
Fragment-Based Planning Using Column Generation

Toby O. Davies, Adrian R. Pearce, Peter J. Stuckey, and
National ICT Australia and

Computing & Information Systems, The University of Melbourne
Melbourne, Australia

firstname.lastname@nicta.com.au

Harald Søndergaard
Computing & Information Systems

The University of Melbourne
Melbourne, Australia

harald@unimelb.edu.au

Abstract

We introduce a novel algorithm for temporal planning in
Golog using shared resources, and describe the Bulk Freight
Rail Scheduling Problem, a motivating example of such a
temporal domain. We use the framework of column gener-
ation to tackle complex resource constrained temporal plan-
ning problems that are beyond the scope of current planning
technology by combining: the global view of a linear pro-
gramming relaxation of the problem; the strength of search in
finding action sequences; and the domain knowledge that can
be encoded in a Golog program. We show that our approach
significantly outperforms state-of-the-art temporal planning
and constraint programming approaches in this domain, in
addition to existing temporal Golog implementations. We
also apply our algorithm to a temporal variant of blocks-
world where our decomposition speeds proof of optimality
significantly compared to other anytime algorithms. We dis-
cuss the potential of the underlying algorithm being applica-
ble to STRIPS planning, with further work.

Introduction
The motivation for this work came from the first author’s
experiences of modifying an existing rail service scheduling
tool to handle an apparently small change to the structure
of some generated services for a bulk-freight railway serv-
ing the Australian mining industry. Modifying the 10,000
lines of C++ data structures and procedures used to generate
service plans took nine months. Planning formalisms such
as Golog and STRIPS are extremely general modeling tech-
niques that make them attractive to the constantly changing
needs of industrial optimisation problems. However pure
heuristic search is often insufficient to solve large-scale in-
dustrial problems with hundreds of goals and thousands of
time-points. We present the Bulk Freight Rail Scheduling
Problem as a simplified example of such a domain.

Multi-agent temporal Golog (Kelly and Pearce 2006) and
heuristic optimising Golog (Blom and Pearce 2010) have
been investigated separately. The combination of these
features have potential industrial applications in schedul-
ing problems, and the ability to use domain knowledge to
supplement the search for solutions is attractive, however
Golog’s lack of powerful search algorithms has limited its

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applicability. In this paper we deal with this shortcoming
for an important class of planning/scheduling problems.

Resource constrained planning problems are known to be
challenging to solve using current technology, even in non-
temporal settings (Nakhost, Hoffmann, and Müller 2012).
The Divide and Evolve metaheuristic has been used to tackle
temporal planning problems (Schoenauer, Savéant, and Vi-
dal 2006), it too repeatedly solves guided subproblems but,
unlike our approach, cannot prove optimality.

A key technique behind our approach is linear program-
ming, in particular the dual, which allows us to accurately
predict the cost of resource consumption. Linear program-
ming has been used by a number of planning heuristics (van
den Briel et al. 2007; Coles et al. 2008; Bonet 2013). How-
ever these heuristics have exploited only the primal solutions
to the LP, whereas we use both the primal and the dual. Ad-
ditionally we use the information in a way that cannot be
described as a heuristic in the usual sense.

The term fragment-based planning has also been defined
in the context of conformant planning (Kurien, Nayak, and
Smith 2002), while the intuition is similar: plan-fragments
are combined into a consistent plan, the approach is distinct
from the use of the term here.

Preliminaries
The Situation Calculus and Basic Action Theories. The
situation calculus is a logical language specifically designed
for representing and reasoning about dynamically changing
worlds (Reiter 2001). All changes to the world are the result
of actions, which are terms in the language. We denote ac-
tion variables by lower case letters a, and action terms by α,
possibly with subscripts. A possible world history is repre-
sented by a term called a situation. The constant S0 is used
to denote the initial situation where no actions have yet been
performed. Sequences of actions are built using the function
symbol do, such that do(a, s) denotes the successor situation
resulting from performing action a in situation s. Predicates
and functions whose value varies from situation to situation
are called fluents, and are denoted by symbols taking a situ-
ation term as their last argument (e.g., Holding(x, s)).

Within the language, one can formulate basic action the-
ories that describe how the world changes as the result of
the available actions (Reiter 2001). These theories, com-
bined with Golog, are more expressive than STRIPS or ADL

83

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

(Röger and Nebel 2007). Two special fluents are used to de-
fine a legal execution: Poss(a, s) is used to state that action
a is executable in situation s; and Conflict(as, s) is used to
state that the set of actions as may not be executed concur-
rently.

High-Level Programs. High-level non-deterministic pro-
grams can be used to specify complex goals: the goal of a
Golog program is to find a sequence of actions generated by
some path through the program. We use temporal semantics
from MIndiGolog (Kelly and Pearce 2006) which builds on
ConGolog (Giacomo, Lesperance, and Levesque 2000), and
refer to these extensions simply as Golog. A Golog program
δ is defined in terms of the following structures:
α atomic action
ϕ? test for a condition
δ1; δ2 sequential composition
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 concurrent composition

In the above, α is an action term, possibly with parameters,
δ is a Golog program, and ϕ a situation-suppressed formula,
that is, a formula in the language with all situation arguments
in fluents suppressed. Program δ1|δ2 allows for the nonde-
terministic choice between programs δ1 and δ2, while πx.δ
executes program δ for some nondeterministic choice of a le-
gal binding for variable x. δ∗ performs δ zero or more times.
Program φ? succeeds only if φ holds in the current situation.
Program δ1‖δ2 expresses the concurrent execution of δ1 and
δ2. For notational convenience we add:
π(x ∈ X).δ equivalent to πx.(x ∈ X)?; δ
foreach x in vs do δ equivalent to δ[x/v1]; · · · ; δ[x/vn]

forconc x in vs do δ equivalent to δ[x/v1]|| · · · ||δ[x/vn]

Here δ[x/y] denotes the program δ where each occurrence of
variable x has been replaced with the value y, and vi is the
ith element of the sequence vs.

