
Directed Fixed-Point Regression-Based Planning
for Non-Deterministic Domains

Miquel Ramirez and Sebastian Sardina∗

School of Computer Science and IT
RMIT University

Melbourne, Australia
{miquel.ramirez,sebastian.sardina}@rmit.edu.au

Abstract

We present a novel approach to fully-observable nondeter-
ministic planning (FOND) that attempts to bridge the gap be-
tween symbolic fix-point computation and recent approaches
based on forward heuristic search. Concretely, we formal-
ize the relationship between symbolic and dynamic program-
ming nondeterministic planners, and then exploit such con-
nection to propose a novel family of planning algorithms that
reasons over symbolic policies in a directed manner. By do-
ing so, our proposal reasons over sets of states and executions
in a succinct way (as done by symbolic planners) while bias-
ing the reasoning with respect to the initial and goal states of
the specific planning problem at hand (as done by heuristic
planners). We show empirical results that prove this approach
promising in settings where there is an intrinsic tension be-
tween plan efficiency and plan “robustness,” a feature to be
expected in nondeterministic domains.

Introduction
As classical planning has enjoyed unprecedented progress
over the last decade or so, more generalised forms of plan-
ning have lately attracted much attention in the community.
Indeed one highly active area of work today is that of fully-
observable non-deterministic planning (FOND), in which
the outcomes of an action are uncertain, but observable af-
ter execution (Daniele, Traverso, and Vardi 2000). The work
presented in this paper aims at providing the missing link
between two mainstream approaches to FOND planning.

When it comes to planning in non-deterministic settings,
two state-of-the-art approaches stand out. One approach in-
volves levering on the efficiency of latest classical planning
techniques, and hence building a FOND planner on top of a
classical one. This is the case of recent successful planners
like PRP (Muise, McIlraith, and Beck 2012), NDP (Kuter
and Nau 2008), and FIP (Fu et al. 2011). Roughly speak-
ing, the idea is to first build a weak plan—a linear plan that
achieves the goal under specific action outcomes—using a
classical planner, and then iteratively fill its “gaps” by syn-
thesizing more plans, again using classical planners, that
handle contingencies not yet accounted for. In that way, a
set of weak plans is incrementally put together until all po-
tential outcomes of actions are accounted for and a com-

∗We acknowledge the support of the Australian Research Coun-
cil under a Discovery Project (grant DP120100332).

plete plan solution, so-called a strong-cyclic plan, is ob-
tained. At a conceptual level, these can be somehow linked
to conditional planners developed in the early nineties, such
as WARPLAN-C (Warren 1976) and PLINTH (Goldman and
Boddy 1994), in that a systematic case reasoning on con-
tingencies is performed by repeatedly invoking an underly-
ing linear planner.1 While reliance on (fast) classical plan-
ners allows these FOND systems to generate weak plans
quickly, there is no guarantee such plans are “robust” w.r.t.
contingencies: the most efficient weak plans may not be the
most robust ones. This is the case, for example, in problems
like Triangle-Tireworld (Little and Thiébaux 2007) where,
as recognized by (Muise, McIlraith, and Beck 2012) them-
selves, the “attractive nature of driving straight to the goal”
may go against building robust plans.

Another powerful and popular approach to FOND plan-
ning is that pursued by so-called “symbolic” planners. The
basic idea is that, as the non-determinism contributes to
the the exponential growth in the search space (Rintanen
2004), a compact symbolic description of sets of states
as well as of non-deterministic transition functions should
yield great benefit. Indeed, planners based on ad-hoc fix-
point CTL model checking algorithms, like MBP (Cimatti et
al. 2003), or reductions into abstract two-player games, like
GAMER (Kissmann and Edelkamp 2009), are able to rea-
son over such succinct representations in order to synthesise
plans accounting for all potential contingencies. By doing
so, they somehow prioritise the “robustness” aspect of plans.
Besides the complexity involved in some operations over
such representations (Ferrara, Pan, and Vardi 2005), a ma-
jor drawback of these systems however is their inability to
discriminate which transitions are relevant to the initial state.
As a result, they could end up wasting a substantial amount
of computational resources on areas of the state space that
are not relevant to the problem at hand (Fu et al. 2011).

In this paper we present GRENDEL, a FOND planner built
around a novel, yet simple, non-deterministic regression op-
erator inspired by the work in (Rintanen 2008). We shall ar-
gue that the proposed approach constitutes a middle ground
between the two mainstream strategies for FOND planning

1The difference with old conditional planners though is strik-
ing, in terms of scalability and generality (unlike old conditional
planners, FOND planners are not restricted to tree-like plans).

235

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

described above. Informally, GRENDEL can be seen as a di-
rected fix-point based regression planner, where search over
a huge set of simple formulas replaces expensive symbolic
manipulation over one single succinct formula, providing
thus an important step towards closing the gap between sym-
bolic and heuristic planners. In providing our technique, we
shall relate the approach to various techniques and ideas in
the literature and evaluate GRENDEL over the benchmarks
from past IPC’s and those discussed in (Little and Thiébaux
2007), comparing with PRP. As hypothesised, the technique
proposed works best when there is a clear tension between
plan efficiency and robustness.

Preliminaries
Fully Observable Non–Deterministic Planning
We mostly follow the characterisation of non-deterministic
planning given in (Rintanen 2008), as it provides a more
formal framework than others to work on. However, such
account is indeed equivalent to the usual “oneof” clauses
in PDDL based characterisations (Bonet and Givan 2005).
For simplicity, though, we do not consider here conditional
effects, which are not actually required in the benchmarks
considered to evaluate the approach.

A FOND planning problem is a tuple P = 〈A, s0, O,G〉
consisting of a set of Boolean state variables A (atoms), an
initial state s0, a goal condition G as a conjunction of lit-
erals l ∈ L(A), where L(A) = {a,¬a | a ∈ A}, and
operator set O. A state s is a consistent set (or conjunc-
tion) of literals such that |s| = |A|—every atom is either
true or false. We use S to denote the set of all states of task
P A condition φ is a consistent conjunction of literals with
|φ| < |A|. An operator is a pair o = 〈Preo,Eff o〉, where
Preo is a condition describing the preconditions of operator
o, and Eff o = e1 | · · · | en the (non-deterministic) effects
of o, where each ei is a (deterministic effect) condition and
n ≥ 1. The intended meaning is that one of the ei events
ensue non-deterministically, by Nature’s choice.

