
Overcoming the Utility Problem
in Heuristic Generation: Why Time Matters

Mike Barley, Santiago Franco, and Pat Riddle
Department of Computer Science

University of Auckland
Private Bag 92019

Auckland, 1142, New Zealand
barley@cs.auckland.ac.nz, Santiago.franco@gmail.com, pat@cs.auckland.ac.nz

Abstract

Progress has been made recently in developing tech-
niques to automatically generate effective heuristics.
These techniques typically aim to reduce the size of
the search tree, usually by combining more primitive
heuristics. However, simply reducing search tree size is
not enough to guarantee that problems will be solved
more quickly. We describe a new approach to auto-
matic heuristic generation that combines more primi-
tive heuristics in a way that can produce better heuris-
tics than current methods. We report on experiments us-
ing 14 planning domains that show our system leads to
a much greater reduction in search time than previous
methods. In closing, we discuss avenues for extending
this promising approach to combining heuristics.

Introduction and Motivation
In the last few decades, Artificial Intelligence has made
significant strides in domain-independent planning. Some
of the progress has resulted from adopting the heuristic
search approach to problem-solving, where use of an ap-
propriate heuristic often means substantial reduction in the
time needed to solve hard problems. Initially heuristics were
hand-crafted. These heuristics required domain-specific ex-
pertise and often much trial-and-error effort.

Recently, techniques (Haslum et al. 2007; Haslum, Bonet,
and Geffner 2005; Edelkamp 2007; Nissim, Hoffmann, and
Helmert 2011; Helmert, Haslum, and Hoffmann 2007) have
been developed to automatically generate heuristics from
domain and problem specifications. In this paper, we call the
components that generate these heuristics heuristic genera-
tors. Many of these heuristic generators work by creating ab-
stractions of the original problem spaces. Usually there are
a number of different ways to abstract the problem space,
and the generators search for a good abstraction to create
their heuristic. These searches are often guided by predic-
tions about the impact that different choices will have on the
size of the problem’s search space. The assumption is that
the smaller the search tree the shorter the search runtime.

If heuristics have comparable evaluation times, using
search tree sizes to compare heuristics makes sense because
then smaller trees do translate into shorter search times.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, evaluation times can differ by many orders of
magnitude1. Large differences in evaluation time can cause a
system that reduces the search tree size to actually increase
the search time. As Domshlak, Karpas et al. (2010) point
out, effective heuristic generators need to consider heuris-
tic’s evaluation costs as well as impacts on search tree size.

In this paper, we describe a system, RA*, which chooses
heuristics based upon reasoning about how those choices
will impact the problem-solver’s search time. RA* is able to
reason about a heuristic’s impact on search time because it
measures both per node generation time and per node heuris-
tic evaluation time. RA* then uses a runtime formula to pre-
dict the impact of a heuristic upon search time by using its
estimates of the heuristic’s impact on the average time per
node and on the tree size. RA* can base its choice of heuris-
tics upon their predicted impact on search time. We compare
RA* against 7 other systems in the setting of the 2011 Inter-
national Planning Competition (IPC). We claim that:

1. Creating better heuristics involves reasoning about their
impact upon the search time as well as reasoning about
their impact on the search tree size.

2. RA* produces the best heuristics, on average, in our ex-
periments, precisely because it explicitly models the im-
pact of heuristics upon total time per node and tree size.

3. RA* solves more of the IPC problems than any of the
other seven systems in our experiments.

Current heuristic generators generate their heuristics from
the domain and problem specifications. However, RA* ap-
proaches this differently by being given its heuristics and
heuristic generators. Specifically, the problem that RA*
solves is the following: Given a problem p and a set of
heuristics H , find a subset, S, of H which, when maxed
over, solves p in the shortest time. This approach allows
RA* to use any heuristic. To include a new heuristic (gen-
erator), one simply passes it as input to RA*. The heuris-
tic generators which are passed to RA* are run to generate
their heuristics. These generated heuristics are added to any
other heuristics (that were passed to RA*) and form the set
of primitive heuristics. This set of primitive heuristics is the
set that RA* will be selecting from.

1In our experiments, for a given state, one heuristic’s evaluation
time can be a million-fold greater than another heuristic’s.

38

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

In the next section we discuss the background for this re-
search. Following that, we describe the heuristic generation
utility problem and both a simple approach and RA*’s ap-
proach to dealing with this utility problem. After that we
describe experiments to evaluate RA*’s performance. In the
final section we summarize our results and suggest the di-
rection of future research.

Background
Throughout this paper we will be referring to some terms
that are not universally understood, so we will define them
here. Since the individual primitive heuristics, used in this
paper, are consistent then so, too, is the maxed combination
of these heuristics. This means that the f-values monotoni-
cally increase along the search paths. Because we are using
A* with consistent heuristics, we can look upon A* as ex-
panding layers of nodes, where each layer consists of all the
nodes with the same f-value. This layer is called an f-level
and the leaves of a layer are called an f-boundary.

There are a number of different bases for creating heuris-
tics: abstraction (e.g., pattern databases (PDBs) (Culberson
and Schaeffer 1996)), delete relaxations (e.g., hmax (Bonet
and Geffner 2001)), and landmarks (e.g., LM-cut (Helmert
and Domshlak 2009)). While we focus on PDBs in this sec-
tion, our approach applies equally well to all types of heuris-
tics, see Experiments section. The one proviso is that our ap-
proach relies on being able to measure the heuristic’s evalu-
ation time easily and that the measurement is a good approx-
imation to the average evaluation time for that heuristic.