Linear and Integer Programming. An Integer Program
(IP) consists of a vector x̃ of binary decision variables,1 an
objective linear expression and a set of linear inequalities.
We will refer to these inequalities as “resources” throughout
this paper, and each decision represented by the variable xi
can be thought of as using ur,i units of some resources r ∈
R, each of which has an availability of ar.

A general form, assuming a set R of inequalities, where
ci, ur,i and ar are constants, is:

Minimize:
∑

ci · xi

Subject To:
∑

ur,i · xi ≤ ar ∀r ∈ R

Finding the optimal solution to an integer program is NP-
hard, however the linear program (LP), constructed by re-
placing the integrality constraints xi ∈ {0, 1} with a contin-

1In general decision variables can be integer but binary decision
variables suffice for our purposes.

uous equivalent xi ∈ [0, 1], can be optimised in polynomial
time. This LP is known as the linear relaxation of the IP.

A model of this form where some variables are continu-
ous and some are integral is called a Mixed Integer Program
(MIP). To limit confusion, we will denote binary variables
xi and continuous variables vi, and assume all xi ∈ {0, 1}
and vi ∈ [0, 1] throughout this paper.

The (M)IP is solved using a “branch-and-bound” search
strategy where some xi which is fractional in the LP op-
timum is selected at each node and two children are en-
queued with additional constraints xi = 1 in one branch
and xi = 0 in the other. Heuristically constructed integer
solutions provide an upper bound, whereas the relaxations
provide a lower bound.

Solving the linear relaxation implicitly also optimises the
so-called dual problem. Intuitively the dual problem is an-
other linear program that seeks to minimize the unit price
of each resource in R, subject to the constraint that it must
under-estimate the optimal objective of the primal. We use
πr to denote this so-called “dual-price” of resource r. An
estimate of the impact of consuming u additional units of
resource r on the current objective can then be computed by
multiplying usage by the dual price: u · πr.

Dual prices allow us to quickly identify bottlenecks in a
system. They give us an upper bound on just how far out of
the way we should consider going to avoid them. This leads
to the important notion of reduced cost: an estimate of how
much a decision can improve an incumbent solution. The
reduced cost is the decision’s intrinsic cost ci, less the total
dual price of the resources required to make this decision.

Given an incumbent dual solution π̃, a decision variable
xi has a reduced-cost γ(i, π̃), defined as:

γ(i, π̃) = ci −
∑
r∈R

πr · ur,i

This is guaranteed to be a locally optimistic estimate, so that,
in order to improve an incumbent solution, we only need to
consider decisions xi with γ(i, π̃) < 0. Due to the convex-
ity of linear programs, repeatedly improving an incumbent
solution is sufficient to eventually reach the global optimum,
and the non-existence of any xi with negative reduced cost
is sufficient to prove global optimality.

Column Generation and Branch-and-Price. Most real-
world integer programs have a very small number of non-
zero xi. This property, combined with the need only to
consider negative reduced-cost decision variables, allows us
to solve problems with otherwise intractably large decision
vectors using a process known as “column generation” (De-
saulniers, Desrosiers, and Solomon 2005). The name re-
flects the fact that the new decision variable is an additional
column in the matrix representation of the constraints.

Column generation starts with a restricted set of decision
variables obtained by some problem-dependent method to
yield a linear feasible initial solution. With such a solu-
tion we can compute duals for this restricted master problem
(RMP) and use reduced-cost reasoning to prune huge areas
of the column space.

84

Incomplete and suboptimal methods of constructing inte-
ger feasible solutions are referred to in the Operations Re-
search literature simply as “Heuristics”. To avoid ambiguity
we refer to them as “MIP heuristics”. These are essential for
both finding a feasible initial solution, and providing a worst
bound on the solution during the branch-and-bound search
process. They are analogues to fast but incomplete search
algorithms in planning such as enforced hill climbing.

Column generation then proceeds by repeatedly solving
one or more “pricing problems” to generate new decision
variables with negative reduced cost and re-solving the RMP
to generate new dual prices. Iterating this process until no
more negative reduced cost columns exist is guaranteed to
reach a fixed point with the same objective value as the much
larger original linear program. We can then use a similar
“branch-and-bound” approach as in integer programming to
reach an integer optimum by performing column generation
at each node in the search tree. This process is known as
“branch-and-price”.

Branching rules used in practical branch-and-price
solvers are often more complex than in IP branch-and-bound
and are sometimes problem dependent. The branch xi = 0
does not often partition the search-space evenly: there are
usually exponentially many ways to use the resources con-
sumed by xi. Additionally, disallowing the re-generation of
the same specific solution xi by the pricing problem is not
possible with an IP-based pricing-problem without funda-
mentally changing the structure of the pricing-problem.

Consequently, effectiveness of a branching strategy must
be evaluated in terms of how effectively the dual-price of the
branching constraint can be integrated into the pricing prob-
lem. This is another motivation for our hybrid IP/Planning
approach, as using a planning-based pricing problem allows
us to disallow specific solutions and handle non-linear, time-
dependent costs and constraints.

A concrete example of branch-and-price is presented in
the Fragment-Based Planning section below.