An operator o = 〈Preo,Eff o〉 is executable on a state s
if s |= Preo. The successor states resulting from execut-
ing operator o in state s, denoted next(o, s), is defined as
next(o, s) = [Eff o]s, where [·]s is defined as follows: (l de-
notes the complement of literal l)

[e1 | · · · | en]s =
n⋃
i=1

{(s \ {l | ei |= l}) ∪ {l | ei |= l}}.

Note that [Eff o]s denotes, in general, a set of states (one per
non-deterministic effect); if o is deterministic (i.e., Eff o =
e), then [Eff o]s contains one single successor state s′.

An execution is a, possibly infinite, sequence of state-
action pairs λ = s0o0s1o1 · · · , where si+1 ∈ next(si, oi),
for i ≥ 0. An execution is acyclic iff si 6= sj , for all j < i.
An infinite execution λ is fair when for each state-action
pair so that appears an infinite number of times in λ, the
triplet sos′ also appears an infinite number of times, for each
s′ ∈ [Eff o]s. In other words, fair executions assume that
the effects of an operator are exactly those with non-zero
probability—every effect would eventually ensue.

The semantics of a planning task P are given by the un-
derlying non-deterministic state modelM(P) = 〈S, s0, O∪
{g, d}, A′, F, sG, c〉, where:

1. S = {s | s is a state in P}.
2. s0 is P’s initial state and sG = {s | s ∈ S, s |= G}.
3. D(s) denotes all actions doable in state s and is defined as

(i) D(s) = {g}, if s ∈ sG; (ii) D(s) = {o | o ∈ O, s |=
p}, if {o | o ∈ O, s |= Preo} 6= ∅; and (iii) D(s) = {d},
otherwise. Dummy actions g and d are used to portray the
absorbing nature of goal and dead-end states, resp.

4. F : S × O ∪ {g, d} 7→ 2S is M(P)’s transition function
and defined as follows: F (s, g) = F (s, d) = {s} and
F (s, o) = next(s, o), for all o ∈ O and s ∈ S;

5. c(g) = 0, c(d) = ∞, and c(o) = 1 for all o ∈ O is the
M(P)’s action cost model.
A policy (or conditional plan) is a set of pairs 〈φ, o〉 map-

ping conjunctions of A-literals φ onto operators o ∈ O such
that φ |= Preo. The set of operators prescribed by policy π
on state s is set π(s) = {o | s ∈ S, 〈φ, o〉 ∈ π, s |= φ}.
A policy π defines a set of possible executions Λπ , made
up of executions λπ = s0o0s1 · · · sioisi+1 · · · , where s0 is
M(P)’s initial state, oi ∈ π(si), si |= Preoi , and si+1 ∈
F (si, oi), for all i ≥ 0. The set of states relevant to a policy
π is defined as Sπ =

⋃
λ∈Λπ

{si | si ∈ λ} (we abuse nota-
tion and write s ∈ λ to say that execution λ mentions state
s). A policy π is closed iff

⋃
o∈π(si)

next(o, si) ⊆ Sπ for all
states si ∈ Sπ .

The cost of execution λ is defined as C(λ) =∑
ai∈λ c(ai). The worst-case cost function V πmax(·) and

best-case cost function V πmin(·) of a policy π are de-
fined (Geffner and Bonet 2013) as:

V πmax(s) =

{
min
o∈π(s)

c(o) + max
s′∈F (s,o)

V πmax(s′) if s 6∈ sG

0 if s ∈ sG

V πmin(s) = min
o∈π(s)

c(o) + min
s′∈F (s,o)

V πmin(s′).

Observe that the worst-case cost V πmax(s) may turn out to be
infinite for many policies π, and that V πmin(s) captures the
“best” or “optimistic” accumulated cost attained by execut-
ing policy π.

Finally, a policy π is a strong cyclic solution for M(P)
iff π is closed and all possible executions λ ∈ Λπ are ei-
ther finite and ending in a goal state or are infinite and un-
fair (Daniele, Traverso, and Vardi 2000). Strong cyclic poli-
cies turn out to be those for which V πmin(s) is finite for all
s ∈ Sπ and capture the idea that the goal will be eventually
achieved if the domains behave fairly: all actions’ outcomes
will eventually ensue. Strong policies are a special case of
strong cyclic policies, for which all executions are finite and
acyclic: they solve the planning problem in a bounded num-
ber of steps.

Computation Tree Logic and FOND planning
Computation Tree Logic (Clarke and Emerson 1982) (CTL)
has been proved to be a convenient framework for describing

236

the notion of strong cyclic policies in a precise and concise
manner (Daniele, Traverso, and Vardi 2000). In this paper,
we shall use the following restricted subset of CTL formulas:

φ ::= a | ¬a | do(o) | (φ∧φ) | AXφ | EXφ | AGφ | EFφ,

where a ranges over the set of state variables A and do(o) is
an auxiliary propositional variable denoting that operator o
is executed. Formula AXφ states that all next states satisfy
φ, whereas EXφ states that there exist one successor state
satisfying φ. Formula AGφ denotes that in all executions,
formula φ holds always, that is, φ is true along all execu-
tions. Similarly, EGφ states that there exists one execution
in which φ always holds (i.e., holds in every state of the ex-
ecution). The meaning of such CTL formulas is given over
the states and paths of a transition system, with a branching-
time interpretation of time.

