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Abstract

In domains such as factory assembly, it is necessary
to assemble many identical instances of a particular
product. While modern planners can generate assembly
plans for single instances of a complex product, gener-
ating plans to manufacture many instances of a prod-
uct is beyond the capabilities of standard planners. We
propose ACP, a system which, given a model of a sin-
gle instance of a product, automatically reformulates
and solves the problem as a cyclic planning problem.
We show that our domain-independent ACP system can
successfully generate cyclic plans for problems which
are too large to be solved directly using standard plan-
ners.

1 Introduction
Domain-independent planning is a promising technology

for assembly planning in complex, modern robotic cell-
assembly systems consisting of multiple robot arms and spe-
cialized devices that cooperate to assemble products [Ochi
et al., 2013]. In a small-scale, feasibility study, Ochi et al
showed that although standard domain-independent plan-
ners were capable of generating plans for assembling a sin-
gle instance of a complex product, generating plans for as-
sembling multiple instances of a product was quite chal-
lenging. For example, generating plans to assemble 4-6 in-
stances of a relatively simple product in a 2-arm cell as-
sembly system pushed the limits of state-of-the-art domain-
independent planners. However, real-world cell-assembly
applications require mass production of hundreds/thousands
of instances of a product.

Ochi et al proposed a (cyclic) “steady-state” (SS) model,
where the problem of generating a plan to manufacture many
instances of a product is reformulated as a cyclic plan-
ning problem. In an instance of the general cyclic plan-
ning/scheduling problem [Draper et al., 1999], the start and
end states of the planning instance correspond to a “step for-
ward” in an assembly line (See Fig. 1), where partial prod-
ucts start at some location/machine, and at the end of this
“step”, (1) all of the partial products have advanced for-
ward in the assembly line (2) one completed product exits
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the line, and (3) assembly of a new, partial product has be-
gun. Ochi et al showed that when an appropriate, manually
generated, start/end state for this cyclic planning instance
was provided to a planner, the resulting manufacturing pro-
cess was competitive with a human-generated, cyclic assem-
bly plan. However, identification of the “steady-state”, the
crucial component of this approach, was an entirely manual
process – the planner was only responsible for computing
paths between the cycle start/end points, so the overall pro-
cess was far from automated.

Figure 1: An example of a start/goal of a steady state with
four products b1,b2,b3 and b4

This paper proposes ACP (Automated Cyclic Planner),
which fully automates the cyclic scheduling process for
“mass manufacturing”, e.g., cell assembly. Starting with a
standard PDDL model for a single instance of a product,
ACP analyzes the model, automatically extracting the struc-
ture necessary to identifying all possible steady-states that
can be used in a cyclic plan. ACP then filters the set of candi-
date states and searches for one which can be used in an effi-
cient, parallel plan for manufacturing an arbitrary number of
instances of the product. Although ACP is motivated by the
cell assembly domain, ACP is a domain-independent system
which can be applied to other domains which require mass
assembly of a single product. We first briefly describes the
cell assembly domain. We then describe the domain analysis
implemented in ACP, focusing on the formal criteria used to
identify candidate steady-states, as well as the methods used
to filter them. We experimentally evaluate ACP on the cell
assembly domain, a modified version of the woodworking
IPC’11 domain, and unmodified IPC barman domain. We
show that ACP enables fully automated generation of large-
scale assembly plans for problems which are totally beyond
the reach of standard, state-of-the-art planners.
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Figure 2: Example CELL-ASSEMBLY instance: model2a.

2 CELL-ASSEMBLY Domain
CELL-ASSEMBLY is a PDDL domain with STRIPS-style ac-
tions, negative-preconditions, action costs, and a hierarchi-
cal type structure[McDermott et al., 1998].

Tasks in the CELL-ASSEMBLY domain consist of assem-
bling many products, called “bases”, using several robot
arms and machines. Each base is first pushed into the sys-
tem by a “carry-in” conveyor. Components may be attached
to the base on the “tables” and the finished product is carried
out of the system by the “carry-out” conveyor. The bases are
always held by an arm or “set” on a table or a machine. Each
table/machine can hold only 1 base at a time, and each arm
can hold only 1 object at a time.

During assembly, bases are processed by a set of ma-
chines, each with a specific purpose such as painting, oil-
ing, inspection etc. Thus various kinds of steps are required
to complete a product, which must be performed in a spe-
cific order described by “job” dependencies. An example of
a CELL-ASSEMBLY plant is shown in Fig. 2.

The range of motion of each arm is limited as shown by
the large circles around the arms in Fig. 2. The job depen-
dencies are statically stated in a initial state of a problem
with (depends ?job ?prev-job) predicates. The predicate (fin-
ished ?job ?base) means one such manipulation was done
on the base. Each base is initialized to have a fact (finished
nothing-done base) in any problems. None of bases exit the
system until (finished jn base) is true for all jobs jn. For ex-
ample, when there are 5 jobs from j0 to j4 and a base b, then
the goal condition contains (finished jn b) for 0 ≤ n ≤ 4
and (finished nothing-done b).

There are 6 actions in this domain: 4 operators for
physical movement, (move-arm ?arm ?from ?to), (set-base
?base ?arm ?pos), (eject-base ?base ?arm ?pos), (pickup-
component ?component ?arm ?pos), as well as 2 sequencing
operators assemble-with-machine and assemble-with-arm.

Since the job dependencies (encoded as preconditions on
sequencing operators) specify the ordering of the assembly
process, planning the efficient movement of the robot arms
that move bases/parts through the assembly process is the
primary task left to the planner [Ochi et al., 2013].

3 Overview of ACP
ACP takes as input a manufacturing order, which consists
of a PDDL domain, a name of a single instance of a prod-
uct, a typed PDDL problem file specifying a model for it,
and N , the number of instances of the product to manufac-
ture. Currently, we support STRIPS-style actions, negative

preconditions and action costs. The output of ACP is a plan
for manufacturing N instances of the product.