Big-M Penalty Methods. We noted earlier that to start
column generation, an initial (linear) feasible solution is re-
quired. There is no guarantee that finding such a feasible
solution is trivial. Indeed for classical planning problems,
finding a feasible solution is PSPACE-complete in general.
No work we are aware of determines the complexity of com-
puting a linear relaxation of a plan.

We avoid this problem by transforming our IP into an MIP
where for any constraint having ar < 0 we add a new contin-
uous variable vr ∈ [0, 1], representing the degree to which
the constraint is violated, and replace the constraint with:∑
ur,i ·xi ≤ |ar| ·vr−|ar| and cv =M whereM is a large

number. This guarantees the feasibility of the trivial solu-
tion xi = 0 for all i and all vr = 1. It represents a relaxation
of the original IP with the property that, given sufficiently
large M , the optimal solution is a feasible solution to the
original problem, iff such a solution exists. This is known
as a “penalty method” or “soft constraint”. The process is
similar to the first phase of the simplex algorithm for find-
ing an initial feasible solution to a linear program when all

decision variables are known in advance.

The Bulk Freight Rail Scheduling Problem

In the Australian mining industry, it is common for bulk
commodities such as coal and iron ore to be transported to
ports on railways that are principally or exclusively used
for that purpose. This is in contrast to Europe and the US
where freight railways often share significant infrastructure
with passenger trains. Additionally, bulk freight is nearly al-
ways routed as whole trains and usually only stockpiled at
the mines and ports, avoiding many complex blocking and
routing problems addressed in the literature.

The Bulk Freight Rail Scheduling Problem (BFRSP) is
solved by bulk freight train operators and mining compa-
nies on a daily basis. The BFRSP can be an operational or
tactical problem depending on the degree of vertical integra-
tion of the supply chain: where different above-rail operators
share a track network they may need to prepare an accurate
schedule to be negotiated with the track network operator or
other above-rail operators; alternatively schedules may be
prepared “just-in-time” to assign crew.

The term “train” is highly overloaded in this domain, so
we avoid it. In the following, a consist is a connected set
of locomotives and wagons, and a service is a sequence of
movements performed by a consist.

The above-rail operator has a set of partially-specified ser-
vices collected from its clients. We refer to such partially-
specified services as “orders”. Each order is a sequence of
locations that must be visited in order with time-windows
(e.g. a mine, then a port, then the yard). Given this, sched-
ulers must find a path for as many services as possible on
the rail network such that no two services occupy the same
“block” at the same time. A block is represented by a vertex
in the track-network graph.

The objective is to first maximise the number of orders
delivered, then to minimise the total duration of services.
The number of segments that a single service must traverse
varies with the path through the network. Services can dwell
for an arbitrary time on some edges to allow others to pass.

More formally, a BFRSP 〈G, τ, c, O, T 〉 consists of: a
track network graph G = 〈V,E〉 where each block is a
vertex in V ; a crosstime function τ(〈v, v′〉) which repre-
sents the minimum time a consist may spend at the vertex
v′ after traversing the edge 〈v, v′〉 ∈ E; a capacity func-
tion c(v) which represents the maximum number of services
which may occupy v ∈ V concurrently; a set of orders
O, each of which is a sequence of waypoints of the form
〈v, tmin, tmax〉, where v ∈ V and tmin and tmax represent
the earliest and latest times the waypoint may be visited; and
a set of consists T .

The aim of the BFRSP is to satisfy as many orders as pos-
sible, with the minimum sum of service durations. An order
o is satisfied by a service s if that service visits each way-
point within the specified time window. One service must
satisfy one order and be performed by one consist.

85

m1

m2

d y

p1

p2

Figure 1: A simple track network

Modeling the BFRSP
We model the problem as a planning problem in Golog. The
primitive actions available to a consist c are: traverse an edge
e with move(c, e); wait for some integral number d of time
points with wait(c, d); and perform whatever action is re-
quired at a block b (e.g. loading at a mine or unloading at a
port) that is a waypoint in some order owith visit(c, o, b).
We assume unit duration for these actions.

The following are effect axioms for the domain, which
may be transformed into successor state axioms to address
the frame problem in the standard way (Reiter 2001). We
assume the existence of some predicates to identify the first,
last and next waypoints in an order: first(o, b), last(o, b) and
next(o, b, b′)

At(c, b, do(move(c, 〈 , b〉),)).

¬At(c, b, do(move(c, 〈 , b′〉),)) ⊂ b 6= b′.

Started(c, o, do(visit(c, o, b),)) ⊂ first(o, b).
Finished(c, o, do(visit(c, o, b),)) ⊂ last(o, b).
Visited(c, o, b, do(visit(c, o, b),)).

Golog effect axioms are essentially first-order predicate
logic with data constructors. For example, in the first flu-
ent definition above, ‘move’ is a data constructor, whereas
‘At’ is a predicate. Hence ‘At(c, b, do(move(c, 〈 , b〉),))’
reads “consist c is at block b in the situation that results from
moving along an edge ending at b.”

We need to keep track of allowable next visitable destina-
tions for each consist. A consist c is allowed to visit the first
waypoint of an order that no consist has started, so long as c
has not started any order; alternatively it may visit the next
waypoint in the order it has already started.

Dest(c, o, b, s0) ⊂ first(o, b).

Dest(c, o, b, do(visit(c, o′, b′), s)) ⊂
first(o, b) ∧ last(o′, b′) ∧ ¬Visited(, o, b, s).

Dest(c, o, b, do(visit(c, o, b′), s)) ⊂ next(o, b, b′).
¬Dest(c, o, b, do(visit(, o, b),)).

Finally, we assume the existence of a time(s) fluent to define
our time window checks.