Importantly there is a direct mapping relating non-
deterministic state modelM(P) and policies π, as described
above, to the Kripke structures commonly used to define
CTL’s semantics. It follows then that:

policy π is strong cyclic for a planning problem P
if and only if

K
M(P)
π , s0 |= AG(EFG) holds,

where KM(P)
π is the CTL branching-time Kripke structure

induced by executing policy π on planning problem P . In
words, starting from the initial state s0, whatever actions we
choose to execute and whatever their outcomes are, we al-
ways (AG) have a way of reaching the goal (EFG). Inter-
estingly, because strong cyclic plans are closed, this prop-
erty applies to every relevant state of the policy, that is,
K
M(P)
π , s |= AG(EFG), for every s ∈ Sπ .
We close by noting that symbolic FOND planners such as

MBP (Cimatti et al. 2003) cast the problem of computing a
strong cyclic policy as that of checking if the set of strong
cyclic policies admitted by M(P) is not empty. Such plan-
ners have the ability to reason about sets of states and transi-
tions, as well as sets of (partial) policies, in a compact man-
ner, by relying on symbolic representations like OBDDs.This
is appealing for FOND planning since it is necessary to rea-
son about multiple potential executions of a plan due to non-
deterministic effect of actions. However, such techniques are
tailored towards finding closed policies, regardless of the ini-
tial state—they are undirected.

Regression Search under Non-deterministism
In this section, we will lay down the abstract framework
behind our FOND planning strategy, to be detailed in the
next two sections. The idea, informally, is to synthesise a
strong cyclic policy by searching through a so-called “causal
graph” built by applying a regression operator on conditions
φ. In doing so, moreover, we argue that such framework
can also be used to understand the operation of other FOND
planners.

The regression of a condition φ with respect to operator
o=〈Preo, e1 | · · · |en〉 is defined as follows (Rintanen 2008):

R(φ, o) = Preo ∧ (R(φ, e1) ∨ · · · ∨ R(φ, en)),

φ1
0

φ1

φ2

G

o1

o4o6

o4

g

φ2
0

φ3

o2

d

φ3
0

φ4

φ5

o3

o5o7

Figure 1: An example of a causal graph CG(P) and the G-
relevant graph CG(P,G) within dotted lines. Root nodes φi0
correspond to formulas satisfied by P’s initial state s0.

whereR(φ, e) for deterministic effect e is as follows:

R(a, e) = True, if a ∈ A and e |= a;
R(a, e) = False, if a ∈ A and e |= ¬a;
R(a, e) = a, if a ∈ A, e 6|= a and e 6|= ¬a;

R(φ1 ∧ φ2, e) = R(φ1, e) ∧R(φ2, e);
R(φ1 ∨ φ2, e) = R(φ1, e) ∨R(φ2, e);
R(¬φ1, e) = ¬R(φ1, e).

Intuitively, the regression operator implicitly identifies the
subset of the state space S containing those states which are
causally relevant to an arbitrary formula φ. Using such rela-
tion, we can build a structure encoding all such relations.
Definition 1. Let P = 〈A, s0, O,G〉 be a FOND problem.
The causal graph ofP is a triple CG(P) = 〈V,L,E〉, where:
• V={φ |φ is a conjunction of literals l ∈ L(A)} is the set

of vertices;
• L = O ∪ {g, d} is the set of labels;
• The set of edges is defined as E = E1 ∪ E2, where:

– E1 = {〈φ, ψ〉o | φ, ψ ∈ V, o ∈ O,φ |= R(ψ, o)};
– E2 = {〈G,G〉g}∪{〈φ, φ〉d | φ ∈ V, 6 ∃ψ, o.〈φ, ψ〉∈E}.
Intuitively, an edge 〈φ, ψ〉o means that executing operator

o in a state where φ is true may result in a successor state
where ψ is true. Set of edges E1 accounts for the dummy
actions g and d to loop over the goal and dead-ends.

Clearly, graph CG(P) includes nodes with no relation
with the goal—there is no path from them to vertex G.
Definition 2. The causal relevant graph of P for goal G,
denoted CG(P,G), is defined as the sub-graph of CG(P)
obtained by restricting to those vertices from where there is
a (directed) path to the (goal) vertex G.

An example of a causal graph and its relevant fragment is
depicted in Figure 1. In a relevant causal graph, every ver-
tex is related to the goal. More concretely, each of the edges
〈φ, ψ〉o in CG(P,G) corresponds exactly with the CTL state-
ment φ ∧ do(o) |= EFG: if φ is true and o is executed,
there exist a (potential) execution where the goal G is in-
deed achieved. It follows then that a path from any vertex
φ to the goal vertex G encodes a set of weak solutions from

237

any state where φ holds, as formulas implicitly denote sets
of states.

We argue then that, besides our planner (to be described in
the next sections), other FOND techniques are also, in some
way or another, exploring/building this G-relevant sym-
bolic graph. For example, the FOND sate-of-the-art plan-
ner PRP (Muise, McIlraith, and Beck 2012) continuously
builds paths in CG(P,G) from a given vertex φ (initially
one characterizing the initial state s0) to the goal vertex G
by first issuing calls to a (forward) classical planner over the
all-outcomes determinization of P (Yoon, Fern, and Givan
2007) and then generalizing the weak plan solution to ac-
count for more states per step by using a regression operator
analogous toR(·, ·).

Though in a very different manner, Cimatti et al. (2003)’s
MBP planner can also be seen as operating on the causal
relevant graph of a planning problem. Indeed, the mod-
els of the formula generated through the pre-image proce-
dure WEAKPREIMAGE correspond exactly with the paths in
graph CG(P,G). Thus, if there is no vertex φ in CG(P,G)
such that s0 |= φ (i.e., the initial state is not relevant for
the goal), then one can conclude that there is no weak pol-
icy solving planning task P . A subtle, but important, differ-
ence is that MBP puts all states denoted by the regression
step (via WEAKPREIMAGE) together, whereas CG(P,G)
separates the regression w.r.t. both operators and their non-
deterministic effects. Technically, let JφK = {s | s ∈
S, s |= φ} be the set of states where φ holds and con-
sider the predecessors of a node φ in CG(P,G), denoted
Pred(φ, o) = {φ′ | 〈φ′, φ〉o ∈ E}.
Theorem 1. For every vertex φ in CG(P,G) and o ∈ O,

WEAKPREIMAGE(JφK) =
⋃
o∈O

(JPred(φ, o)K× {o}).