Early work by Holte and Hernadvolgyi (1999) on PDBs
found that, on average, for a single PDB the larger the PDB
(i.e., the less abstract the pattern), the smaller the search tree.
Culberson and Schaeffer (1998) mention the possibility of
combing patterns for smaller problems to produce heuris-
tics for larger problems, e.g., using PDBs for the 8-puzzle
and/or the 15-puzzle to serve as a heuristic estimate for the
24-puzzle. Instead of using PDBs from smaller problems,
as suggested above, Holte et al. (2004) looked at combining
smaller PDBs for the same problem. They found that max-
ing2 over many small PDBs usually produced smaller search
trees than a larger PDB whose size (in number of entries)
was the sum of the sizes of the smaller PDBs. Holte found
that while the search trees may be smaller, the search times
can be larger. This was because when maxing over multiple
PDBs, the per node evaluation cost is the sum of the individ-
ual PDB evaluation costs. Zahavi and Felner et al. (2007)
looked at using a “random”3 combiner instead of a max
combiner for a set of symmetric PDBs. Zahavi showed that
using random combiner over a large4 set of PDBs can reduce
the search tree size more than using max over a smaller sub-
set of those PDBs. Another advantage of the random com-
biner was its smaller per node evaluation time.

2“maxing” in this context is evaluating all the individual heuris-
tics (PDBs) and returning their maximum value.

3The random combiner selects a PDB at random from a set of
PDBs.

4If max and random were done over the same of PDBs, then
obviously max would produce smaller search trees.

This idea of not using all heuristics to evaluate every
node has appeared several times recently (selmax (Domsh-
lak, Karpas, and Markovitch 2010), Lazy A* (LA*) and Ra-
tional Lazy A* (RLA*) (Tolpin et al. 2013)). These decide
which of a set of heuristics should be used to evaluate a
given node. They can be explained most easily as choosing
between a cheap and less accurate heuristic, h1, and an ac-
curate but expensive heuristic, h2. selmax chooses which to
use by estimating whether more time will be saved by using
h1 and possibly expanding that node’s subtree or by using h2
and possibly not expanding it. selmax learns online a clas-
sifier that predicts when it should use h2 at a node. selmax
may expand more nodes than max but its overall problem
solving time should be lower than either max or random.

When LA* creates a node, it computes h1 for the node,
and puts it in the open list. When it is taken from the open
list, h2 is computed and it is put back in the open list. When
the problem is solved there are a number of nodes in the open
list for which only h1 was computed thus saving the cost of
the expensive h2 computations. Thus LA* expands exactly
the same nodes as max does, but at a lower cost. RLA* is
a variation of LA*. When a node is picked from the open
list and has not yet been evaluated by h2, RLA* decides if it
should be evaluated using h2 or just expanded immediately.
If it will be expanded eventually anyway then using h2 to
evaluate it is a waste of time. If evaluating it using h2 would
prevent it from being expanded then the time to expand it
and to evaluate all of its children with h1 would be a waste
of time. So either decision could lead to wasted time. If we
know how likely evaluating h2 is to be the correct decision
then we could compute whether it was more wasteful, on
average, to evaluate n with h2 or just expand n. RLA* uses
this to decide which to do. RLA* may expand more nodes
than LA* but should solve the problem quicker.

The field of heuristic search has been moving from an
era of heuristics handcrafted for specific domains to one
where heuristics are being automatically generated for spe-
cific problems. In the recent past, heuristics would be de-
veloped for a domain and then evaluated over a number of
problems in that domain. If the heuristic seemed useful then
it would be used by the problem solver to solve further prob-
lems in that domain. More recent work, (Edelkamp’s GA-
PDB (2007), Haslum and Botea et al.’s iPDB (2007), and
Rayner et al’s (2013)) in automatically generating heuris-
tics, views heuristic construction as a search through a space
of combinations of PDBs. Edelkamp searches through the
space of combinations using genetic algorithms and Haslum
searches through the space using hill climbing. Both ap-
proaches predict which combinations will most reduce the
size of the search trees. Edelkamp uses the average h value
of the heuristic combination as the fitness function, if one
combination’s average h value is greater than another com-
bination’s then the former will probably produce the smaller
search tree. In Haslum et al’s case, iPDB’s hill climbing
search needs a heuristic that predicts which modification of
a combination will be best. iPDB simply counts the number
of elements whose h-values are higher in the new PDB, the
higher the count the better. Rayner et al view the construc-
tion of a new heuristic as selecting the best n-element subset

39

from H , a set of heuristics, where both n and H are given.
”Best” means the subset that has the least loss for a given do-
main. The loss formula adds the subset heuristic’s estimated
distance between pairs of states. Like the two previous ap-
proaches, Rayner et al does not take into account the evalua-
tion times associated with the individual primitive heuristics
in the combination. Consequently, while the search tree may
be smaller the search time may be greater.

In the work on maxing and randomizing over multiple
PDBs, we often encounter the problem that simply reducing
the search tree does not necessarily decrease the search time.
This is a form of the utility problem. In the 1980’s there was
work on learning search control rules for planners that has
many parallels with the current work on multiple PDBs. The
goal of both is to add new sources of knowledge to speedup
the search for solutions. In the 1980’s, learning methods au-
tomated the acquisition of search control rules. However,
Minton (1990) found that sometimes adding more search
control rules would reduce the search space but could also
increase the search time. Minton’s approach to this problem
was to estimate the utility of a new search control rule and
only add those rules whose benefits outweighed their costs.