InWindow(o, b, s) ⊂
∃t, t′.〈b, t, t′〉 ∈ o ∧ t ≤ time(s) ≤ t′.

Obviously a consist cannot move on an edge that starts at a
different node to the end of the last edge it traversed, and
a consist can only visit a block that it is on. A waypoint

(block) can only be visited once for an order and a consist
cannot visit another order’s waypoint until it has visited all
the waypoints required for any order it has visited any way-
points of (i.e., consists cannot interleave visiting waypoints
for different orders).

Poss(move(c, 〈b, b′〉), s) ⊂ At(c, b, s) ∧ 〈b, b′〉 ∈ E.
Poss(visit(c, o, b), s) ⊂

Dest(c, o, b, s) ∧ InWindow(o, b, s).
Poss(wait(c, n), s) ⊂ n ∈ Z.

Solving for a single service with a single waypoint is a case
of finding a minimum-cost path through G subject to the
time-window constraints, where the edge cost is given by τ .
The Golog program to solve this problem is:

proc travelto(c, o, b, t0, t1) :

while ¬onblock(c, b) do

π(e ∈ E).move(c, e);

π(t ∈ [t0, t1]).waituntil(t);

visit(c, o, b)

To deliver a more complex service with more waypoints we
simply travelto them in sequence:

proc deliverservice(c, o) :

foreach (b, t0, t1) in o do

π(dt ∈ [0..t1− time()]).wait(dt);
travelto(c, o, b, t0, t1)

Up to this point, the problem is simple; existing implemen-
tations of Golog are able to find high-quality plans on simple
networks without even considering action costs. Also most
of the complex preconditions of the domain are irrelevant: it
is impossible to interleave the satisfaction of different orders
and no two trains can occupy the same block.

The Poss and Conflict clauses required to model these
inter-order constraints are easier to model in terms of shared
resources. We introduce usage(action, resource, situation)
and availability(resource, situation) functions. These can be
considered as additional clauses of the definition of Conflict
and Poss in the following way:

Conflict(as, s) ⊂

∃r.
∑
a∈as

usage(a, r, s) > availability(r, s)

¬Poss(a, s) ⊂ ∃r.usage(a, r, s) > availability(r, s)

For the BFRSP domain we define these resources:

usage(enter(c, b), block(b, t), s) = 1 ⊂ time(t, s).

for block capacity constraints; and, to ensure that each order
is delivered at most once:

usage(visit(c, o, b),waypoint(b, o), s) = 1.

When there are a set of orders, but only one consist, the
consist must still deliver the orders in some sequence, how-
ever there exist n! sequences in which n orders may be sat-
isfied. Any of these sequences is valid (as any service can be

86

dropped), so we begin to tackle the combinatorial optimisa-
tion aspect of the BFRSP, in which the solver must pick an
optimal sequence to satisfy orders.

proc deliverservices(c,O) :

π(o ∈ O).

(deliverservice(c, o) |noop);
deliverservices(c,O\{o})

With more than one consist, each consist must deliver some
non-overlapping set of services. Choosing this set is an op-
timisation problem in its own right and existing implemen-
tations of Golog will not find any solution.

proc main(C,O) :

forconc o in O do

π(c ∈ C).deliverservice(c, o) |noop

This program has an important structural property that will
be exploited by our algorithm: Given an assignment of or-
ders, the joint execution is a set of fragments generated by

π(o ∈ O).π(c ∈ T).deliverservice(c, o) |noop

Fragment-Based Planning
Given the set F of all possible executions of the fragment
program π(c ∈ T).deliverservice(c, o), all joint exe-
cutions of main are a subset of F where no two fragments
visit the same order or occupy the same track segment si-
multaneously.

Finding the optimal execution is then equivalent to finding
the optimal solution to the Integer Program:

Minimize:
∑
f∈F

df · xf +
∑
o∈O

M · vo

Subject To:
∑

f∈Fbt

xf ≤ c(b) ∀b ∈ B ,∀t ∈ T

vo +
∑
f∈Fo

xf = 1 ∀o ∈ O

Here xf is 1 iff f should be executed in the joint plan. Fo ⊆
F is the set of fragments that satisfy order o, Fbt ⊆ F is the
set of fragments that are on block b at time t and df is the
duration of fragment f .

Enumerating F is however prohibitive, and large numbers
of potential fragments are uninteresting, or prohibitively
costly and will never be chosen in any reasonable joint-
execution, nor need to be considered in finding and proving
the optimal joint execution.

To avoid enumerating F , we can use delayed column gen-
eration as described earlier. To use this approach, we need
to re-compute action costs that minimise the reduced cost of
the next fragment generated given an optimal solution to the
restricted LP. Given dual prices πb,t for block/time resources
and πb,o for waypoints, our fragment planner’s action costs
become πb,t for move(c, e), actions executed at time t, given
e ∈ b; and πb,o for visit(c, o, b) actions.

We provide pseudo-code for the FBP algorithm below,
Quine quotes are used around linear expressions such as
[[expression ≤ constant]] to denote constraints given to
the LP solver to distinguish them from logical expressions.

To solve the linear relaxation of the joint planning prob-
lem, we call LINFBP({vo | o ∈ O}, {o : [[vo = 1]] | o ∈
O}, O, δ). Note that the [[expr = a]] form of constraints can
be considered a shorthand for two constraints [[expr ≤ a]]
and [[−expr ≤ −a]].