ACP currently assumes the following:

• Single Product Type per Order: As an input, ACP takes
the order to assemble N instances of a particular prod-
uct, e.g., “assemble 10 units of widget A”. It does not
handle the mixed orders in which multiple types of
products are assembled simultaneously, e.g., “assemble
10 units of widget A and 7 units of widget B”.
• Uniform Manufacturing Process: To fulfill the order,

all instances of product must be assembled in the exact
same order using the exact same machines. Suppose
that there are 2 possible plans to assemble a product:
(1) attach part p1 first then p2; (2) attach part p2 first,
then p1. Another possible kind of variation may be (1)
do job j at machine m1 ; (2) do the same job j at m2 .
ACP chooses one of those possibilities first and always
applies the same plan (and it never mixes multiple as-
sembly plans.)
• Indistinguishable Parts: Suppose a widget can be as-

sembled from a base and two parts, part1 and part2.
ACP assumes that instances of all components are in-
distinguishable, i.e., all the bases are identical to each
other, and all instances of part1 are identical to all other
instances of part1. In other words, while we can specify
“attach some instance of part1 to each base”, we cannot
specify: “attach this particular instance of part1 to this
particular base”.

At a high level, ACP performs the following steps:

1. A standard domain-independent planner is used to find
a plan for manufacturing a single instance of the prod-
uct. This is the template plan which is used as the basis
for the cyclic plan.

2. ACP analyzes the template plan using the name of the
product as well as the original input PDDL. It extracts
the structures that are necessary in order to specify
start/end points for cyclic plans.

3. Based on the analysis in the previous step, a set of can-
didate steady-state start/end points for cyclic planning
are constructed. This large set of candidates are pruned
to a manageable number using some filtering heuristics.

4. Each remaining candidate steady-state is evaluated by
solving a temporal problem called 1-cycle PDDL prob-
lem, which corresponds to 1 iteration of the cyclic plan,
with a standard temporal planner. The steady-state re-
sulting in the minimal makespan plan is saved.

5. A plan to generate N instances of the product is gen-
erated by sequencing (a) a path from the initial state to
the beginning of the first cycle (setup phase), (b)N un-
rolled iterations of the best cyclic plan, and (c) a path
from the end of the last cycle to the final state where all
products have exited (cleanup phase).

3.1 Difficulties in Identifying Steady States
A candidate steady-state (SS) for cyclic plans in the CELL-
ASSEMBLY domain can be described in terms of the current
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state of a set of (partially processed) bases e.g. “there are
three bases at a table, painter and machine, and the second
one has been painted.” The corresponding SS, Si, is a set of
partially grounded state variables, e.g., {(at bi+2 table), (at
bi+1 painter), (painted bi+1), (at bi machine)}. Si corresponds
to a 1-cycle PDDL problem Π(Si), where the initial state
and the goal condition includes Si and Si+1, respectively.

Given such a representation, identifying a good SS is re-
duced to systematically enumerating and evaluating candi-
date states S, based on the quality (e.g. minimal makespan)
of the plan of Π(S). However, finding the best plan is not
trivial because both too large and too small number of prod-
ucts in the system results in inefficiency. Finding the candi-
date SS’s is also difficult. In principle, we could enumerate
all states reachable from some initial state and test whether
each such state is a feasible SS, but this is clearly impractical
for any nontrivial problem instance.

One simple, possible approach is based on noting that
in any feasible SS, there are 1 or more partially processed
products (bases) placed somewhere in the assembly plant –
in the example above, {(at bi+2 table), (at bi+1 painter), (at
bi machine)}. Based on the domain definition, we know all
the possible “locations” e.g. table, painter, machine, and we
know that we could place at most 1 base in each location.
Thus, we could enumerate these 23 possibilities (whether a
base is at each location or not). Also, we must enumerate the
possibilities for other features of the steady state, such as the
locations of the movable arm(s), as well as which bases, if
any, are held by the arms, and the properties other than loca-
tion such as “a base is painted or not”.

There are two serious problems with this approach: First,
it assumes that domain-specific semantics are hard-coded
into the algorithm: e.g., all “locations” are labeled, arms
“move”, bases can be “painted”, etc. This results in a frag-
ile, domain-dependent system, and our main goal is domain-
independence. Second, the number of candidate states enu-
merated is too large, especially considering that evaluation
of each candidate SS may invoke a standard planner.

We now propose a fully automated, domain-independent
approach for identifying candidate SS’s in ACP. This ap-
proach does not assume, for example, that locations and
movable objects are explicitly labeled in the domain model,
nor does it require us to use domain-specific knowledge to
constrain the search for good candidate SS’s. Instead, our
approach automatically extracts “places” and “movements”
associated with partial products (bases), based on a struc-
tural analysis of the domain model and a template plan. Fur-
thermore, these automatically extracted features can be used
to significantly constrain the set of candidate steady-states,
as shown in the later section.

Typed Predicates In describing our methods, we use the
following notation of Typed Predicates. In PDDL domains
with :typing requirements, a type can be assigned to each
object. If no type is specified, it is defaulted to a predefined
type object, which we abbreviate as * (don’t-care). We
denote type (o) = τ when o is of type τ , where o is either an
object or a parameter (of predicates and actions). Types can
have a hierarchy, such as “type A is a subtype of B”, which

Figure 3: A state, its corresponding process and movement

we denote by A ≤τ B. In turn, B is a supertype of A. Also,
we write o1 ≤τ o2 , when type (o1) ≤τ type (o2) for objects
o1 and o2. A typed predicate is a predicate whose parameters
are specialized to some type, including *. We distinguish be-
tween two typed predicates which have the same name but
are specialized to the different types. For two typed predi-
cates p1 and p2 with the same name, we say p1 completely
specializes p2 when:

k = 1 or 2, 〈vki〉 = params (pk) ,∀i; v1i ≤τ v2i

where params (p) is a parameters of a predicate p, and we
denote this by p1 ≤τ p2 . Note that we also use params (a)
to suggest the parameters of an action a. Also, (pred a b)
means an ungrounded typed predicate with parameters spe-
cialized to type a,b .