Recent work on combining multiple PDBs has encoun-
tered the same problem. Adding another PDB to max over,
reduces the size of the search tree but increases the per node
evaluation costs. Sometimes the benefits of having a smaller
search tree are outweighed by the additional per node costs.
Before adding another PDB to the combination, its utility
must be estimated. Estimating a PDB’s utility involves not
only reasoning about its impact on search tree size but also
on per node evaluation costs. These two impacts must be
evaluated in light of how they both affect search time.

A simple runtime formula for a search-based system is:

srchT ime(p, h) = nodesInTree(p, h)∗timePerNode(h)
(1)

where p is a problem, h is a heuristic, srchT ime is the time
spent searching for a solution to p using h, nodesInTree
is the number of nodes generated in p’s search tree when
using h, and timePerNode is the average amount of time
spent generating a node. Computing timePerNode(h) is
straight forward, it is the cost of generating that node plus
the average time spent using h to evaluate the node’s state.
Computing nodesInTree(p, h) for A* is an open problem.

While there are much better formulas for computing
nodesInTree(p, h) for IDA* (Lelis, Zilles, and Holte
2012), there are usually many paths to the same state, mak-
ing IDA* is much less efficient than A*. In this paper, we
use A* and consequently cannot make use of this more ac-
curate prediction method. A common formula (Russell and
Norvig 2009) for predicting the size of the A* search tree is:

nodesInTree(p, h) =
d∑

i=0

bip,h (2)

where p and h are as before, d is the length5 of optimal paths
for p, and b is h’s effective branching factor for p. The effec-
tive branching factor, b is defined as d

√
nodesInTree(p, h).

5We assume all operators have unit cost in this paper.

Overcoming the Utility Problem
In the last section we briefly discussed the utility problem
in the context of heuristics. Namely, that while adding more
heuristics to a max combination will decrease the size of the
search tree, it may actually increase the search time. In this
section, we will discuss two approaches to ameliorating this
problem. The first approach is very simple and the second
approach is our own.

The Space of Combinations
There are two spaces that are being searched. One is the
space of combinations of heuristics and the other is the prob-
lem’s search space. The latter space is the standard heuristic
search space used by most planners. We will now briefly de-
scribe the former search space.

As we have seen, one common approach to creating a new
heuristic is to combine two already existing heuristics. In
this paper we will only be concerned with finding the utility
of max combinations. Focussing on max combinations al-
lows us to look at this problem as finding the best subset of
a given set of heuristics. Looking at combinations as simple
subsets immediately suggests one way of organizing the size
of combinations, as a search space where nodes are the sub-
sets, the root node is the empty set, and edges indicate the
heuristic that is added to the parent’s node’s set of heuristics.
The number of states in this search space is 2n, where n is
the number of heuristics in the given set. For large n, this
space is too large to be searched exhaustively.

Simple Approach
We will look at a relatively simple approach to using a time
based utility formula to select which subset of heuristics to
use to solve a problem. This approach computes each com-
bination’s utility by using that combination to grow a search
tree for the problem to sufficient depth6 to give a good esti-
mate of the combination’s effective branching factor, b. The
optimal solution depth, d, can be approximated by taking
the maximum h(initialState) over all the given heuristics
and doubling it. Now both variables for computing tree size
have been given values and assuming the per node times
have been approximated, then the combination’s utility can
be calculated. We pick the combination with the best util-
ity estimate and then continue solving the problem with that
combination.

Our Approach: RA*
While we believe the previous approach might be good at
selecting the most useful combination for a given f-level, it
has a very high cost to calculate the combinations’ effective
branching factors (EBFs). Especially since for n primitive
heuristics, there would be 2n EBFs to calculate. Since the
calculation of an EBF involves exploring the initial part of
the problem’s search tree, much of that tree would be grown
2n times. So, while the chosen combinations might be very
useful, the approach might not be.

6For RA*, we assume that when intervals take 3 seconds or
more the search has gone “deep enough”.

40

Our approach’s focus is on reducing the overall system’s
time to solve the problem. Our approach trades the qual-
ity of the selected combination against the cost of making
that selection. We try to reduce this selection cost primarily
by reducing the time to predict each combination’s effective
branching factor.

Like the simple approach above, our approach predicts the
time for the current f-level. Unlike the approach above, we
only make one selection and continue with that selection to
solve the rest of problem. In our experiments, our current
implementation of RA*’s heuristic generation process takes
almost 70% of the total problem solving time. The genera-
tion time includes sampling time and utility calculation time.

We will first look at the different phases that RA* uses
in solving a problem, then at our utility formula, next at the
combination pruning heuristics used to reduce the combina-
torics of the selection process and finally at the mechanisms
that underlie our approach to reducing the time to approxi-
mate the combinations’ effective branching factors: the min
combiner and culprit counters.

RA* Phases RA* inputs a set of heuristics and heuristic
generators and outputs a heuristic. To do this it goes through
a sequence of phases (which will be described in the next
few sections):
• Run heuristic generators to produce their “primitive”

heuristics.
• Time how long it takes to generate a node.
• Time how long each primitive heuristic takes to evaluate

a state.
• Initial Growth Period: Expand the initial part of the prob-

lem’s search tree to an adequate frontier size to start sam-
pling.

• Sample Period: Nodes are taken from the frontier to ob-
tain information on each candidate combination’s EBFs.

• Estimate the utility for each candidate heuristic combina-
tion.

• Finish solving the problem with the best combination.