We assume that the Golog search procedure Do returns
the fragment f with the least reduced cost γ(f, π̃), rather
than just any valid execution. Our implementation uses
uniform-cost search to achieve this.

function LINFBP(Frags, Res, Goals, δ)
LowBound ← 0
UpBound ←M · ‖Goals‖
while (1− ε) · UpBound > LowBound do

θ, x̃, π̃ ← SolveLP(Frags,Res)
F ← Do(π(g ∈ Goals).δ|noop, π̃)
Frags← Frags ∪ {F}
dθ ← ‖Goals‖ · γ(F, π̃)
UpBound ← θ
LowBound ← max(LowBound, θ + dθ)
for all r ∈ F do

[[e ≤ a]]← Res[r]
Res[r]← [[e+ uF,r · xF ≤ a]]

return θ,Frags,Res, x̃

We then use the LINFBP column generation implementa-
tion inside a branch-and-price search. We assume that frag-
ments use redundant resources for the purposes of branch-
ing. In particular we rely on each fragment to use 1 unit of
a resource that uniquely identifies that fragment, so that we
eventually find an integral solution if one exists.

function FBP(Gs, δ)
Fs← {vg | g ∈ Gs}
Rs← {g : [[1 · vg = 1]] | g ∈ Goals}
LowBound ← 0
UpBound ←M · ‖Goals‖
Queue← {∅}
Fs← Fs ∪ initfrags(Gs, δ)
while (1− ε) · UpBound > LowBound do

BranchRs← Pop(Queue)
LRs← Rs ∪ BranchRs
θ,Fs,Rs, x̃← LINFBP(Fs,LRs,Gs, δ)
if any resources have fractional usage then

if soft constraints satisfied i.e., θ < M then
X ← some fractional resource
Branches← branch on dXe and bXc
Queue← Queue ∪ Branches

UpBound ← SolveIP(Fs,LRs)
LowBound ← minimum θ in Queue

This process can be modified to incrementally return each
solution to SolveIP(Fs,Rs) as it is computed, and make this
an effective anytime algorithm.

We illustrate the iterations of the LINFBP algorithm
in Table 1 using a goal non-satisfaction penalty of 100.
We solve a BFRSP on the network from Figure 1 with

87

Iteration π̃ Fragments
1. θ = 200 f1, f2

γ(f1) = −91
γ(f2) = −91

2. θ = 109 πd,0 = −91 f3, f4
γ(f3) = −90
γ(f4) = −90

3. θ = 19 πd,3 = −1
πp1,o1 = −90
πp2,o2 = −90

Table 1: LINFBP iterations. M = 100

two orders: o1 = [〈m1, 0, 20〉, 〈p1, 0, 20〉, 〈y, 0, 20〉] and
o2 = [〈m2, 0, 20〉, 〈p2, 0, 20〉, 〈y, 0, 20〉]. We omit the first
consist argument to all actions and the duals of the goal sat-
isfaction constraints for brevity.

Initially, the dual vector has no non-zero elements other
than the goal non-satisfaction constraints. The lowest
reduced-cost plans for the two sub-goals are then simply the
shortest paths from y to one of the mines m1 or m2, then
one of the ports p1 or p2, then to the yard. That is,

f1 =

[
move(〈y, d〉);move(〈d,m1〉); visit(m1, o1);
move(〈m1, d〉);move(〈d, y〉);move(〈y, p1〉);
visit(p1, o1);move(〈p1, y〉); visit(y, o1)

]

f2 =

[
move(〈y, d〉);move(〈d,m2〉); visit(m2, o2);
move(〈m2, d〉);move(〈d, y〉);move(〈y, p2〉);
visit(p2, o2);move(〈p2, y〉); visit(y, o2)

]

Given these two new columns, the dual vector detects one
of the bottlenecks at block d at time 0, overestimating that
over-use of this resource costs 91 units. Using this informa-
tion the new minimum cost way to achieve each goal now
avoids this shared resource by initially waiting, generating
fragments f3 = [wait(1)]++f1 and f4 = [wait(1)]++f2.

With these two additional fragments, the dual vector
shows us that the unloading visit actions at p1 and p2 are
a bottleneck (as we now have two ways to satisfy each
goal). Obviously these bottlenecks cannot be avoided, how-
ever they have a cost of only 90, so if there is a fragment
with cost < 10 which also does not use block d at time 3,
there could exist a fragment with negative reduced cost. The
search shows that no such fragment exists, and this proves
(linear) optimality.

Within the FBP algorithm we then solve the IP with the 4
fragments f1 to f4, we find one of the primal integral solu-
tions x1 = 1 and x3 = 1 and all other variables 0. Since this
solution has the same objective of 19 as the linear relaxation,
we have proved this solution optimal.

Fragment-Based Planning in other domains
The resources we use in the BFRSP are only consumed by
actions, and had a finite, non-renewable availability. Addi-
tionally, fragments can only have negative interactions be-
tween one another. The choice of one fragment can only
prevent the choice of another. However we would like to be
able to choose fragments such that one may satisfy an open
precondition of another.

We handle this case in a similar way to goal-satisfaction
constraints by generalising our resources so that they can
be generated in addition to being consumed. While we did
not call our goal-satisfaction constraints resources, it can
be considered that the fragments in the BFRSP generated 1
unit (i.e., consumed−1 units) of a “goal-satisfied” resource,
which had a requirement of 1 unit (i.e., an availability of−1
unit).

If we consider the case where a set of fragments Fpre sat-
isfies a precondition of Fpost, then a constraint of the form∑

Fpost −M ·
∑

Fpre ≤ 0

is sufficient to guarantee that fragments from Fpost can only
be chosen if the precondition has been satisfied. If Fpost

fragments immediately invalidate this precondition then a
constraint of the form∑

Fpost −
∑

Fpre ≤ 0

is more appropriate, and forces at most a single fpost to be
chosen per time the precondition is satisfied. In either case,
as most resources (including preconditions) will be time-
indexed (like the block constraints in BFRSP) in many do-
mains there will likely be constraints forcing

∑
Fpost ≤ 1.