3.2 Building and Analyzing a Plan Template
As stated in Sec. 3, ACP takes a PDDL domain, a type τ ,
a number N and a problem. The problem may contain n ≥
1 instances of a single product, but n should be small so
that a good plan is obtained. We solve the problem with a
standard planner and get a plan P , which we call as a “plan
template”. We arbitrarily choose one object b0 of type τ in
the problem. The first major step is here: we identify the
“processing steps” of b0. This is formally defined as follows:
Definition 1 (Process). proc (b0, si), the process for a prod-
uct b0 in i-th state si that appears during the execution of P
is the subset of propositions {f ∈ si | b0 ∈ params (f)} in
si such that every occurrence of b0 has been replaced with a
variable b.
Definition 2 (Whole Processes). The Whole Processes,
proc∗ (b0), of a product b0 in P is the sequence of
proc (b0, si) for all state si in P .

For example, the first step of Fig. 3 gives an example of
computing proc (b0, si) from some si. In effect, proc (b0, si)
removes all propositions from si that do not involve b0. By
applying this procedure to every step of the plan template,
we extract proc∗ (b0), which captures the flow of a base as it
progresses through the plan.

The next major step is to automatically extract things
that correspond to “places” and “movements”. Intuitively,
a “place” is occupied by the product (base). This means
that place-related predicates must involve the base, and
proc∗ (b0) allows us to identify only those predicates involv-
ing a base. In Fig. 3, given proc (b0, si) a human can infer
that (at ?b table1) indicates that a base is located at “table1”,
which means that “table1” is a “place”. On the other hand, in
Fig. 3, although (color ?b red) has the same syntactic struc-
ture as (at ?b table1), i.e., (predicate ?b symbol), “red” is
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not a location. ACP must correctly automatically infer that
“table1” is a place, but “red” is not, but without access to
human-level understanding of natural language and com-
monsense knowledge.

Owner/Lock Predicates The key difference between
“place” and “non-place” is the implication of (or lack
thereof) a particular kind of mutual exclusion relationship.
Note that (at b1 table1) is not just a statement about the loca-
tion of b1. It also implies something about the occupancy of
table1, i.e., if b1 is at table1, then it is occupied by b1. In this
case, it is a resource with capacity 1, and can be treated as a
mutex resource. If all “places” have unit capacity, any time
a product moves into a “place”, it must grab a lock on that
place. Otherwise, the model would allow multiple products
to simultaneously occupy a single place.

Therefore, we can distinguish places from non-places by
identifying this kind of mutex relation in the domain model
and the template plan. In Fig 3, “color” and “finished” do not
impose such mutex constraints because there is no limit on
the number of objects that can be simultaneously assigned
the color “red”, or be “finished” with the “painting” step.

How are mutex constraints indicating a “place” repre-
sented in PDDL? Consider the following: When base b0 sat-
isfies some condition, no other base can satisfy the same
condition. We can directly model these constraints in the ex-
pressive ADL subset of PDDL. Let the condition be (at b0
table). If B is the set of all bases and the add effect of some
action a includes (at b0 table), a must have a precondition
that implies the following constraint:

C1 : ∀b ∈ B \ {b0} ;¬(at b table)

Since most current domain-independent planners support
only a limited subset of PDDL (e.g., STRIPS+α) they do
not directly support “forall”, and constraints such as C1 are
usually implemented using a predicate which represents mu-
tually exclusive use of “table”, e.g., (table-occupied ?table).
We call them mutual exclusion predicates or lock predicates.
Also, if we view (table-occupied table) as a “lock”, then we
can interpret (at b0 table) as an “ownership” predicate indi-
cating that base b0 now holds the lock.

The introduction of such predicates is very common in
practice, and at least in STRIPS, this is by far the most com-
mon pattern in STRIPS for expressing C1; If another pattern
exists, it may still be possible to add a new lock/owner de-
tection technique, as further discussed in Sec. 5.

It seems possible to mechanically identify lock/owner
pairs by a domain-independent structural analysis of the ac-
tion schema because all owner/lock pairs appear in the sim-
ilar manner in all action definitions. For example, an action
a that adds (at b1 table) as an effect will have (not (occu-
pied table)) as a precondition. Also, if base b1 is currently at
another location, e.g., (at b1 X) is a precondition of a, then
there will be a “lock” corresponding to X, e.g., (occupied X),
which will be a precondition of a, and will also be in the
delete effect of a.

These predicates are useful for 2 reasons: (1) they al-
low us to enumerate the sets of objects that represent
“places” and therefore all possible assignments of prod-

ucts on such places; (2) assignments that violate mutex con-
straints can be eliminated from consideration. More gener-
ally, we will identify pairs of lock and owner predicates from
the proc∗ (b0) of a template plan, and we can define a candi-
date steady-state as an assignment of 0/1 values to the owner
predicates.

Detection Method We now describe how our owner/lock
detection mechanism works with a simple example. Sup-
pose we model a 2-D grid of cells that can be occupied
by objects. We need to infer that (2d x b y) with types
(2d coord base coord) and (occupied x y) with (occupied
coord coord) is a lock/owner pair (coord means “coordi-
nate”.) Note that the names of parameters are not considered
at all during the detection – only the types. We use names x,
y, base only for the reader’s convenience.

First, since the corresponding parameters x,y in 2d and
occupied appear at the different positions in the param-
eters, a mapping between them, from the mutex lock µ
to the owner o, must be identified. The mapping is de-
noted by π = {(j → i) . . .} where each (j → i) maps
µj to oi (the j, i th parameter of µ, o.) occupied/2d has
π = {(0→ 0) , (1→ 2)} i.e. (0→ 0) maps x in occupied
to x in 2d. Since we do not consider the parameter name,
{(0→ 2) , (1→ 0)} is also valid (it maps x to y and y to x.)