Utility Formula The utility formula for a combination c
is:

Uc,f =| Frontf | ∗EBFc,f ∗ (eRNc + gRN) (3)

where f is the current f-level, Frontf is the set of frontier
nodes at the beginning of f , EBFc,f is the effective branch-
ing factor at f for combination c, eRNc is the per node eval-
uation time, and gRN is the per node generation time. We
obtain EBFc,f from sampling this f-level as described in the
rest of this section. EBFc,f is simply all the sampled nodes
that would have been generated by c in that f-level divided
by the number of sampled frontier nodes. eRNc is simply
the sum of the evaluation times of all the heuristics in the
combination.

Pruning Heuristics For any non-trivial set of heuristics,
the number of combinations is large. In our experiments, we
use a set of 45 heuristics. Thus there are 245 (approximately
32 ∗ 1012 combinations). Far too many to predict times for.

Instead, we want to eliminate as many of the clearly infe-
rior combinations as possible. To do this we use some rules
of thumb to identify and prune away less useful primitive
heuristics. We now discuss some of these rules.

At the end of the initial growth period, we randomly se-
lect frontier nodes7 to grow during the sampling period. We
call these nodes the sample roots. We classify the primitive
heuristics into strong, medium, and weak by evaluating ev-
ery sample root using every heuristic. We count the times
each heuristic had the highest value for a sample root. If a
heuristic’s count is high enough8, it is called a strong heuris-
tic. Of the remaining heuristics, with associated non-zero
counts, the top user-specified percentage9are called medium
heuristics. The remaining ones are called weak. A combi-
nation candidate is defined to be one which has at least
one strong primitive heuristic, and the remainder are at least
medium primitive heuristics. We generate the set of com-
bination candidates in the ascending subset size order and
prune away the ones that do not meet our criteria (specified
above). We stop generating after a user-specified number10,
MaxComb, of candidate combinations.

Min Combiner and the Search Tree Our goal is to grow
only one search tree, a MinTree, rather than grow a separate
tree for every combination. We do this by using a min com-
biner. A min combiner is very much like a max combiner,
except that the heuristic value of a min combiner over a set
of heuristics is the minimum value produced by that set of
heuristics.

As in the simple approach, we need to grow the search tree
deep enough, that our approximations will be reasonable.
We call this period, the initial growth period . While we are
in the initial growth period, we use the max combiner to keep
the tree size small. When the tree is deep enough, at the end
of a f-boundary, we switch to using the min combiner for one
f-level. We call this f-level the sampling period. Using the
max combiner, a node is expanded only if all the heuristics
agree to expand it. However, for a min combiner, a node is
expanded as long as one of the heuristics wants to expand it.

Culprit Counters and Combination Counters In this
section we give a very brief overview of how RA* computes
the number of nodes generated by each heuristic combina-
tion during the sampling period. Franco and Barley et al.
(2013) provide a more detailed description of this process.

During the sampling period, culprit counters are used to
compute the effective branching factors for each combina-
tion. The min combiner allows us to only grow one search
tree and the culprit counters allow us to only update one
counter (the culprit counter) per node expanded.

When we expand a node, the primitive heuristics that
agreed to the expansion are call the culprits. The culprits are
a subset of the full set of heuristics. We associate a counter

7In our experiments the number of nodes RA* selects to sample
is 1% of the previous f-level.

8In our experiments, the count must be higher than is 50% of
the number of samples taken.

9In our experiments, the user-specified percentage is 30%.
10In our experiments, this was set to 20,000

41

with each culprit set11, the culprit counter. When a node is
expanded in the sampling period, we add its number of chil-
dren to the counter associated with its culprit set.

When the sampling period is over, we now need to cal-
culate the number of nodes generated for each combination.
During the final search to find a solution, RA* will be us-
ing the max combiner, which means that all the heuristics in
the combination must agree to generate a node for it to be
generated. This means that for each combination of heuris-
tics, we compute how many nodes would have been gener-
ated for this f-level. For a given combination, we sum all
the culprit counters whose culprit set heuristics are a sub-
set of the combination’s heuristics. After the counts for all
the combinations have been summed, we can compute the
effective branching factor for each combination by dividing
its count by the number of sampled roots. We can also cal-
culate the per node evaluation time for that combination of
heuristics by adding together the per node evaluation time of
each heuristic in that combination.

Once, the effective branching factors and the per node
evaluation times have been calculated, then the utility for
each combination is calculated and the combination with the
highest utility is selected to finish the search for the solution.

Figure 1: Comparing Max and RA* Heuristics’ Search
Times in Seconds, x-axis is RA*’s Search Time and y-axis
is Max’s Search Time

Experiments
In this section we will try to answer two questions: (1) how
do RA*’s heuristics compare with state-of-the-art heuristics;
(2) how does the RA* system compare with other state-
of-the-art systems. The requirements we used for state-of-
the-art systems are: admissible, be integrated into the Fast
Downward’s system (Helmert 2006), and be interruptible12.
We choose iPDB (Haslum et al. 2007) because it is currently
one of the best PDB generators. We choose LM-cut (Helmert
and Domshlak 2009) because it is one of the best landmark

11We only store counters for the culprit sets actually encountered
during the sampling period.

12This requirement was for heuristic generators. Some genera-
tors can run a long time, so RA* sets a time limit for how long a
generator can run and kills any generator that exceeds that limit.

heuristics. We choose hmax (Bonet and Geffner 2001) be-
cause it was not dominated by any single heuristic and while
it was seldom among the best heuristics for any problem it
was better than most of the heuristics for many of the prob-
lems. We choose GA-PDB (Edelkamp 2007), because while
it was not one of the best individually, it can easily generate
a set of heuristics to max over.