Which form to choose is an exercise for the modeler, and
an algorithm for turning a basic action theory into resource-
based constraints is beyond the scope of this paper.

Both of the forms fall into our existing resource frame-
work, and can be handled without modification to the FBP
procedure. However the Poss fluent now needs to be relaxed
to allow fragments to assume that a precondition has been
satisfied by another fragment, at a cost derived from the πpre
dual variables.

If we know each action’s resource consumption from the
usage function described above, and the usage is indepen-
dent of the actions performed in other fragments, then the
usage of a resource r by a fragment f is the sum over all ac-
tions a performed in that fragment of usage(a, rtime(f), f).

Given this, a Golog program of the form
forallconc x in G do δ, can generate an equiva-
lent FBP model:

Minimize:
∑
f∈F

cf · xf +
∑
g∈G

M · vg

Subject To:
∑
f∈F

ufr · xf ≤ ar ∀r ∈ R

vg +
∑
f∈Fi

xf = 1 ∀g ∈ G

Fg is the set of all legal fragments generated by the Golog
program δ[x/g]. F is the union for all g ∈ G of Fg . R is
the set of all resources used by any fragment in F . cf is
the cost of executing the actions contained in fragment f .
xf ∈ {0, 1} is 1 iff f should be executed in the joint plan.
ufr is the net usage of resource r by fragment f . ar is the
total availability of resource r. πr will denote the optimal
dual prices of each resource r in the solution of this problem.

We refer to the set G as the “fragmentation dimension”
and δ as the “fragment program”.

88

If these resources totally describe the potential interac-
tions between the different sub-goals δ[x/g], then the optimal
solution to this FBP model is the optimal joint execution.

We present results in the next section for a multi-agent
variant of blocks-world. We use the set of blocks as the
fragmentation dimension, and pseudocode for the fragment
program in this example is:

proc handleblock(hand, block):

wait(1)∗;
(pickup(hand, block);drop(hand, table)|noop);
wait(1)∗;
(pickup(hand, block);drop(hand, dest(block))|noop);
On(block, dest(block))?

Given this fragment program, we can see that other frag-
ments will be required to satisfy the Clear fluent required
by pickup and drop. Consequently Clearb,t becomes a
generatable resource for each block at each time point, with
initial availability of 1 if both t = 0 and b is initially clear;
and 0 otherwise.

Performing the action pickup(h, b) at time t consumes
one unit of Clearb,t and generates one unit of Clearb′,t+1,
assuming b was on b′.

Similarly, Occupiedh,t is a (non-generatable) resource
with availability 1 which is consumed by picking up a block
with hand h or waiting when h is holding a block.

The actions we have described thus far produce Clear re-
sources at specific time points, however the clearness of a
block persists if it is not picked up and nothing is put down
on it. To handle this we introduce an explicit zero-duration
persist(r) action, which consumes one unit of rt and
generates one unit of rtime() for some non-deterministically
chosen t < time(). These persist(Clearb) actions are
inserted immediately before the pickup and drop actions in
handleblock above.

Results
We compare our FBP implementation in these two domains
with: MIndiGolog (Kelly and Pearce 2006), a temporal
golog interpreter; POPF2 (Coles et al. 2010) and YAHSP2
(Vidal 2011) two heuristic satisficing planners; CPT4 (Vi-
dal and Geffner 2006), a temporal planner based on con-
straint programming; and CPX, a constraint programming
solver using Lazy Clause Generation (Ohrimenko, Stuckey,
and Codish 2009). All experiments were performed on a 2.4
GHz Intel Core i3 with 4GB RAM running Ubuntu 12.04.
Our implementation used Gurobi 5.1, CPython 2.7.3. We
used the binary version of cpx included with MiniZinc 1.6.
All of the temporal planners were the versions used in the
2011 IPC.

We present results from a simple variant of the BFRSP
with a fixed number of waypoints per order: a mine, a port
and then the train yard. Results in Tables 2 and 3 represent
results on the track network depicted in Figure 1 and a high
level network of an Australian mining company. We assume
the capacity at all nodes except y is 1, and the y has un-
bounded capacity, and there are as many consists as orders.
The “m/p” column is the number of mines each port makes

orders for. All models of the problem were given symmetry-
breaking constraints regarding assignment of consists to or-
ders. We report “time to first solution” in these experiments,
meaning the time taken to generate a schedule that delivered
all orders.

Table 2 shows that the FBP approach scales to problems
more than an order of magnitude larger than either a Mini-
Zinc model based on scheduling constraints solved with the
lazy clause generation solver cpx, or a temporal PDDL
model solved with popf2. The constraint-programming
technique of Lazy Clause Generation is state-of-the-art for
many scheduling problems, and cpx is competitive with our
approach until memory limits were reached.

There is a significant overhead of the FBP algorithm in the
smaller models, this is likely explained by our pure python
implementation when compared with the highly engineered,
compiled implementations of both popf2 and cpx. Un-
scientifically, interpreted python can expect a 30× to 100×
slowdown compared to an equivalent algorithm in C or C++.

The temporal planner popf2 was chosen because it was
the best performing of the temporal satisficing planners in
IPC 2011 with support for numeric fluents or initial timed
literals one of which is required to model time-windows.
popf2 performs very poorly when there is more than one

order to any mine or port. We presume this is because stan-
dard planning heuristics cannot effectively detect the bottle-
neck in the track network at block d in Figure 1.