PROOF (SKETCH). The proof relies on the following equal-
ities stating that each disjunct term ofR(φ, o) denotes a sub-
set of Pred(φ, o), namely, those states for which the execu-
tion of o and the occurrence of the i-th effect of o result in a
state satisfying φ:

JPred(φ, o)K = JR(φ, o)K;
= {s | s |= Preo, s′ ∈ next(s, o), s′ |= φ};
=

⋃
i∈{1,...,n}

{s | s |= Preo ∧R(φ, ei)};

= {s | 〈s, o〉 ∈ WEAKPREIMAGE(JφK)}.

This “separation” of the weak pre-image shall facilitate
directing the fix-point computation for extraction a strong-
cyclic solution. Whereas MBP iteratively manipulates, im-
plicitly, all state-action pairs that are one, two, three and so
on steps away from the goal, the graph CG(G,P) will be ex-
plored un-evenly—not in a uniform manner—by expanding
those state-action pairs that are more “promising” w.r.t. the
initial state first.

We close by noting also a very interesting relationship
between the optimistic min-min relaxation V πmin(s) defined
above and the value of the policies induced by CG(P,G).

1: procedure BACKWARDSPOLICYSEARCH
2: πAG ← {〈G, g〉}; πoAG ← πAG; πP ← ∅;
3: repeat
4: π′P ← πP ; π′AG ← πAG . Regression phase
5: 〈φ, o〉 ← GetBest(πoAG);
6: if s0 |= φ then return πAG;
7: πoAG ← πoAG \ {〈φ, o〉};
8: for o′ ∈ O do
9: πP ← πP ∪ Regress(φ, o′);

10: while Ψ do . Checking phase
11: 〈φ, o〉 ← GetBest(πP);
12: [Y, Z]← Check(〈φ, o〉, πAG, πP);
13: πoAG ← πoAG ∪ Y ; πAG ← πAG ∪ πoAG;
14: πP ← πP ∪ Z;
15: until (π′P = πP and π′AG = πAG)

Figure 2: Basic scheme for backwards policy search. Outer
loop is finished when neither target or base policies change.

Theorem 2. Let P = 〈A, s0, O,G〉 be a planning task, and
〈φ, ψ〉o an edge of CG(P,G) = 〈V,L,E〉. Then, for every
φ ∈ V and state s ∈ S such that s |= φ:

V πmin(s) = min
o∈O

Qmin(φ, o),

where Q(φ, o) is defined as:

Qmin(φ, o) = c(o) + min
ψ∈{ψ|〈φ,ψ〉o∈E}

min
o′∈O

Qmin(ψ, o′).

IntuitivelyQmin(φ, o), for a vertex φ in the relevant graph,
is the optimistic cost of all possible policies induced by
CG(P, G) prescribing operator o in any state where φ holds.

This result is important in that it formalises the insight
in (Geffner and Bonet 2013, pp. 77) hinting at a deep con-
nection between symbolic synthesis (Daniele, Traverso, and
Vardi 2000) and dynamic programming (Puterman 1994).

Policy Search
The relationship between dynamic programming and rea-
soning over the symbolic causal graph, as crystallised in
Theorem 2, suggests many novel approaches to the problem
of searching for strong cyclic policies effectively. We pro-
pose one, of many possible, general algorithm in Figure 2,
which basically generates graph CG(P,G) in a systematic,
incremental, and directed way towards the initial state. The
suggested scheme is best understood as a backwards formu-
lation of AO∗ algorithm (Nilsson 1982).

Algorithm BackwardsPolicySearch operates on two poli-
cies, the target policy πAG and the base policy πP ,2 both
initialized in line 1 and defined as sets of so-called policy
nodes pairs 〈φ, o〉 prescribing the execution of operator o in
states satisfying φ. The target policy is meant to be “closed”
in that all its policy nodes yield successor states that are al-
ready accounted in the policy. In fact, πAG is basically en-
coding a fragment of the causal relevant graph CG(P,G)

2In terms of AO∗’s nomenclature, πAG corresponds to the best
partial solution graph, whereas πP corresponds to the so-called
explication graph.

238

that is closed and contains the goal vertex. A subset of the
nodes in such fragment, namely set πoAG ⊆ πAG, are con-
sidered “open”: they are the active nodes and outer “tips” of
the partial policy πAG that are up for (further) regression.
The idea, thus, is to grow πAG until the initial state s0 is
accounted for.

So, exploration of graph CG(P,G) is performed between
lines 5 and 9. In line 5, the “best” active policy node 〈φ, o〉
in the (current) target policy πAG is selected heuristically.
If such node corresponds to P’s initial state (line 6), then a
solution has been found, namely πAG). Otherwise, the al-
gorithm further extends the causal graph by regressing the
chosen node w.r.t. every domain operator (lines 8 and 9). All
generated new nodes are placed into the base policy πP for
further checking and processing.

The selection of which open policy node in the target pol-
icy to further regress is central to our proposal and embodies
the “directness” of our fixed-point computation: we regress
a “robust” policy node—one that has already been proven
to be part of a closed policy to the goal—that is most promis-
ing w.r.t. the initial state of the planning task. Concretely, the
GetBest(π) function selects a policy node in π minimising
the following evaluation function:

f(〈φ, o〉) = Wh(φ) +Q(φ, o),

where h(φ) is a heuristic estimator to measure the cost-
to-go from the initial state s0 to a formula φ, Q(φ, o) is
the value function for the best known policy with execu-
tion λ = so · · · , where s |= φ, and W is a weight factor
that helps regulating how “greedy” the search is. When a
new policy node 〈φ, o〉 is created, Q(φ, o) is initialised to
the length of the path (in the fragment of CG(P,G) gener-
ated so far) from node φ (and outgoing edge o) to node G,
which can be greater or equal to the actualQmin(φ, o) value.
We note that theseQ(φ, o) can be revised, performing policy
backups for instance, when a cheaper path to φ in CG(P,G)
is uncovered. When it comes to the heuristic h(·) we shall
rely, in practice, on functions related to the min-min relax-
ation (Geffner and Bonet 2013).3

Let us now discuss the actual expansion via regres-
sion (lines 8 and 9). Basically, procedure Regress applies
R(φ, o) and generates a new policy node 〈φ′, o′〉 for each of
the DNF clauses inR(φ, o). Provided φ′ 6= ⊥ (i.e., the node
is not inconsistent) and h(φ′) <∞, the policy node is added
to the “pending” basic policy πP . Note that if h(φ′) = ∞,
then the formula denotes a state that is not reachable from
P’s initial state s0 and hence is not relevant for the planning
task. Non-directed symbolic planners, like MBP, would still
consider those nodes.