Besides having a good set of heuristics to select from, we
also wanted to compare how well RA* did against two de-
fault approaches, namely, Max, i.e., taking the max over the
set, and Random, i.e., randomly selecting which heuristic to
use to evaluate a given state. These two defaults represent
the two extreme approaches of minimizing the search tree
size versus minimizing the per node time cost.

In all the experiments, the same A* search algorithm is
run, the only difference is the particular heuristic being used.
The code for the heuristics LM-cut, hmax, and iPDB come
from the Fast Downward’s code repository. Both GA-D and
GA-ND also come from the Fast Downward’s code reposi-
tory, they both use the same code, the only difference is the
setting of the “disjoint patterns” parameter, which controls
whether the patterns within a collection need to be disjoint
(GA-D) or not (GA-ND).

LM-cut and hmax are online heuristics that compute their
values by search in an abstraction space. iPDB, GA-D and
GA-ND are heuristic generators that produce PDBs13. iPBD
produces a single PDB. We have created GA-D and GA-ND
by using Edelkamp’s heuristic pattern generator and varied
its mutation rate from 0 to 1 in steps of .05. Thus each of
GA-D and GA-ND produce 21 individual PDBs, which they
max over. The seed was changed for each of the 42 GA-
PDB14 generations to increase the variety between heuris-
tics. For every problem there were 45 heuristics provided by
these 5 systems. The Max and the Random systems combine
these 45 heuristics using the max and random combiners re-
spectively. RA* inputted those 45 heuristics and selected a
subset to max over to solve the current problem. When RA*
is selecting heuristics it can choose any subset out of those
45 heuristics including any combination of the 42 GA-PDB
heuristics. However, in our tables below, when we talk about
GA-D or GA-ND, we are talking about the max over the 21
heuristics produced by that generator.

The 2011 IPC setting for the deterministic optimization
track has 14 domains which have 20 problems each. There
are also both time (30 minutes) and memory limits (6 GB
of RAM). The competition metric is simply the number of
problems solved within those constraints. Out of the 280
problems, only 192 of them were solved by any of our 8 sys-
tems. We have limited our analysis to only those problems
which were solved by at least one of our systems.

13Due to a bug with the resetting of the random seed which was
discovered while writing this paper, the heuristics used by GA-D
and the GA-D heuristics and used by Random are not always the
same. Only the GA-D heuristics used by RA* and by Max are the
same. No other system in these experiments uses GA-D heuristics.

14When we refer GA-PDB, we are referring to both GA-D and
GA-ND.

42

Evaluating RA*’s Heuristics
RA*, Max, and Random all work with the same set of
heuristics and consequently have the same variety of heuris-
tics available. The three systems just deal with them differ-
ently. The other five systems have less variety available. We
will first compare RA*’s search time with Max and Ran-
dom’s and then compare it with the remaining five systems.

Figure 2: Comparing Random and RA* Heuristics’ Search
Times in Seconds, x-axis is RA*’s Search Time and y-axis
is Random’s Search Time

Comparing RA*’s Heuristic with Max’s and Random’s
If we look at Figure 1, we see that RA*’s heuristics reduce
search a lot more than Max. Why is this? Max maxes over all
45 heuristics, and RA* chooses a subset of the 45 heuristics
and maxes over that subset. RA*’s per node time is lower
than Max’s but its search tree is larger. If we look at Ta-
bles 1 and 3, we see that while RA* produces 9 times as
many nodes as Max, Max’s time per node (TPN) is 26 times
as long as RA*’s15. Resulting in Max’s average search time
being 3 times (26/9 to be precise) as long as RA*’s. While
RA* almost always beats Max, it does not always. There are
a few problems where Max has a shorter search time.

Since LM-cut’s evaluation time is so high, perhaps includ-
ing it was a mistake. If we did not have LM-cut in the set of
heuristics being maxed over, then would Max do even bet-
ter? To test this, we reran the experiments on Max with and
without LM-cut. The machine where we had originally run
our experiments had been replaced by a new, faster machine,
this means that our results for the Max’s can no longer be
meaningfully compared to the other results. On the new ma-
chine, both Max with and without LM-cut solved the same
number of problems, namely 181. However, of those 181
problems, only 171 were solved by both. Thus, each solved
a different set of ten problems that the other did not. Taking
LM-cut out of the set of maxed over heuristics, did indeed
make a difference in which problems were solved, but not as
far as the number of problems solved.

Looking at the scatter plot for RA* and Random, Figure 2,
looks similar to the one for RA* and Max. However, there
are a few more problems where Random does better than

15Max’s TPN=260.91/456,430.9=.000572 sec/node and RA*’s
TPN = 88.46/4,100,515.7 = .000022 sec/node and their ratio is 26.

RA*; for the rest, RA* is much faster than Random. RA*’s
average search time is 88 seconds, while Random’s is 306
seconds. For every search node, Random chooses one of the
45 heuristics to evaluate that node’s state. This allows Ran-
dom to sometimes solve a problem faster than RA*. How-
ever, RA* generates fewer nodes than Random and RA*’s
average per node overhead is also less than Random’s.

It is evident that RA* does much better, on average, than
using either Max or Random. However, it is unlikely to be
true for all domains and settings. Work remains to be done to
characterize when each of these approaches is best and why.