However, popf2’s handling of time windows has limited
it’s performance in similar domains (Tierney et al. 2012), to
rule this out, we relax the complicating time-window con-
straints, which also allows us to test other temporal planners
on this domain where we see similar results. Table 3 shows
that, as contention for block d increases, solution times in
the heuristic search planners increase very sharply. This
leads to the somewhat surprising result that a decomposi-
tion approach outperforms heuristic search as interaction in-
creases. We also outperform the constraint programming ap-
proach used in cpt4, note that this is an optimal planner
rather than the anytime algorithms implemented in yahsp2
and popf2.

This result is not seen in the blocks-world domain where
both enforced hill climbing and Weighted-A* find solutions
very quickly. However we still see significant speedups in
proof of optimality versus both popf2 and yahsp2 even
in this quite sequential domain. It should be noted that nei-
ther are optimal planners, but as both are complete anytime
algorithms, like FBP, we believe this is still a meaningful
comparison. FBP also proves optimality faster than the op-
timal temporal planner cpt on the largest instance.

This is obviously not a totally fair comparison, as the
Golog model can encode more domain knowledge, however
we believe this is a desirable property in a modeling lan-
guage, and closer to a real-world optimisation setting, where
modellers can and will provide as much useful information
to any solver they use as is feasible. Additionally, exist-
ing Golog implementations do not perform well on either
of these problems, and PDDL planners are among the most
well studied alternatives and provide the fairest comparison
that can be considered state-of-the-art.

89

|V | |O| m/p Golog popf2 cpx FBP

6 2 1 0.4 0.3 0.7 1.6
6 4 1 — — 2.3 3.3
6 4 2 — — 1.7 2.0
6 8 2 — — 7.5 7.6
6 16 2 — — 37.9 29.7
6 32 2 — — — 50.3
6 64 2 — — — 150.3
6 128 2 — — — 418.8
6 256 2 — — — 589.7

16 44 11 — — — 315.0
16 88 11 — — — 363.0

Table 2: BFRSP: Time to first solution for increasing track
network vertices, |V |, and orders, |O|, in seconds (1800s
time limit, 4GB memory)

|V | |O| m/p popf2 yahsp2 cpt4 FBP*
6 2 1 0.3 0.0 0.0 1.6
6 4 1 8.4 0.0 0.8 3.3
6 4 2 — 0.0 0.7 2.0
6 8 2 — 0.3 — 7.6
6 16 2 — 42.5 — 29.7
6 32 2 — — — 50.3

Table 3: BFRSP without time windows: Time to first solu-
tion in seconds (time limit 1800s, 4GB memory, FBP results
are from the non-relaxed problem)

Conclusions and Further Work
We see from our experimental results that our Fragment-
Based Planning approach scales to an important class of in-
dustrial problems while sacrificing little of the flexibility of
the underlying planning formalism, and Golog language.

Our approach fares significantly better on the BFRSP
than on blocks world. We believe this is because this
domain combines the strength of the two core technolo-
gies of state-based search and MIP: the MIP detects global,
largely sequence-independent bottlenecks and guides the
overall search; and state-based search handles the sequential
aspects of shortest path finding that might otherwise require
a large number of variables to encode as an LP. Whereas, in
blocks world, the LP detects the desired sequence of block
handling, and the search solves the relatively trivial problem
of how much waiting is required to ensure the blocks are
picked up and put down at the optimal time. We suspect that
this is a bad model for FBP, as it splits the work unevenly
between master and subproblems, and relies on the LP to de-
tect impossible sequences, something that even uninformed
search should be better at. More work is required to explore
what fluents are best to relax into linear constraints; what
forms those constraints should take; the choice of fragmen-
tation dimension; and the fragment program. Nonetheless,
this approach has proven effective in this sequential domain.

Our implementation lacks a number of significant engi-
neering improvements that could be applied, most signifi-
cantly: better MIP heuristics; and better branching strate-
gies. We use a simple variant of the general diving MIP
heuristics described in (Joncour et al. 2010), though prob-

Blocks popf yahsp2 cpt FBP
1st opt 1st opt 1st opt 1st opt

3 0.0 3.5 0.0 0.0 0.0 0.0 0.3 0.5
4 0.0 53.0 0.0 0.0 0.0 0.0 0.3 0.7
5 0.0 — 0.0 0.1 0.0 0.1 0.2 0.6
6 0.1 — 0.0 6.4 0.1 0.1 0.5 0.8
7 0.9 — 0.1 — 0.2 0.2 0.6 0.8
8 0.1 — 0.0 — 0.4 0.4 1.0 1.9
9 17.9 — 0.0 — 1.7 1.7 5.0 6.2

10 0.3 — 0.0 — 1.7 1.7 1.3 2.0
11 1.4 — 0.0 — 5.2 5.2 2.0 3.8
12 — — 0.0 — 12.6 12.6 4.9 6.8

Table 4: Blocks-world: Time to first / optimal solutions in
seconds (time limit 120s, 4GB memory)

lem specific MIP heuristics could yield better performance,
such as (Jampani and Mason 2008).

Additionally we use very simplistic branching rules: we
branch only on individual fragments being included, rather
than e.g. pairs of resources as in Ryan-Foster branch-
ing (Ryan and Foster 1981). This leads to a very unbal-
anced branch-and-price tree and can lead to exponentially
increased runtimes if the problem is not proven optimal at
the root. Note that while the FBP algorithm we describe
allows Ryan-Foster branching, our implementation does not
branch on such “good” redundant resources.

Cost-optimal planning in Golog is required to solve the
pricing problem in FBP. This is not a problem considered
in the existing literature, and FBP might benefit from ana-
logues to classical planning heuristics. Alternatively, as the
pricing problem has a cost bound, bounded cost search al-
gorithms for Golog might be beneficial. This is still an open
area of research even for STRIPS planning (Haslum 2013).