After the target policy has been expanded once, the algo-
rithm enters into the “checking” phase (lines 10 to 14). In-
tuitively, in this phase the algorithm checks—via procedure
Check—whether a policy node 〈φ, o〉 in the base policy πP
already entails “desired properties” and should be moved to

3Since they have proven effective on nondeterministic reformu-
lations of IPC benchmarks (Muise, McIlraith, and Beck 2012), we
will especially focus on approximations of the optimal plans for the
all-outcomes relaxation (Yoon, Fern, and Givan 2007).

the target policy πAG. In our case for strong cyclic policies,
Check seeks to verify the entailment of property AG(EFG)
for the chosen node.4 When this happens, a set of policy
nodes Y , including the one selected for checking and any
other policy nodes that Check finds necessary for the proof,
is incorporated into the frontier/tip of the target policy (line
13). As a side-effect of its execution, procedure Check may
also generate new policy nodes Z to be added to the pending
base policy πP (line 14). Condition Ψ determines when the
checking phase is over and a new policy node in the target
policy needs to be regressed. The details of such condition
as well as those of procedure Check to perform the above
inferences is to be covered in the next sections.

Finally, if neither target nor base policy changes in a full
iteration, then it means that the whole causal relevant graph
CG(P,G) has been generated and no node accounts for the
initial planning state, thus proving the problem unsolvable.
We note that BackwardsPolicySearch in this case will have
computed the maximal set of partial strong cyclic policies
supported byP , and such policies would be readily available
for further analysis.

This concludes the general symbolic directed regression-
based strategy for searching policies. Let us next go over
the details of Check, the heuristic h and Ψ for synthesising
strong cyclic ones.

Recognizing Strong Cyclic Solutions
In this section, we explain the procedure Check in Backward-
sPolicySearch (Figure 2), so as to search in a directed man-
ner for strong cyclic policies. We want Check to (correctly)
recognize policies like the one shown on the left of Figure 1,
and discard those that get stuck in dead-ends (e.g., those like
the one depicted in the middle of Figure 1) or those that get
trapped inside an infinite loop where it is not possible to es-
cape even under fairness assumptions (e.g., like the ones de-
picted on the right of Figure 1).

We choose to implement Check following HDP (Bonet
and Geffner 2003) 5 in order to check that at least one of the
many greedy policies

π(φ) = argmin
o∈{o|〈ψ,o〉∈πP ,φ|=ψ}

Q(ψ, o)

is both closed and leading to states where (current) target
policy πAG can be executed. Since the directed graph Gπ
induced by the executions Λπ of π over S can be cyclic, the
problem above is cast into that of verifying that the leaf ver-
texes of the (acyclic) directed graphGCCπ , with vertexes cor-
responding with the strongly connected components (SCCs)
of Gπ , contains vertexes of Gπ where πAG is executable.
Our reformulation of the CheckSolved procedure in HDP is
detailed in Figure 3.

The backbone of both HDP and Check is Tarjan’s lin-
ear time and space algorithm for detecting the s.c.c’s in a

4We note it is possible to define Check so as to search for strong
policies or even policies adhering to weaker solution notions, such
as the ones recently by Domshlak (2013) for k-robust plans.

5Still, we note that several other goal-based MDP planning al-
gorithms could be used instead of HDP.

239

1: function CHECK (〈φ, o〉, πAG, πP)
2: Y ← ∅; Z ← ∅; W ← ∅
3: visited ← ∅; S ← ∅
4: index← 0
5: v0 = [φ, 〈φ, o〉]
6: n.index←∞
7: DFS(v0, Y, Z,W, πAG)
8: πP ← πP \W
9: return [Y, Z]

10: function GENSUCCESSORS (χ, o, Succ, Z)
11: for ei in effects of o do
12: Succ(i)← NIL; Succ(i).index←∞
13: ψ ← [e]χ
14: if ψ |= ψ′, n = 〈ψ′, 〈φ, o〉〉 ∈ visited then
15: Succ(i)← n ; continue
16: Succ(i) ← [ψ, SelectGreedyPolicy (ψ, πP)]
17: if Succ(i) = NIL then
18: for o′ ∈ O do
19: if ψ ∧ Preo′ |= ⊥ then continue
20: if h(ψ ∧ Preo′) =∞ then continue
21: Z← Z ∪ {〈ψ ∧ Pre′o, o

′〉}
22: return true
23: return false
24: function DFS (v = [χ, 〈φ, o〉], Y , Z, W , πAG)
25: if 〈φ, o〉 ∈ πAG then return false
26: if φ′ |= χ, [φ′, 〈φ, o〉] ∈ visited then return false
27: v.Succ← ∅
28: visited.push(v)
29: S.push(v)
30: v.index← v.lowlink← index
31: index← index + 1
32: flag← GenSuccessors (χ, o, v.Succ, Z)
33: if flag then return flag
34: for v′ ∈ Succ do
35: if v′.index=∞ then
36: flag← flag ∨ DFS(v′, Y, Z,W, πAG)
37: n.lowlink = min{ v.lowlink, v′.lowlink }
38: else if v′ ∈ S then
39: v.lowlink = min{ v.lowlink, v′.index}
40: if flag then return flag
41: else if v.index = v.lowlink then
42: retrieve SCC from S
43: Backup (SCC)
44: W ←W ∪ {〈φ, o〉 | [φ′, 〈φ, o〉] ∈ SCC}
45: if SCC connected to πAG then
46: Y ← Y ∪ {〈φ′, o〉 | [φ′, 〈φ, o〉] ∈ SCC}
47: else
48: Z ← Z ∪ {〈φ′, o〉 | [φ′, 〈φ, o〉] ∈ SCC}
49: return true
50: return flag

Figure 3: Algorithm for checking pending policy nodes for
strong cyclic inference.

directed graph (Tarjan 1972). The algorithm traverses the
graph Gπ in a depth-first manner, keeping track of (i) the
visit number for each vertex v (the index variable); (ii) the
SCC they belong to (the variable lowlink holds the identifier
assigned to each discovered SCC, with each vertex v ini-
tially considered to be a SCC); (iii) the set of vertexes found
along a path in Gπ (the stack S); and (iv) the set of vertexes
already visited, for which both index and lowlink have been
already set (the visited hash table).