Next, we checks if each (j → i) satisfies a type relation-
ship oi ≤τ µj (or discard it otherwise.) If they have no in-
heritance (e.g. type orange for oi and apple for µj) then no
instance satisfies those types at once and it does not provide
reasonable information. Being µj the supertype is manda-
tory (described next.) occupied/2d with π passes this check.

Third, we must ensure that (2d x b y) implies (occupied
x y). It obviously requires oi ≤τ µj . Also, it requires the
following conditions to hold in any actions:

1. When occupying a place, ensure the place is not in use,
and acquire the lock.

2. When leaving the place, release the lock.
For example, we check for any action such that (1) if it adds
(2d x b y), it has (not (occupied x y)) in the precondition and
it adds (occupied x y) at the same time, and (2) if it deletes
(2d x b y), it also deletes (occupied x y).

We enumerate all such possible pairs of typed predicates
by trying all the possible parameter supertypes for two pred-
icates. For example, the possible parameter supertypes of 2d
may be (* * *), (coord * *), (* base coord) etc. Since the size of
a PDDL domain is usually small, the time required for this
exhaustive enumeration is inconsequential.

When there are two such valid owner/lock pairs, where
two owners share the name of the predicate, as do the
locks, and one completely specializes the other, then the
more specific one is discarded. For example, given 2
pairs of owner/lock with types ((2d coord * coord) , (occu-
pied coord coord)) and ((2d coord base coord) , (occupied
coord coord)) , only the former is kept.

Finally, we note that an additional mechanism should be
applied during the checks over the actions. In PDDL, (1)
the predicates in the action definition are described with
the parameters of the action and (2) the types of these ac-
tion parameters are independent of the predicate definitions.
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Thus, while we are testing if a pair satisfies the lock/owner
relationships by scanning over the actions, we must check
if (1’) the parameters of the predicates in an action follow
the mapping which the original owner/lock pair has and (2’)
the predicates in an action matches the types of owner/lock
pair. Otherwise, the pair of predicates that appeared in an ac-
tion is not an instance of the owner/lock pair we are check-
ing. Consider the following example: here are two actions
that do not match an owner o = (2d coord base coord) and
a lock µ = (occupied coord coord) with a mapping π =
{(0→ 0) , (1→ 2)} because ex1 follows the different map-
ping {(0→ 2) , (1→ 0)} and ex2 does not match the type re-
lationships. In both cases, the checks should not be applied
to these instances, and they should not affect the validity of
〈o, µ, π〉.
(:action ex1 :parameters (?x ?y - coord ?b - base)

:precondition (not (occupied ?x ?y))

:effect (and (2d ?y ?b ?x) ... ))

(:action ex2 :parameters (?x - orange ?y ?b - apple)

:precondition (not (occupied ?x ?y)) ...)

Now we formalize the above notion as follows. We as-
sume :negative-preconditions, because it makes the defini-
tions of “locks” and “owners” straightforward. For STRIPS,
there is an analogous notion of a releaser which, instead of
modeling the “lockedness” of a resource, directly models
the converse – that a resource is “available”, e.g., (free arm)
instead of (unavailable arm). While this is implemented in
ACP, we omit the explanation both for space and clarity.

First, let the domain D =
〈
Pτ ,A

〉
where Pτ is the set

of typed predicates and A the operator set. Also, o, µ ∈ Pτ
, o = params (o) = 〈oi〉 and m = params (µ) = 〈mj〉 .
Assume |o| ≥ |m|. Also, let px mean an application of a
predicate p to parameters x .
Definition 3 (Mapping of Parameters). 〈o, µ〉 has a mapping
of parameters π when it is a one-to-one projection π : j 7→ i
s.t. ∀mj ∈m; i = π(j) ⇒ oi ≤τ mj .
Definition 4 (Matching Criteria in Action Definition). As-
sume 〈o, µ〉 has a mapping π. Let a an action, where
params (a) ⊇ x ⊇ y. Then 〈ox, µy〉 match 〈o, µ, π〉 when:

∀j; (yj = xπ(j)) ∧ (yj ≤τ µj) and ∀i;xi ≤τ oi .
Definition 5 (Owner-Lock relationship). We say o and µ
are in a Owner-Lock relationship when 〈o, µ〉 has a mapping
π and, ∀a ∈ A, when 〈ox, µy〉 match 〈o, µ, π〉, both the
followings hold:

ox ∈ e+ (a)⇒ µy ∈ e+ (a) ∧ µ̃y ∈ precond (a)

ox ∈ e− (a)⇒ µy ∈ e− (a)

where e+ (a), e− (a) and precond (a) is the add effect,
delete effect and precondition of a, and µ̃ is a negative pre-
condition (not µ).

Movement Returning to Fig. 3, we finally have a method
to extract only the “change of the place” or Movement in
proc∗ (b) by filtering the owners in each proc (b, si) and re-
move the unchanged (set-equal) part. The figure shows that
our method correctly filters “non-places” out, such as finish
and color. The formal definition follows:

Figure 4: Example “Movements-Simplified Steady States”(MS3)

Definition 6 (Movement). Let O be the set of owner predi-
cates. For a product b in a template plan, for i-th state si that
appears during the execution of P , Movement M̄(b, si) is:

M̄(b, si) = {f ∈ proc (b, si) | ∃o ∈ O; f ≤τ o}

Definition 7 (Whole Movements). We form Whole Move-
ments M̄∗(b) by enumerating all M̄(b, si) in a template plan
P and iteratively removing one of each pair of movements
that are adjacent and set-equal to each other.

The fact that (hold arm ?b) in Fig. 3 is a “location” may be
confusing: what happens if the arm moves? Would this not
imply that the position of ?b is also changed? The answer is
no – what matters is the resource usage in the system, and
not where the spatial location of the resource, e.g., changing
the arm position does not affect whether the gripper on the
arm is occupied by a base or not.