Existing fast but incomplete algorithms such as enforced
hill climbing or causal chains (Lipovetzky and Geffner
2009) might compute a better starting set of fragments
and/or inspire FBP-specific MIP heuristics.

Many of these enhancements are well studied and imple-
mented in STRIPS planners, and only the Do call in the
FBP algorithm is Golog-specific. If similar explicit relax-
ations and fragment goals can be provided, this could be
replaced by a call to an optimal planner, with additional
assume-[fact](?time, . . .) actions for each fact with
the action cost derived from the dual prices.

The effect of these time-dependant costs on the perfor-
mance of STRIPS planners would also need to be inves-
tigated. Few resources will normally have non-zero dual
prices, which could help limit the branching factor.

How to select the fragment goals is less obvious. Planning
with preferences could be used to choose some subset of
goals to achieve, however it is not obvious how to ensure
this planning problem is easier than the original.

Additionally, in order for FBP to work directly with
PDDL, work will be required to automatically identify: a
“fragmentation dimension”; “fragment generator”; and the
fluents to relax. Approaches used in SGPlan (Chen, Wah,
and Hsu 2006) and factored planning (Amir and Engelhardt
2003; Brafman and Domshlak 2006) appear promising. Nei-

90

ther of these are anytime algorithms, so combining their de-
compositions with FBP’s search algorithm could be an in-
teresting avenue of further work.

Acknowledgements
Thanks to Nir Lipovetzky for his invaluable help model-
ing the BFRSP in PDDL, and to Biarri Optimisation Pty.
Ltd. for sharing their experience with the BFRSP. NICTA
is funded by the Australian Government through the De-
partment of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

References
Amir, E., and Engelhardt, B. 2003. Factored planning.
In 18th International Joint Conference on Artificial Intelli-
gence (IJCAI), 929–935.
Blom, M. L., and Pearce, A. R. 2010. Relaxing regression
for a heuristic GOLOG. In STAIRS 2010: Proceedings of
the Fifth Starting AI Researchers’ Symposium, 37–49. Am-
sterdam, The Netherlands: IOS Press.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2268–2274. IJCAI/AAAI.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In ICAPS Workshop on Con-
straint Satisfaction Techniques for Planning and Scheduling
Problems, 7–14.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan.
Journal of Artificial Intelligence Research 26:323–369.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008.
A hybrid relaxed planning graph-LP heuristic for numeric
planning domains. In Proceedings of the Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 08), 52–59.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the Twentieth International Conference on Automated Plan-
ning and Scheduling (ICAPS 10), 42–49. AAAI Press.
Desaulniers, G.; Desrosiers, J.; and Solomon, M. M. 2005.
Column Generation. Springer.
Giacomo, G. D.; Lesperance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1-2):109–
169.
Haslum, P. 2013. Heuristics for bounded-cost search. In
Proceedings of the Twenty-third International Conference
on Automated Planning and Scheduling (ICAPS 13), 312–
316.
Jampani, J., and Mason, S. J. 2008. Column genera-
tion heuristics for multiple machine, multiple orders per
job scheduling problems. Annals of Operations Research
159(1):261–273.

Joncour, C.; Michel, S.; Sadykov, R.; Sverdlov, D.; and Van-
derbeck, F. 2010. Column generation based primal heuris-
tics. Electronic Notes in Discrete Mathematics 36:695–702.
Kelly, R. F., and Pearce, A. R. 2006. Towards high level
programming for distributed problem solving. In Ceballos,
S., ed., IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT-06), 490–497. IEEE Computer
Society.
Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-
based conformant planning. In AIPS, 153–162.
Lipovetzky, N., and Geffner, H. 2009. Inference and de-
composition in planning using causal consistent chains. In
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 09), 217–224.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In Proceedings of the Twenty-second International
Conference on Automated Planning and Scheduling (ICAPS
12), 181–189.
Ohrimenko, O.; Stuckey, P.; and Codish, M. 2009. Propaga-
tion via lazy clause generation. Constraints 14(3):357–391.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Röger, G., and Nebel, B. 2007. Expressiveness of ADL
and Golog: Functions make a difference. In Proceedings
of the 22nd National Conference on Artificial Intelligence -
Volume 2, AAAI’07, 1051–1056. AAAI Press.
Ryan, D. M., and Foster, B. A. 1981. An integer program-
ming approach to scheduling. In Wren, A., ed., Computer
Scheduling of Public Transport Urban Passenger Vehicle
and Crew Scheduling. Amsterdam, The Netherlands: North
Holland. 269–280.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2006.
Divide-and-evolve: A new memetic scheme for domain-
independent temporal planning. In Gottlieb, J., and Raidl,
G. R., eds., Evolutionary Computing in Combinatorial Op-
timization, volume 3906 of Lecture Notes in Computer Sci-
ence, 247–260. Springer.
Tierney, K.; Coles, A. J.; Coles, A.; Kroer, C.; Britt, A. M.;
and Jensen, R. M. 2012. Automated planning for liner ship-
ping fleet repositioning. In ICAPS, 279–287.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessière, C., ed., Principles and Practice of Constraint Pro-
gramming - CP 2007, volume 4741 of Lecture Notes in
Computer Science. Springer. 651–665.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.
Vidal, V. 2011. YAHSP2: Keep it simple, stupid. In Garcı́a-
Olaya, A.; Jiménez, S.; and López, C. L., eds., The 2011
International Planning Competition: Description of Partic-
ipating Planners, Deterministic Track. 83–90.

91

