCAI, 40–45.
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower
bounding Klondike Solitaire with Monte-Carlo planning. In
ICAPS.
Bonet, B., and Geffner, H. 2012. Action selection for MDPs:
Anytime AO∗ vs. UCT. In AAAI.

Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte-
Carlo tree search methods. IEEE Trans. on Comp. Intell. and
AI in Games 143.
Bubeck, S., and Munos, R. 2010. Open loop optimistic
planning. In COLT, 477–489.
Bubeck, S.; Munos, R.; and Stoltz, G. 2011. Pure explo-
ration in finitely-armed and continuous-armed bandits. Theor.
Comput. Sci. 412(19):1832–1852.
Busoniu, L., and Munos, R. 2012. Optimistic planning for
Markov decision processes. In AISTATS, number 22 in JMLR
(Proceedings Track), 182–189.
Cazenave, T. 2009. Nested Monte-Carlo search. In IJCAI,
456–461.
Coquelin, P.-A., and Munos, R. 2007. Bandit algorithms
for tree search. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), 67–74.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
policies for the Canadian Traveler’s problem. In AAAI.
Feldman, Z., and Domshlak, C. 2012. Simple regret opti-
mization in online planning for Markov decision processes.
CoRR arXiv:1206.3382v2 [cs.AI].
Feldman, Z., and Domshlak, C. 2013. Monte-Carlo planning:
Theoretically fast convergence meets practical efficiency. In
UAI.
Gelly, S., and Silver, D. 2011. Monte-Carlo tree search
and rapid action value estimation in computer Go. AIJ
175(11):1856–1875.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A
sparse sampling algorithm for near-optimal planning in large
Markov decision processes. Machine Learning 49(2-3):193–
208.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In ICAPS, 135–143.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In ECML, 282–293.
Kolobov, A.; Mausam; and Weld, D. 2012. LRTDP vs. UCT
for online probabilistic planning. In AAAI.
Péret, L., and Garcia, F. 2004. On-line search for solving
Markov decision processes via heuristic sampling. In ECAI,
530–534.
Puterman, M. 1994. Markov Decision Processes. Wiley.
Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bull. Amer. Math. Soc. 58(5):527535.
Rosin, C. D. 2011. Nested rollout policy adaptation for
Monte Carlo tree search. In IJCAI, 649–654.
Sturtevant, N. 2008. An analysis of UCT in multi-player
games. In CCG, 3749.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Tolpin, D., and Shimony, S. E. 2012. MCTS based on simple
regret. In AAAI.

127