3.3 Enumerating and Filtering the Steady States
Based on a sequence of Movements M̄∗, we can represent
a candidate SS as a set of indices {i0, i1, . . . ik−1} (See Fig.
4) where k is a number of partial products in a cycle. Each
number represents which set of owners in M̄∗ a partial prod-
uct has at the beginning of a cycle. Note that the indices
i0 = 0 and ik−1 =

∣∣M̄∗∣∣ represent the states “not yet in the
system” and “already out of the system”, respectively, and
the corresponding partial products occupy no locks. We call
this representation an MS3, which stands for “Movements-
Simplified Steady States”. We enumerate all feasible MS3

which satisfy the mutex constraints by adding a new number
to the already checked MS3, initially {0}. There are poten-
tially 2|M̄

∗|−1 candidate SS’s (the first element i0 = 0 is
fixed).

In theory, we could enumerate each of these candidates
and identify the best SS, but brute-force evaluation of all
2|M̄

∗|−1 candidates (with a standard planner) is impractical,
both because the difficulty of each 1-cycle problem increases
with k and because large 2|M̄

∗|−1 can be intractable. There-
fore we applied some filtering methods on these candidates.

Mutex Focused Planning Our main filtering method is
called Mutex Focused Planning which removes all candidate
steady-states from which there is no path (plan) to the begin-
ning of the next cycle, due to unsatisfiable mutex constraints
(e.g., deadlocks, resource starvation). For example, in the
CELL-ASSEMBLY domain, consider a candidate MS3 which
puts products on all possible locations. This results in dead-
lock, because all arms, tables and machines are occupied and
no base can move.

There might be various methods to detect such dead-
locks but we chose a simple Dijkstra search to reduce
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the implementation effort. In this search, each state is a
MS3, e.g., {0, 2, 5}. Its successor states can be obtained
by incrementing one of the elements of the MS3, i.e.,
{1, 2, 5} , {0, 3, 5} , {0, 2, 6}. However, some of these suc-
cessor states may violate the mutex constraints and they
should be discarded.

This can be interpreted as an abstraction of the original
problem represented by the steady-state, which only consid-
ers “which product moves in what order” and abstract away
the details of each move. Each transition represents a move-
ment of one product from a place to the next place (as de-
termined by the template plan). Also, the mutex constraints
prevent each product from moving into a place occupied by
another product.

When a SS is represented by MS3 {0, i1, . . . , ik−1} and
it has a path to

{
i1, . . . ik−1,

∣∣M̄∗∣∣} in the search space de-
scribed above, then we say that it has a mutex-feasible path
(MFP). We remove all SS’s with no MFP. There may be
some SS’s whose corresponding 1-cycle problems have no
solutions because of the factors other than mutex constraints,
but we assume they are detected in the subsequent call to the
standard planner (see Sec. 3.4).

Filtering Heuristics Even after eliminating all candidate
SS’s without MFP, we further reduce the set of candidates
with filtering heuristics. We identify groups of “similar”
SS’s which are likely to have the same MFP. We instanti-
ate and fully evaluate only the first instance of such a group,
discarding the rest of the members. Based on the fact that
any point on a cyclic path can be a start of the path, we have:

Theorem 1. When a MS3 has a MFP SI1 =
{0, i1, . . . , ik−1} → SI2 = {0, j1, . . . jk−1} → SG1

={
i1, . . . ik−1,

∣∣M̄∗∣∣} , then SI2 also has a path SI2 →
SG2 =

{
j1, . . . jk−1,

∣∣M̄∗∣∣} .

Proof. For each point S of a MFP SI1 → SI2 , if we re-
move 0 from S and add

∣∣M̄∗∣∣ to S, then we get a path
SG1

→ SG2
. Stringing SI2 → SG1

and SG1
→ SG2

yields
a path SI2 → SG2

. This manipulation always yields a MFP
because

∣∣M̄∗∣∣’th and 0’th movement has no lock (they rep-
resent the states of “out of the system”.)

Similarly, there is also a path SI2 → SG2
for all SG2

in
SI1 → SG2

→ SG1
(details omitted due to space).

3.4 Planning the Cycles Based on Steady States
After reducing the number of SS’s, we build and solve a cor-
responding 1-cycle PDDL problem Π(S) for each SS S. The
initial state of Π(S) consists of predicates that either (1) de-
scribe the initial state of each partial product in SS, or (2)
describe the global initial state. To construct (1), we find
corresponding proc (b, si) for each j in MS3 {. . . j . . .} and
ground it with a product of an arbitrary name, e.g. in Fig.
3, we substitute ?b in proc (b0, si) with new-bj . Note that i
and j may differ because identical adjacent elements are re-
moved in M̄∗. (2) is excerpted from the initial state of the
template problem – only those predicates that do not have a
product in its arguments such as (at arm table1) are chosen.

Additionally, (3) appropriate lock predicates are added, such
as (occupied table1),(holding arm). The goal state construc-
tion is similar and straightforward. We solve each Π(S) with
a standard domain-independent planner. We choose the min-
imal makespan plan, store the corresponding SS and unroll
the plan for an arbitrary number of products N .

In addition to the 1-cycle problem, we also need to plan
the setup that takes us from the initial state to the beginning
of the cycle, and a cleanup that takes us from the end of the
last cycle to the final state. These are straightforward and not
described here due to space. Finally, we concatenate them
and get the whole solution of N products.

ACP calls a standard domain-independent planner in or-
der to solve these problems (the same planner is used to
generate the template plan, and to solve the setup/cleanup
problems). Ideally, a temporal planner should be used when
the objective is to minimize makespan. However, due to dif-
ficulties finding a robust temporal planner that could re-
liably handle all of the subproblems generated by ACP,
we currently use Fast Downward [Helmert, 2006] with the
LAMA2011 emulation configuration to generate a sequen-
tial plan, which is then parallelized by applying a simple
scheduler using the minimum-slack algorithm of [Smith and
Cheng, 1993]. Actions in the input model are treated as du-
rative actions with the commonly used “over-all” semantics,
where the preconditions of an action are interpreted to be
true at the beginning of an action as well as throughout the
action [Cushing et al., 2007].