While HDP operates on an explicit graph that contains the
possible executions of a greedy policy, we operate on an im-
plicitly represented graph Gπ , generating its vertexes v as
necessary. Each vertex v contains a policy node 〈φ, o〉 ∈ πP
and a formula χ, with χ |= φ, denoting the context where
the greedy policy π is being executed. The DFS traversal of
graph Gπ stops whenever it is found that 〈φ, o〉 ∈ πAG or
that the context χ has already been visited (lines 25 and 26).
The GenSuccessors function (lines 10 − 23) generates the
set of successor vertexes Succ of a given vertex v, by pro-
gressing the context χ through each effect ei of operator o
(line 13). This results in a formula ψ that denotes the set of
states which will be reached when ei is the actual outcome
of o. For each of these, we evaluate π(ψ) (calling the proce-
dure SelectGreedyPolicy in line 16) to obtain a policy node
〈ψ′, o′〉, thus generating further vertexes of Gπ .

It is indeed possible that SelectGreedyPolicy does not re-
turn any policy node, since BackwardsPolicySearch—unlike
standard model checking-based computations like MBP—
generates first those paths in CG(P,G) which are deemed
(by h) to lead to s0 with the least cost. If there are one
or more operators o′ such that ψ ∧ Preo′ is consistent, we
then generate new speculative policy nodes 〈ψ ∧ Preo′ , o′〉
(line 21) that are to be added to base policy πP , and force
Check to backtrack (lines 22 and 33). Doing so serves two
purposes. First, it prevents Check from degenerating into a
deep and badly informed rollout. Second, it schedules a call
of Check over 〈φ, o〉 with (hopefully) more of CG(P,G)
in πP . Since there is no guarantee that speculative nodes
ψ ∧ Preo′ are part of CG(P,G), we will avoid invoking
Check on them, until (if at all) they are shown to belong
to CG(P,G) when generated by Regress. Nonetheless, if
they are reached by further calls to Check before that, more
speculative nodes accounting for these executions will be
generated. When that occurs, Check will be performing an
iterative deepening forward search (Korf 1985), eventually
leading to terminal non-goal states or to a node 〈φ, o〉 ∈ πP
known to be in CG(P,G). The Q-values for these specula-
tive nodes, necessary to inform the greedy policy selection
in SelectGreedyPolicy, are set to

Q(ψ ∧ Preo′ , o′) = c(o) + |h(G)− h(ψ ∧ Preo′)|,

a rough yet admissible approximation on V πmin(ψ ∧ Preo′).
Whenever v is considered to be the “root” vertex of a

SCC, checking that index and lowlink match (line 41), and
not contained in a bigger SCC, we determine if any ver-
tex v′ in SCC has a successor v′′ = [χ, 〈φ, o〉] where
〈φ, o〉 ∈ πAG. This implies that SCC is connected to πAG
as well (lines 45). Otherwise, SCC may potentially be an in-
finite loop which cannot be escaped, and therefore, not part

240

of πAG. The possible divergences between the context χ and
the formulae in policy nodes 〈φ, o〉 are handled by removing
the weaker conditions φ from ΠP (line 8), previously col-
lected in the W set (line 44).

Another major divergence from HDP lies in how we per-
form the backups of the value function associated to the pol-
icy nodes,Q(φ, o). In order to ensure thatQ(φ, o) is a mono-
tone function, we cannot rely on the visit number index as
HDP does, since the topological ordering defined by such
values, in our setting, is relative rather than absolute. We
need to ensure that the order in which backups of Q(φ, o)
are done takes into account the relative distances between
the initial state s0 and the states denoted by the vertexes of
the policy graph. We achieve this by implementing SCC
with a max-heap data structure, where they are ordered ac-
cording to the heuristic value h(χ), with the visit number
index breaking any ties. If h is consistent,6 then the backups

Q(χ, o) = c(o) + max
{(χ′,o′)|[χ′,〈ψ,o′〉]∈Succ(v)}

Q(χ′, o′)

done by Backup procedure (line 43) for each vertex v =
[χ, 〈φ, o〉] in SCC will produce monotone Q(χ, o) values.7

GRENDEL: A Strong Cyclic FOND planner
The ideas discussed in the two previous sections have been
used to build a new FOND planner, called GRENDEL. We
have implemented GRENDEL in PYTHON+C++ borrowing
the extension by (Muise, McIlraith, and Beck 2012) of the
parser for deterministic PDDL in the FASTDOWNWARD
framework. We point out that we have consciously not tried
to optimize the system in any way, but rather, demonstrate
how concepts and algorithms from classical planning can be
borrowed off-the-shelf, rather than whole planning systems.

We next describe the heuristic h and the stopping criterion
Ψ that were left undefined when discussing BackwardsPol-
icySearch. So, the heuristic function used by GRENDEL is
defined as follows:

h(φ) = max{hadd(φ; s0), hγ(φ)},

where hadd(φ; s0) stands for the evaluation of the set of lit-
erals in φ on the additive heuristic (Geffner and Bonet 2013)
computed from the initial state s0 over the all-outcomes de-
terminization PD of the input FOND task P . In turn, hγ(φ)
is the heuristic that results from verifying that φ is consistent
with a CNF formula γ, consisting of binary clauses ¬l∨¬l′,
for each pair of literals l, l′ in the mutex groups (Helmert
2009) computed by FASTDOWNWARD. Formally:

hγ(φ) =

{
0 φ ∧ γ 6|= ⊥
∞ otherwise

The main reason to have h defined is this manner is to make
evaluations of policy node 〈φ, o〉 as fast to compute as pos-
sible, yet reasonably informed.