Avg. Std. Dev. Sum
RA* 88.46 240.74 17,000

GA-ND 123.85 280.17 23,800
GA-D 133.83 314.39 24,900
iPDB 212.01 455.71 40,700
MAX 260.91 500.40 50,100

RAND 321.23 505.60 59,600
LM-cut 446.62 699.15 85,800
hmax 706.12 820.01 136,000

Table 1: Search Time For Each System

Comparing RA*’s Heuristic with the Individual Mem-
ber Heuristics Another question is: Has the state-of-the-
art reached the point where they can produce a heuristic
which cannot be improved by RA* maxing over them and
others? In other words, have the individual heuristics gotten
so good that using RA* is superfluous?

When comparing the average search times per problem in
Table 1, we see that RA* does quite well. The two next best
systems, GA-ND and GA-ND, are .4 and .5 times slower re-
spectively, while the next system, iPDB, is almost 1.5 times
slower. The answer would seem to be that the field still has
some way to go in improving our heuristic generators.

RA*’s heuristics significantly reduce the average search
time. Why is this? We hope it is because RA* is better at
finding good tradeoffs. However there are at least three ob-
vious alternative possibilities: (1) more variety of heuristics;
(2) picking the right heuristic; and (3) smaller search trees.

RA* has more heuristics available. This greater variety
might mean that the heuristics are more complementary, i.e.,
where one heuristic underestimates a distance another one
will be more accurate. If we assume that RA* is simply us-
ing all of the heuristics, and that this variety was the main
reason for RA*’s heuristics’ better performance then, since
Max has the same variety as RA*, it should also perform
better than iPDB, GA-D and GA-ND. However, from Table
1 we can see that this is not true. All three of these have
shorter average search times than Max. So, it is not just that
RA’s is using a wider variety of heuristics that accounts for
its shorter search times.

The second possibility is that tradeoffs have nothing to
do with RA* doing better than iPDB, LM-cut, hmax, or the
GAPDB’s. Perhaps, the reason for RA* doing better is that
for some problems iPDB is the best, for some others, the
GAPDBs are best, and for yet others LM-cut is best and
RA* is simply picking the right heuristic for the right prob-
lems. If this were true then we would expect to see most of

43

RA*’s improvement, over the other heuristic generators, in
the cases where singleton heuristics were chosen. Table 2
shows the number of heuristics used by RA* to solve prob-
lems. Note that a lot of the problems, 97 to be precise, were
solved before the end of the sampling period and so were
solved before having selected a combination. The problems
in this table represent the 90 problems solved after having
selected a heuristic combination. Over half of the problems
(56%) were solved using more than one heuristic. In fact,
there was one problem where all 45 heuristics were used
which resulted in substantial time savings over either just us-
ing either hmax or LM-cut. This is even though both of these
two heuristics were part of the 45 heuristics being used. So,
the reason for RA* doing better than any of the individual
heuristics seems unlikely to simply be that RA* is picking,
for each problem, the heuristic that is best for that problem.

Table 2 could be explained if RA* picked singleton sub-
sets for hard problems and multiple heuristics subsets for
much easier problems. To check this we looked at the av-
erage search time of min(hmax, LM-cut) on these sets of
problems. While there are definitely some combination sizes
that were used on easier problems, specifically, combination
sizes 5 and 6 (where the average min(hmax , LM-cut) search
time is much lower than for the singleton heuristics), the
rest are almost as hard or much harder. In fact, the problem
RA* solved with 9 heuristics in less than 3 minutes, both
hmax and LM-cut could not solve within their 30 minute
time limit. It seems clear that RA* did not chose multiple
heuristics subsets for the easier problems, that it did indeed
choose them for the hardest of the problems.

The last possibility is that RA* selects heuristics that will
produce the smallest search trees. In other words, RA* might
not really need to bother about estimating search times, it
would have worked just as well just estimating tree sizes. If
we look at Table 3, we see that Max has the smallest aver-
age tree size with 456,430 nodes generated16 with LM-cut
following with 841,706 nodes. RA* is 4th with 4,100,515
nodes, almost nine times as many nodes as Max. It is clear
that the reason that RA*’s heuristics are the fastest is not
because they generate the smallest search trees.

The most likely explanation, for why RA*’s heuristics are
best, is that they are better at finding tradeoffs between per
node times and the size of the search tree. Obviously, RA*
sometimes gets this wrong or it would always take less time
to solve a problem than any of the other methods. One would
expect, that since RA* explicitly reasons about the search
time, that RA* would be better at finding good tradeoffs than
systems that simply reason about search tree sizes.

Evaluating the RA* System
In evaluating RA*, it is not enough to look at how quickly
it is able to solve problems after it picked a heuristic com-
bination. We must also look at, how long it took RA* to

16We only include nodes in our counts for problems that were
solved by that system. Additionally, the node generated counts do
not count the number of nodes generated until a solution was found.
Rather, it is the count of nodes until A* hit the optimal solution’s
f-boundary. Thus, our generated node counts are the minimal node
count for any A* search that uses the same heuristic.

RA* RA* Time. Avg
h’s probs Time Avg Std. Dev. min(hmax,LM-cut)

1 40 173.80 297.61 656.33
2 15 139.94 172.00 744.47
3 9 159.85 188.83 845.16
4 6 42.22 70.83 943.14
5 4 50.57 79.06 51.22
6 8 43.91 94.95 116.25
7 5 50.192 58.23 607.66
9 1 168.79 1800

10 1 140.2 954.3
45 1 48.51 753.34

Table 2: Impact of Singleton Heuristics vs Multiple Heuris-
tics on Average Search Time

pick that combination. We do this in two ways. One is to use
the IPC17 criteria to evaluate different domain-independent
planners. In our experiments we use exactly the same plan-
ner but with different heuristic generators. Thus, we can use
the IPC criteria as one way to evaluate RA*. Another way is
to use the total time that each system uses in attempting to
solve all the problems. We will look at both approaches.