4 Experimental Evaluation
In this section, we evaluate and compare ACP with (1)
direct application of standard domain-independent plan-
ners (2) a simple cyclic planning method which concate-
nates plans generated with domain-independent planners as
well as (3) lower bounds computed by several methods. In
all experiments below, ACP is executed on an Intel Xeon
E5410@2.33GHz with a total time limit of 60 minutes. Each
evaluation of a candidate SS (solving the steady-state plan-
ning problem instance) is limited to 240[s]. In order to com-
pare ACP with the other planners, we limited the number of
SS’s under 50. This eventually resulted in shorter total com-
putation time than 60 minutes in all benchmark problems,
including setup/cleanup planning.

Our evaluation of ACP is primarily based on instances
of the CELL-ASSEMBLY domain. We used 5 instances of the
CELL-ASSEMBLY: Instance 2a (shown in Fig. 2), 2b, 3a, 3b,
3c (most difficult). For each problem above, manufacturing
orders for 4, 16, . . . 1024 product instances were generated
and then solved by ACP. All benchmark domains are avail-
able at http://guicho271828.github.io/publications/ .

4.1 Comparison with the Direct Application of
Standard Planners

We first investigate the performance of standard domain-
independent planners on our benchmark. We evaluated: (1)
Fast Downward (FD) using the LAMA2011 configuration,
using our postprocessing scheduler to parallelize the plan,
(2) Fast Downward with the Landmark Cut heuristic + post-
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processing scheduler, (3) CPT4 [Vidal, 2011a], an admissi-
ble temporal planner (using the h2 heuristic), and two non-
admissible temporal planners (4) yahsp [Vidal, 2011b] and
(5) DAEyahsp [Dréo et al., 2011]. All planners were executed
with a 6 hour time and 4GB memory per instance, for each
problem size. For the temporal planners, all domains were
converted to temporal domains with :durative-actions.

For each problem, Table 1 shows the largest N ∈
{4, 16, 64, 256,1024} such that a manufacturing plan could
be generated by each of the above planners. For example, on
model2a, DAEyahsp was able to solve the problem N = 4
with the least makespan of the 5 configurations, and none of
them were able to solve problems with the number of prod-
ucts N ≥ 16. This shows that current domain independent
planners (both temporal planners such as CPT/yashp/DAE,
as well as sequential planners such as FD, with postprocess-
ing) can only solve small-scale manufacturing problems to
assemble relatively few instances of the desired product.

4.2 Comparison with “Simple Cyclic Planning”
A simple method for generating cyclic plans to manufac-
ture N instances of a product is: Use a domain indepen-
dent planner to generate a parallel, temporal plan for K
instances, where K < N , and then repeat the K-instance
SCP-template plan bN/Kc times, followed by a plan to gen-
erate the rest of N − (K × bN/Kc) “remainder products”.
In order to be able to concatenate these K-instance SCP-
template plans, the goal state specify that in addition to as-
semblingK products, the state of the plant must return to the
same state as in the initial state (e.g., in the CELL-ASSEMBLY
domain, the robot arms must be in the same position as in
the initial state).

We compare the above Simple Cyclic Planning (SCP) al-
gorithm with ACP. For each problem, SCP-template plans
are generated for 1 ≤ K ≤ 9 products. For each K, SCP
was given a time limit of t = 1333[s] and 2[GB] mem-
ory, for a total of 12000[s] per problem.1 For each problem,
we choose the best K-instance SCP-template plan which
minimizes (K-product makespan)/K. This was repeated for
each of the 5 planners/configurations described above. Due
to space constraints, we cannot show all results. Instead,
for each problem, we identified the solver with minimum
makespan per product. Thus, makespan/K, K and the cor-
responding solvers are shown in Table 1. For each problem,
the best SCP result (out of 5 planner configurations), each
given 12000 seconds, is shown. In comparison, the ACP re-
sults are the result of a single run given 12000 seconds.

For small orders (N = 4 orders), the ACP makespan
is comparable to the SCP makespan, but for large orders
(N ≥ 64), ACP clearly outperforms SCP. The relative in-
efficiency of ACP in the small orders can be ascribed to
the setup/cleanup phases. In small orders, the impact of the
cyclic efficiency can be sometimes canceled by the ineffi-
ciency in the setups. So far, we have made no effort to op-
timize the setup/cleanup phases, and this remains an avenue
for future work. However, for large N (which is the moti-

1We ignore the planning time for the “remainder products” be-
cause we want to focus on the cyclic nature of the problem.

Problem M =
∣∣M̄∗∣∣

(]Movements) (a) 2M−1 (b) (c) (d) (e)

CELL-ASSEMBLY 2a 20 ≈ 5.3× 106 104471 6538 412602 677
CELL-ASSEMBLY 2b 10 512 143 85 266 18
CELL-ASSEMBLY 3c 40 ≈ 5× 1011 N/A N/A N/A N/A

Woodworking 6 32 1 21 0 10
Barman 9 256 240 13 0 3

Table 2: All SS’s (a) obtained via M̄∗, (b) filtered by the start
state feasibility, (c) pruned by the filtering heuristics, (d) filtered
by mutex focused planning, (e) remained after (b,c,d). Here, e =
a − (b + c + d) holds. For problem 3a, 3b and 3c, we failed to
compute (e) even with the aid of filtering heuristics, because the
number of total SS’s is too large. (This does not matter during the
search because each SS is incrementally instantiated as needed.)

vation for investigating cyclic planning in the first place),
setup/cleanup costs are amortized, and the cost per product
of ACP is significantly better than that of SCP.

4.3 Comparison with Lower Bounds
To assess how close the solutions found by ACP are to an
optimal cyclic plan, we manually computed lower bounds
(shown in Table 1) for the makespan of 1 cycle for each
problem instance, based on straightforward analysis of the
bottlenecks in each problem. We also show bounds com-
puted using CPT4, but these were mostly less accurate than
our manually computed lower bounds. Comparing the high-
est (better) bounds of the two to the makespan found by
ACP, the gap is between a factor of 1-4 on all instances ex-
cept for Barman (gap of 7x).