6Note that h is consistent if h(φ) ≤ c(o) + h(ψ), where ψ is
such that next(o, φ) |= ψ.

7The relationship with the values of V πmax(s) is still unknown
at the time of writing this.

Benchmark I PRP GRENDEL Ratio
TRIANGLETIREWORLD 40 40 40 .67

SCTRIANGLETIREWORLD 40 5 14 .38

FAULTS 55 55 55 2.17
FOREST 90 76 0 n/a

FIRST RESPONDERS 100 100 34 88
BLOCKSWORLD 30 30 6 2.54

Table 1: Coverage and relative run-times of PRP and GRENDEL
over several FOND benchmarks. Column I stands for the number of
instances in the benchmark, where columns PRP and GRENDEL
are the number of instances solved by each planner. The last col-
umn, shows the ratio between GRENDEL and PRP run-times av-
eraged over the instances that both planners solve within the im-
posed time and space limits (1800 seconds and 2 GBytes of mem-
ory).

The overarching idea for defining the stopping condi-
tion Ψ in BackwardsPolicySearch is that we should stop the
checking of nodes in πP for policy “closeness,” when it is
judged that it may be more promising to further expand the
outer policy nodes in the current target policy πAG instead.
Hence we define Ψ as follows:

Ψ = min
〈φ,o〉∈πP

f(〈φ, o〉) < min
〈φ′,o〉∈πoAG

f(〈φ′, o〉).

That is, algorithm BackwardsPolicySearch (Figure 2) jumps
into the regression phase so as to further Regress the best
policy node in πoAG (the frontier of the current target policy)
if such node is judged, by the evaluation function f , to be
better (i.e., closer to the initial state) than the best, not yet
“closed,” policy node in policy πP .

Evaluation and Analysis
We have tested GRENDEL and compared it with the FOND
planner PRP (Muise, McIlraith, and Beck 2012) over
the 2006 IPC benchmark BLOCKSWORLD, the 2008 IPC
benchmarks FAULTS, FIRST RESPONDERS and FOREST,
the TRIANGLETIREWORLD benchmark presented in (Lit-
tle and Thiébaux 2007), and new benchmark SCTRIAN-
GLETIREWORLD, derived from the former and the 2006
IPC benchmark TIREWORLD. SCTRIANGLETIREWORLD
results from changing the action schemas discussed in (Lit-
tle and Thiébaux 2007) for those in IPC 2006 TIREWORLD
so solutions ought to be strong cyclic policies, rather than
just strong as in the original TRIANGLETIREWORLD. In all
cases we used the FOND reformulation of these probabilis-
tic planning tasks due to Muise, McIlraith, and Beck (2012).

The results of our evaluation are shown in Table 1. As
one can see, GRENDEL outperforms PRP in TIREWORLD
and its derivatives. First, on the version of TRIANGLE-
TIREWORLD which only allows strong solutions, GRENDEL
takes 67% of PRP’s run-time (i.e., around 30% faster), and
both planners solve all instances, some of them with several
thousand operators, under 1000 seconds. Most importantly,
PRP is outperformed by GRENDEL on the strong cyclic ver-
sion SCTRIANGLETIREWORLD, both in terms of coverage
and run-time. In both domains, the optimal plans for PD are

241

not embedded in the execution of any strong or strong cyclic
policy; even if PRP copes with this issue when the solution
is acyclic, this ability does not seem to carry over to prob-
lems with cyclic policies.8 This highlights the limitations
of relying on incrementally extending weak plans obtained
from classical planners on domains where there is a tension
between plan efficiency (execution length) and robustness
(guarantees on executions achieving the goal). GRENDEL
directed regression approach, instead, only extends robust
plans and performs less search than PRP.

On the other hand, GRENDEL performance on the last
four benchmarks is clearly not as good as PRP, both in terms
of coverage and speed. Arguably, these four domains may
not be considered “nondeterministically interesting” (Little
and Thiébaux 2007), as opposed to the first two. In particu-
lar, they have the property that almost every weak plan is an
execution of some strong cyclic solution. This suggests we
need to consider a more diverse set of “nondeterministically
interesting” domains, with parameters that allow to precisely
control to what degree instances are “interesting”.

Nonetheless, we have identified three causes for
GRENDEL’s poor performance, which could inform future
work. First, the regression-based reasoning results in huge
numbers of inconsistent formulae (i.e., states) being pro-
duced, by both Regress and Check, when generating spec-
ulative nodes for consideration. Since hγ is generally very
poorly informed in those domains, those impossible states
are not identified as such. Forward planners will, of course,
never encounter those states as they are assumed to be-
ing with a consistent initial state. Incorporating “consistent”
state constraints restricting legal initial states (e.g., it is not
legal to have a circular block tower or be holding two blocks
simultaneously), as typically done in reasoning about ac-
tion (Reiter 2001), would address this problem immediately.

Second, in many cases, the all-outcomes determinization
has no valid (weak) plans from many states, and this is
swiftly reported by the very efficient classical planner em-
bedded in PRP. In an extreme case, for example, 25 in-
stances of FIRST RESPONDERS domain has no weak solu-
tion from the initial state itself. Allowing GRENDEL to per-
form a quick “weak” solution existence test right from the
start would close the gap in the benchmark tested. However,
this may not be an adequate long-term solution, as classi-
cal planners and standard deterministic domains are not well
suited for cases admitting no (weak) solution at all—a clas-
sical planner may just never return.

Third, and most interesting, we have observed GRENDEL
to pursue, simultaneously, a huge number of partial
strong cyclic policies—all with the same Q-value—
in BLOCKSWORLD, FIRSTRESPONDERS, and even
(SC)TRIANGLETIREWORLD instances. That is, GRENDEL
oscillates from policy to policy rather than committing
to one of them. The fact is that, in a problems with
reversible operators like BLOCKSWORLD, the heuristic

8Personal communication with Christian Muise indicates that
PRP’s performance may be due to PRP’s inability to generalize
dead-ends in the problem that are not dead-ends in PD , and short-
comings in the strong-cyclic detection algorithm used.

guidance provided by the values of hadd is clearly not
enough to force the required commitment. Developing
the notion of helpful operators (Hoffmann and Nebel
2001) in regression search or incorporating techniques to
restrict search oscillation as in (Dionne, Thayer, and Ruml
2011)’s Deadline-Aware-Search, are two possible avenues
to handle this issue. Finally, the FOREST scenario—a grid
navigation problem where in order to proceed towards the
destination it is necessary to solve a small classical planning
problem—happens to combine all the three characteristics
above and completely defeats GRENDEL.