Avg. Std. Dev. Sum
MAX 456,430.9 1,314,724 87,634,731

LM-cut 841,706.8 2,579,406 134,000,000
GA-D 3,614,383.8 12,985,491 621,674,005
RA* 4,100,515.7 319,394,651 783,198,505

RAND 7,265,320.7 20,769,307 1,039,000,000
GA-ND 7,868,931.4 19,408,850 1,511,000,000
hmax 14,679,327 45,239,202 1,806,000,000
iPDB 15,826,878 43,379,822 3,039,000,000

Table 3: Generated Nodes For Each System
IPC’s Evaluation Criteria The IPC evaluation criteria for
the optimal deterministic track was a count of the number
of problems solved within the time and memory limits. The
time limit is applied to the total time the system takes to
solve a problem, including time taken to generate heuristics.

Looking at table 4 we see that RA* was able to solve 187
of the 280 problems. This was better than the other systems.
RA*’s heuristics failed to solve 5 of the 192 solved18 prob-
lems. In each of these 5 cases, RA*’s heuristic caused A* to
exceed the memory limit rather than the time limit.

Using the IPC criteria, RA* would be considered the best
heuristic generator. However, this seems a very arbitrary cri-
teria, because if we changed either resource limit or had dif-
ferent problems or domains, we might get very different re-
sults. If we look at the fourteen domains, we see that in nine
of the domains, RA* solved as many problems as the best of
the other seven systems. In three domains RA* solved one
less problem than the best of the other systems and in two
domains, it solved more problems than the others. In Scana-
lyzer, it solved three more than best of the other systems and
in Visitall if just solved one more than the others. The three

17An International Planning Competition (IPC) is run biannu-
ally. These competitions provide a number of domains and prob-
lems that serve as benchmarks for evaluating planners.

18These are the problems solved by at least one of the systems.

44

Problems Solved Avg. # Heuristics
RA* problems solved (problems solved after sampling phase) Used By RA*

RA* GA-ND GA-D MAX iPDB LM-cut RAND hmax total GA iPDB LM-cut
Barman 4(4) 4 4 4 4 4 4 4 4 1.333 0.25 1

Elevators 19(9) 19 19 18 16 18 16 13 19 2.22 0 0
Floortile 6(4) 3 4 6 2 6 2 6 6 3.5 0 0.5

Nomystery 20(4) 20 20 20 18 14 20 8 20 3.25 0 0
Openstack 15(10) 16 16 13 16 16 15 16 16 1 0 0
Parcprinter 13(3) 13 13 13 11 13 10 11 13 1.67 0 0.33

Parking 7(7) 1 1 1 7 1 0 0 7 0 1 0
Pegsol 19(14) 19 19 17 18 17 17 17 19 6.86 0 0

Scanalyzer 14(4) 10 9 11 10 11 6 6 14 5 0 0
Sokoban 20(9) 20 20 20 20 20 20 20 20 0.67 0.67 0
Tidybot 13(11) 12 11 11 13 12 7 5 13 0.09 1 0

Transport 9(4) 10 10 8 6 6 7 6 10 1.25 0 0
Visitall 18(2) 16 17 17 16 10 13 9 18 7 0 0

Woodworking 10(5) 10 9 11 7 11 5 4 13 1.8 0 0
Total 187(92) 173 172 170 164 159 143 123 192 2.9 weighted average
Ratio .97(.49) .89 .88 .88 .85 .83 .74 .64

Table 4: Number of Problems Solved by Each System

columns on the right-hand side of Table 4 show for each do-
main the average number of heuristics used by RA* on that
domain’s problems that RA* solved after having selected a
heuristic combination (this is the number of problems shown
in parentheses in the RA* column on the left-hand side of
the table). RA* never used hmax on any of these problems
and it does not have a column on the right-hand side of the
table. If we do a weighted sum (weighted by the number of
problems RA* solved using a heuristic combination in that
domain) of the number of heuristics used in each domain,
we find that RA*, on average, uses 2.9 heuristics on each
problem. In the two domains where RA* did better than the
others, it had a larger heuristic combination than normal. In
scanalyzer, it used 5 heuristics on average, and in Visitall, it
used 7 heuristics on average. In the three domains where it
did poorer (though only by one problem), RA* had smaller
heuristic combinations than normal. In those 3 domains, on
average it used less than 2 heuristics (specifically, on aver-
age it used just 1, 1.25, and 1.8 heuristics). RA* does better
when using non-singleton heuristic combinations.

Avg. Std. Dev. Sum
GA-D 205.79 371.40 38,700
iPDB 227.68 469.94 43,700

GA-ND 232.68 333.67 44,700
RA* 284.97 319.38 54,700

LM-cut 446.62 699.15 85,800
MAX 453.31 571.95 87,000

RAND 517.68 607.15 99,400
hmax 706.12 820.01 136,000

Table 5: The Total Times for Solving Problems

Total Time Evaluation Criteria All time used by a sys-
tem to solve a problem is included in its total time figures.
This includes the time to run the heuristic generators as well
as the time used by RA* to make its selection. Thus, RA*’s,
Max’s, and Random’s total time includes the time taken by
iPDB, GA-D, and GA-ND to generate their heuristics. The
total time is subject to the time limit.