4.4 Evaluation of the Pruning Methods
Table 2 shows the number of candidate steady-states that
remains after each step in Sec. 3.3 is applied. This shows
that for large problems (problems with large M ), our prun-
ing/filtering methods are quite effective in reducing the num-
ber of candidates to a manageable number.

4.5 Domain Independence of ACP
To demonstrate the domain-independence of ACP, we con-
ducted experiments based on two “manufacturing” domains
in IPC benchmarks.

Woodworking is based on the temporal domain of IPC’11,
and the task is to cut and process wooden parts from large
boards. Since ACP currently uses a non-temporal planner
(Sec. 3.4), durative actions d were split into 2 actions, d-
start and d-end, with additional predicate which ensures that
d-end is always applied after d-start. In addition, while the
original Woodworking limits the number of pieces that can be
cut from a single piece of wood, we eliminate this constraint
so that an arbitrary number of pieces can be cut (in effect, we
assume that fresh boards are provided whenever the current
board is exhausted). τ = part in this domain.

In the Barman domain, a 2-armed robot uses a shaker and
a shot-glass to mix cocktails. The domain was used without
any modification from the IPC benchmark domain. How-
ever, while IPC instances of this domain require the robot to

26



ACP SCP (best of 5 solvers) Lower Bounds Standard Planner

Problem ] of
products

run-
time makespan makespan

(per product)
makespan

(per product)
] of

products solver manual
bound

manual
bound CPT(h2)

gap
(ACP / bound)

FD/LMcut+
scheduler

FD/LAMA
+

scheduler
yahsp DAE CPT4

N [sec] cACP cACP/N cSCP/K K lm/N lm lCPT cACP/max.lx
CELL-ASSEMBLY 4 1048 331 82.8 83 2 FD/LMcut 39 156 176.3 1.9 fail 892 807 774 fail

2a 16 1049 1255 78.4 ↑ ↑ + scheduler ↑ 624 460 2.0 fail fail fail fail fail
(2 arms, 5 jobs) 64 1049 4951 77.4 ↑ ↑ ↑ ↑ 2496 1624 2.0 fail fail fail fail fail

(τ = base) 256 1049 19735 77.1 ↑ ↑ ↑ ↑ 9984 fail 2.0 fail fail fail fail fail
1024 1050 78871 77.0 ↑ ↑ ↑ ↑ 39936 fail 2.0 fail fail fail fail fail

CELL-ASSEMBLY 4 34 246 61.5 62.3 3 FD/LMcut 42 168 181.12 1.4 249 256 607 332 fail
16 33 978 61.1 ↑ ↑ + scheduler ↑ 672 593 1.5 fail fail fail fail fail

2b (1a, 5j) 64 33 3906 61.0 ↑ ↑ ↑ ↑ 2688 2241 1.5 fail fail fail fail fail
256 34 15618 61.0 ↑ ↑ ↑ ↑ 10752 fail 1.5 fail fail fail fail fail

1024 35 62466 61.0 ↑ ↑ ↑ ↑ 43008 fail 1.5 fail fail fail fail fail
CELL-ASSEMBLY 4 1893 660 165 171 1 FD/LAMA 44 176 237 2.8 fail 1080 fail fail fail

16 1953 2352 147 ↑ ↑ + scheduler ↑ 704 345 3.3 fail fail fail fail fail
3a (3a, 10j) 64 1961 9120 142.5 ↑ ↑ ↑ ↑ 2816 1257 3.2 fail fail fail fail fail

256 1746 36192 141.4 ↑ ↑ ↑ ↑ 11264 fail 3.2 fail fail fail fail fail
1024 1973 144480 141.1 ↑ ↑ ↑ ↑ 45056 fail 3.2 fail fail fail fail fail

CELL-ASSEMBLY 4 1163 318 79.5 81.3 3 FD/LMcut 28 112 191 1.7 fail 540 715 fail fail
16 1162 1074 67.1 ↑ ↑ + scheduler ↑ 448 240 2.4 fail fail fail fail fail

3b (4a, 8j) 64 1163 4098 64.0 ↑ ↑ ↑ ↑ 1792 897 2.3 fail fail fail fail fail
256 1164 16194 63.3 ↑ ↑ ↑ ↑ 7168 fail 2.3 fail fail fail fail fail

1024 1165 64578 63.1 ↑ ↑ ↑ ↑ 28672 fail 2.3 fail fail fail fail fail
CELL-ASSEMBLY 4 1968 804 201 203 1 FD/LMcut 43 172 335 2.4 fail 947 fail fail fail

16 1856 2508 156.8 ↑ ↑ + scheduler ↑ 688 532 3.6 fail fail fail fail fail
3c (5a, 11j) 64 1847 9324 145.7 ↑ ↑ ↑ ↑ 2752 2068 3.4 fail fail fail fail fail

256 1890 36588 142.9 ↑ ↑ ↑ ↑ 11008 fail 3.3 fail fail fail fail fail
1024 1894 145644 142.2 ↑ ↑ ↑ ↑ 44032 fail 3.3 fail fail fail fail fail

Woodworking 4 11 80 20 17.2 9 FD/LAMA 15 60 80 1 80 80 150 80 80
(plane,grind, 16 11 260 16.3 ↑ ↑ + scheduler ↑ 240 185 1.1 260 330 590 270 fail

vanish) 64 12 980 15.3 ↑ ↑ ↑ ↑ 960 665 1.0 980 1290 2170 12840 fail
(τ = part) 256 12 3860 15.1 ↑ ↑ ↑ ↑ 3840 2585 1.0 fail fail fail fail fail

1024 15 15380 15.0 ↑ ↑ ↑ ↑ 15360 fail 1.0 fail fail fail fail fail
Barman 4 331 35 8.8 6.3 4 FD/LMcut 1 4 21 1.7 fail 23 81 31 fail