We close by noting that we have also tested MBP on the
TIREWORLD instances. As expected, GRENDEL performs
better (≈ 10× faster in solvable cases, and ≈ 2.5× faster in
unsolvable ones). While this should not come as a surprise—
after all GRENDEL is a type of directed MBP—we think
such comparison is not too meaningful at this point and a
comparison should be made with more state-of-the-art veri-
fication systems, such as game solver NuGAT.9

Conclusions
We have provided a middle ground between directed search
and symbolic regression-based reasoning for planning un-
der nondeterministic actions. Our proposal is able to reason
about set of states and transitions in a succinct way (as sym-
bolic approaches do) while biasing the plan/policy genera-
tion (as heuristic planners do). In doing so, the framework
prioritizes the expansion of robust (i.e., closed) partial poli-
cies which we believe is a sensible strategy when it comes
to non-deterministic settings where plan efficiency goes at
odds with robustness. As made explicit along the sections,
the technique developed draws from many existing ideas.
Besides providing the theoretical framework (e.g., the causal
relevant graph and the relationship with dynamic program-
ming) and the overall planning strategy (Figures 2 and 3),
we demonstrated how all the ingredients can be put together
in the GRENDEL planner. While our planner is far from op-
timized, it already shows important improvements in FOND
planning problems where there is a tension between robust-
ness of plans and their “efficiency”—the quickest plan may
be the most fragile. Our approach resembles that of the prob-
abilistic planners RETRASE (Kolobov, Weld, and Mausam
2012) and RFF (Teichteil-Königsbuch, Kuter, and Infantes
2010) that address this tension too, but departs from them in
that, like PRP, policy backups are not performed directly on
states, but rather on sets of states.

Since what we have proposed is a family of potential “hy-
brid” algorithms, there are many possibilities for improve-
ment, study, and optimization. In particular, how to incorpo-
rate “commitment” in a regression-based approach as well
as some convenient mechanism for avoiding purely incon-
sistent states are two aspects that we expect to yield signif-
icant improvements. We have already provided some hints
for exploring these issues. An important task, we believe, is
to carry an analysis characterizing the boundaries between
classical and FOND planning, in a similar way as done by

9http://es.fbk.eu/tools/nugat/

242

Little and Thiébaux (2007) for planning and replanning ap-
proaches. We also observe that standard benchmarks for de-
terministic planning may not generalize to “nondeterministi-
cally interesting” problems. To that end, we plan to perform
deeper empirical analysis on more natural nondeterministic
domains, such as those found in (Ramirez, Yadav, and Sar-
dina 2013) or (Patrizi, Lipovetzky, and Geffner 2013).

References
Bonet, B., and Geffner, H. 2003. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of IJCAI, 1233–1238.
Bonet, B., and Givan, R. 2005. 5th int’l planning competi-
tion: Non-deterministic track. call for participation. Techni-
cal report.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence Journal 147(1-
2):35–84.
Clarke, E., and Emerson, E. 1982. Design and synthesis
of synchronization skeletons using branching time temporal
logic. In Kozen, D., ed., Logics of Programs, volume 131 of
LNCS. Springer. 52–71.
Daniele, M.; Traverso, P.; and Vardi, M. 2000. Strong cyclic
planning revisited. Recent Advances in AI Planning 35–48.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
aware search using on-line measures of behavior. In Proc.
of the Annual Symposium on Combinatorial Search.
Domshlak, C. 2013. Fault tolerant planning: Complexity
and compilation. In Proc. of ICAPS, 64–72.
Ferrara, A.; Pan, G.; and Vardi, M. 2005. Treewidth in veri-
fication: Local vs global. In Proc. of LPAR, 489–503.
Fu, J.; Ng, V.; Bastani, F.; and Yen, I.-L. 2011. Simple
and fast strong cyclic planning for fully-observable non-
deterministic planning problems. In Proc. of IJCAI, 1949–
1954.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Goldman, R. P., and Boddy, M. S. 1994. Conditional linear
planning. In Proc. of AIPS, 80–85.
Helmert, M. 2009. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 173:503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Kissmann, P., and Edelkamp, S. 2009. Solving fully-
observable non-deterministic planning problems via trans-
lation into a general game. In KI: Advances in Artificial
Intelligence. Springer. 1–8.
Kolobov, A.; Weld, D. S.; and Mausam. 2012. Discover-
ing hidden structure in factored mdps. Artificial Intelligence
Journal 189:19–47.
Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree search. Artificial Intelligence 27(1):97–109.

Kuter, U., and Nau, D. 2008. Using classical planners
to solve non-deterministic planning problems. In Proc. of
ICAPS, 513–518.
Little, I., and Thiébaux, S. 2007. Probabilistic planning vs.
replanning. In In ICAPS Workshop on IPC: Past, Present
and Future.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
Proc. of ICAPS, 172–180.
Nilsson, N. J. 1982. Principles of artificial intelligence. Sym-
bolic Computation 1.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair LTL
synthesis for non-deterministic systems using strong cyclic
planners. In Proc. of IJCAI.
Puterman, M. 1994. Markov Decision Processes - Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.
Ramirez, M.; Yadav, N.; and Sardina, S. 2013. Behavior
composition as fully observable non-deterministic planning.
In Proc. of ICAPS, 180–188.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In Proc. of ICAPS, 345–354.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In Proc. of ECAI, 568–572.
Tarjan, R. E. 1972. Depth first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2):146–160.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
mdps. In Proc. of AAMAS, 1231–1238.
Warren, D. H. D. 1976. Generating conditional plans and
programs. In Proc. of the AISB Summer Conference, 344–
354.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A base-
line for probabilistic planning. In Proc. of ICAPS, volume 7,
352–359.

243