If we look at Table 5, we see GA-D with the shortest aver-
age total time of 206 seconds and RA* with the 4th shortest
average time of 285 seconds, 40% longer than GA-D. Us-
ing this criteria, RA* does worse. This indicates that RA*
is not a clear winner. RA* does not do any meta-level rea-
soning about its own tradeoffs between its reductions in the
time to solve a problem and the time it spends determin-
ing the heuristic combination to use to reduce that problem
solving time. The goal is to reduce this total time of both
determining the combination to use and using that combina-
tion to solve the problem. The last column of Table 6 shows
the percentage of the total time that each system spends on
generating PDBs. If we look at RA*, we see that it spends
the highest percentage of its time generating PDBs, almost
70%. While the next system, GA-ND, spends less than half
of its total time producing PDBs. What is amazing is that
iPDB only spends 6% of its total time producing its PDB.
RA*’s generation of all 45 heuristics is obviously a perfor-
mance issue. This is an area for future research.

Avg Std. Dev. Sum Ratio
RA* 196.51 200.63 37,729.59 69.0%

GA-ND 108.84 111.04 20,896.48 46.8%
MAX 192.40 201.25 36,940.87 42.4%

RAND 196.45 208.44 37,700 37.9%
GA-D 71.96 98.90 12,815.52 35.6%
iPDB 15.67 25.24 3,008.4 6.6%
hmax 0 0 0 0%

LM-cut 0 0 0 0%

Table 6: Runtime for Generating PDBs
Conclusions

Our main claim is that heuristic generators can suffer from
the utility problem. The utility problem is when the gen-
erator’s attempts to create heuristics that generate smaller
search trees also makes those heuristics take a longer time.

Creating better heuristics involves reasoning about the
heuristics’ impact upon search time. Smaller search trees do
not guarantee shorter search times. What is necessary, how-

45

ever, is for the heuristic combiner to make the best tradeoffs
between the heuristic’s reductions in the search tree size and
any additional per node evaluation costs. We have discussed
RA*, a system that explicitly reasons about the heuristics’
impact on the system’s search time. Our experiments are
done in the 2011 IPC setting. These experiments use a set
of five state-of-the-art admissible heuristics and compare
RA*’s performance with two default approaches (Max and
Random). RA* is clearly superior to both approaches. These
experiments also compare RA*’s performance against the
individual heuristics. RA*’s heuristics, on average, reduce
the search time more than any of the individual approaches.
Our analyses of the experiments indirectly support our claim
that RA*’s superiority comes from its explicit reasoning
about the heuristics’ impact on search time.

While RA* generates better heuristic combinatins, how
does it compare to other systems that generate heuristics?
We analysed this in two ways. We used the 2011 IPC crite-
ria and we also compared the systems based on their total
time. The 2011 IPC criteria for deterministic optimal plan-
ners was the total number of problems solved under given
time and memory constraints. RA* did best with 187 prob-
lems solved out of 280, while the next best system, GA-ND,
solved 173 problems. However, when we compared RA*
against the seven other systems, it came in 4th by running
40% longer than the fastest system, GA-D. This is unsur-
prising as RA* generates all 43 PDBs (using GA-D, iPDB,
and GA-ND), while the top 3 systems (GA-D, iPDB, and
GA-ND) only generated 21, 1, and 21 PDBs, respectively.
The PDB generation time took up 70% of RA*’s total time.

The greatest improvement for RA* would likely come
from better handling of PDB generation. Currently, all the
candidate PDBs are generated and then they are evaluated
at one time. It seems plausible that a better approach is to
adopt the approaches of iPDB and GA-PDB to integrate the
generation and evaluation of heuristics into an incremental
search. This integration would have the drawback of making
it more difficult to add new heuristic generators to RA*.

Acknowledgements

This material is based on research sponsored by the
Air Force Research Laboratory, under agreement number
FA2386-12-1-4018. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of the Air Force Research Laboratory
or the U.S. Government.

We would also like to thank Malte Helmert, et al, for mak-
ing available the Fast Downward code repository and the
2011 International Planning Competition domains and prob-
lems. Both of these have made doing research a lot easier.
We would also like to thank Malte Helmert for his generous
and prompt technical guidance whenever we had doubts on
how FD worked.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Culberson, J., and Schaeffer, J. 1996. Searching with pattern
databases. In 11th Conference of the Canadian Society for
the Computational Study of Intelligence.
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In AAAI, 1701–1706.
Edelkamp, S. 2007. Automated creation of pattern database
search heuristics. In Model Checking and Artificial Intelli-
gence, volume 4428 of LNCS. 35–50.
Franco, S.; Barley, M.; and Riddle, P. 2013. A new effi-
cient in situ sampling model for heuristic selection in opti-
mal search. In Australasian Joint Conference on Artificial
Intelligence.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. In AAAI.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway. In
ICAPS.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Holte, R. C., and Hernádvölgyi, I. T. 1999. A space-time
tradeoff for memory-based heuristics. In AAAI, 704–709.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple pattern databases. ICAPS 122–131.
Lelis, L.; Zilles, S.; and Holte, R. 2012. Fast and accurate
predictions of IDA*’s performance. In AAAI, 514–520.
Minton, S. 1990. Quantitative results concerning the util-
ity of explanation-based learning. Artificial Intelligence
42(2):363–391.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
IJCAI, volume 3, 1983–1990.
Rayner, C.; Sturtevant, N.; and Bowling, M. 2013. Subset
selection of search heuristics. In IJCAI, 637–643.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Towards rational deployment of multiple heuristics
in A*. In IJCAI, 674–680.
Zahavi, U.; Felner, A.; Schaeffer, J.; and Sturtevant, N. 2007.
Inconsistent heuristics. In AAAI, 1211.

46