16 332 179 11.2 ↑ ↑ + scheduler ↑ 16 26 6.9 fail fail fail fail fail
(τ = shot) 64 332 755 11.8 ↑ ↑ ↑ ↑ 64 fail 11.8 fail fail fail fail fail

256 332 3059 11.9 ↑ ↑ ↑ ↑ 256 fail 11.9 fail fail fail fail fail
1024 332 12275 12.0 ↑ ↑ ↑ ↑ 1024 fail 12.0 fail fail fail fail fail

Table 1: Comparison of ACP, SCP, lower bounds (manually computed bound and CPT h2 bound), and direct application of
standard planners for assembling 4, 16, 64, 256, 1024 products. SCP always returns the same cyclic schedule regardless of N (
“ ↑ ” means “same as above”.) CPT4 failed to compute the heuristic value in almost all large problems.

fulfill mixed orders that involve several different cocktails,
our test instances require many instances of a single cocktail
to be mixed. τ = shot in this domain.

As shown in Table 1, ACP can solve both of these do-
mains. For Woodworking, when N is large, ACP generates
significantly better results than SCP and direct application
of standard planners. On the Barman domain, the cyclic plan
generated by ACP is less efficient than the SCP cyclic plan –
this is due to a peculiarity of the Barman domain which makes
it ideally suited for SCP (described in the next section).

5 Discussion
ACP is “sound but incomplete”. As already mentioned in
Sec. 3.2, we can add other owner/lock detection methods
to ACP, and some unforeseen models can cause potential
lock/owners to be missed, so ACP is “incomplete” in this
sense. Nevertheless, ACP is sound, in the sense that any plan

generated by ACP are valid because ALL elements missed
(due to the aforementioned incompleteness) in the template
plan are recovered in the 1-cycle problem sent to the under-
lying planner (Fast Downward).

Suppose the capacity of a certain place is ≥ 2, e.g. a ta-
ble has 2 slots slot1 and slot2. A single-product plan in such
a domain contains a state like (at table1 base slot1), which
ACP correctly detects as an owner. Since ACP only consid-
ers owners which appeared in a single product plan, slot2 is
not utilized in MFP (reachability analysis). However even in
such cases, any 1-cycle problem sent to the underlying plan-
ner contains the information about slot2 in the “global ini-
tial state” described in Sec. 3.4, and the planner takes it into
consideration and return a valid plan. The only drawback is
the potential parallelism (=plan quality) lost by ignoring the
second slot. Barman is one such domain because a shaker can
carry beverages twice an amount of a shot, and in fact, ACP
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performed worse than SCP on Barman.
More generally, ACP (1) provides fast reachability analy-

sis and (2) can generate efficient plans by exploiting paral-
lel actions. Failing to identify owner/locks only reduces the
number of products processed in parallel. Indeed, in a do-
main with no owner/lock, ACP returns a cyclic plan with no
parallelism.

6 Related Work
Cyclic scheduling for robot move sequencing in robotic cell
manufacturing systems, has been studied extensively in the
OR literature [Dawande et al., 2005], and the general prob-
lem of cyclic scheduling has been considered in the AI liter-
ature as well [Draper et al., 1999]. Previous work focuses on
algorithms for generating effective cyclic schedules for spe-
cific domains, and addresses the problem: Given the stages
in a robotic assembly system, compute an efficient schedule.
In contrast, our work addresses the problem: Given some
PDDL model for assembling an instance of “something”
(without any domain-dependent annotations), first identify
the “stages” that could be used in a cyclic plan for mass
manufacturing of the product, and then use these “stages”
to generate a cyclic plan. Thus, comparison with domain-
specific techniques is an area for future work.

ACP is somewhat related to macro abstraction systems
such as Macro-FF [Botea et al., 2005], which automatically
identifies reusable plan fragments. Macro systems strive to
provide a very general abstraction mechanism, but are typi-
cally limited to relatively short macros (e.g., 2-step macros
in Macro-FF). ACP, on the other hand, focuses on identify-
ing lengthy “macros” (10-30 steps) to maximize parallelism
on a limited class of domains.

The domain analysis in ACP is related in spirit to systems
such as DISCOPLAN [Gerevini and Schubert, 1998] and
TIM [Fox and Long, 1998]. While the current implemen-
tation of ACP requires type information to be provided for
the domain-independent extraction of steady-states, much of
the type information could be inferred automatically using a
system such as TIM.

7 Conclusions
We described ACP, a domain-independent system for gen-
erating cyclic plans for “manufacturing” domains where the
requirement is to generate many instances (up to thousands
of units) of a single product. Generating more than a handful
of instances of a product is beyond the capability of standard
domain-independent planners. ACP overcomes this limita-
tion with a novel, static domain analysis system which per-
forms fully automatic generation of a cyclic plan for assem-
bling many instances of a single product. We showed that
ACP can effectively solve CELL-ASSEMBLY problems, and
showed that it can be applied to other domains such as Wood-
working and Barman domains.

While motivated by a factory cell-assembly application,
ACP is domain-independent. Based on static analysis of the
input PDDL model and a plan template for assembling 1
instance of a product (generated using a standard domain-
independent planner), ACP automatically extracts all of the

required structure. Other than the product’s name in the tem-
plate problem, no labels/annotation to the PDDL model are
required, and no assumptions are made about the names of
the types or other objects. ACP automatically infers how a
(partially processed) product progresses through the system,
and how viable candidates for the start/end states for cyclic
planning can be generated.

Currently, there are significant constraints on the kinds of
cyclic plans that can be generated by ACP. ACP assumes that
all instances of the product progressing through the manu-
facturing plant will be processed in the exact same way, i.e.,
in the cyclic plan, each product instance is processed in the
exact same order and manner. In addition, ACP currently
does not allow mixed orders, e.g., “assemble N1 instances
of product P1 and N2 instances of product P2”. Relaxing
these restrictions could enable more efficient usage of avail-
able resources and also make ACP applicable to a broader
class of applications, as well as allow further exploitation of
parallel actions.
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