
On the Use of Temporal Landmarks for Planning with Deadlines

Eliseo Marzal, Laura Sebastia and Eva Onaindia
Universitat Politècnica de València

Camino de Vera s/n
E46022-Valencia (Spain)

{emarzal, lstarin, onaindia}@dsic.upv.es

Abstract

In this paper we present a temporal planning approach
for handling problems with deadlines. The model re-
lies on the extraction of temporal landmarks from the
problem and the construction of a landmarks graph as
a skeleton of the solution plan. A temporal landmark is
a proposition that must be achieved in a solution plan
to satisfy the problem deadline constraints. Each tem-
poral landmark is associated to three temporal inter-
vals, which are updated and propagated according to the
landmarks orders and the deadline constraints. Then,
the partial plans in the search tree that are not com-
pliant with the information comprised in this graph are
pruned. The experimental results will show that this ap-
proach is helpful to quickly detect unsolvable problems
and it is also very effective to solve problems with dead-
lines in comparison to other state-of-the-art planners.

Introduction
This paper presents TempLM, a new approach to tempo-
ral planning with deadline constraints. In temporal plan-
ning, it does not always follow that the plan with the short-
est makespan will be compliant with the achievement time
for individual goals. Goal deadlines are often in constraint-
based planning, manufacturing operations in supply-chain
activities, delivery of goods or workflow-based systems.

The introduction of PDDL3.0 (Gerevini et al. 2009) in the
Fifth International Planning Competition (IPC5) was aimed
at dealing with richer temporal problems defining state tra-
jectory constraints and preferences. The state trajectory con-
straints included, among others, the operator within to ex-
press deadlines. Two planners participated at IPC5 in the
time constraints track, namely MIPS-XXL (Edelkamp, Jab-
bar, and Nazih 2006) and SGPLAN5 (Chen, Wah, and Hsu
2006), and no one exhibited a good performance or com-
plete accuracy in avoiding deadline violations. Later, OPTIC
(Benton, Coles, and Coles 2012), a planner that also handles
soft-deadlines with continuous cost functions, showed to
outperform MIPS-XXL and SGPLAN on the benchmark tem-
poral planning problems with preferences. For our purposes,
we run OPTIC on the IPC5 domains with time constraints

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and we confirmed it also outperformed the two aforemen-
tioned IPC5 planners on problems with goal deadlines. We
thus took OPTIC as the reference temporal planner to com-
pare TempLM with.

Both OPTIC and TempLM handle deadlines expressed
through the within operator or with Timed Initial Literals
(TILs) (Hoffmann and Edelkamp 2005) and also other modal
operators defined in PPDL3.0. like always-within, sometime-
after or sometime-before. Moreover, TempLM can easily be
adapted to the particular features of any temporal model
(i.e. Allen’s interval algebra (Allen 1984)). Nevertheless, ex-
pressing deadlines with within or TILs suffices for our pur-
poses as we are particularly interested in analyzing the be-
havior of the two temporal planning approaches when deal-
ing with hard deadlines. We must also say that, unlike OP-
TIC, TempLM does not handle preferences as it was specifi-
cally designed for dealing with goal deadlines.

TempLM builds upon the work in (Marzal, Sebastia, and
Onaindia 2008), which presents a CSP-based consistency
checker to detect unsolvability in planning problems with
deadlines. TempLM exploits the same definition of tempo-
ral landmark: a proposition that must be true in a solu-
tion plan to satisfy the deadline constraints. It contributes
with a method to extract temporal landmarks and create a
landmarks graph (LG) as well as a fully-executable planner
which is also capable to detect unsolvable problems. Solv-
ing tightly-constrained problems and detecting unsolvability
are the tasks in which planners typically find more difficul-
ties. TempLM builds a graph of temporal landmarks which
structurally resembles a solution plan. Likewise, temporal
landmarks are annotated with three temporal intervals which
define the temporal occurrence of a landmark in a solution
plan as well as the requirements for logical and temporal
consistency. As the intervals are updated and propagated,
and constraints are violated, plans are discarded from the set
of solution plans. We apply a simple heuristic search guided
by an adapted version of the hLM−cut heuristic (Helmert
and Domshlak 2009) to temporal planning problems. The
experiments will show that TempLM outperforms OPTIC in
solving tightly-constrained and unsolvable problems while
obtaining similar or better solutions in loosely-constrained
problems from the IPCs.

This paper is organized as follows. Section Preliminary
concepts gives some basic definitions. Section Overview in-

172

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



Condition Effect disaE disaL
SCond SAdd ε ε
SCond EAdd dur(a) dur(a)
Inv SAdd ε −dur(a)
Inv EAdd dur(a) ε

ECond SAdd −dur(a) −dur(a)
ECond EAdd ε ε

Table 1: Definition of disE and disL

troduces the key aspects of TempLM, which are explained in
detail in the next three sections. Section Experiments com-
pares the results of OPTIC and TempLM in several differ-
ent settings. Finally, we conclude and outline some further
work.

Preliminary concepts
A planning problem P =

〈
P,O, I,G

〉
is characterized by

an initial state I , a goal description G and a set of actions
O that can be applied in the domain of the problem. The
set of all propositions in a planning problem is denoted by
P . In this paper, we assume a subset of the semantics of
the temporal model of PDDL2.1 (Fox and Long 2003), the
TILs defined in PDDL2.2 (Hoffmann and Edelkamp 2005)
and some of the state trajectory constraints introduced in
PDDL3.0 (Gerevini et al. 2009). We give here some defi-
nitions that will be used throughout the paper.

Definition 1 A durative action a ∈ O contains the follow-
ing elements:

• Conditions Cond(a), which are divided into start condi-
tions SCond(a), end conditions ECond(a) and invariant
conditions Inv(a).
• Duration. The duration of an action is a positive value

represented by dur(a) ∈ R+.
• Effects Eff(a), which are divided into the start effects

SEff(a) = {SAdd(a) ∪ SDel(a)}; and the end ef-
fects EEff(a) = {EAdd(a)∪EDel(a)}. We also define
AddEff(a) = SAdd(a)∪EAdd(a) and DelEff(a) =
SDel(a) ∪ EDel(a).

The structure of a durative action a determines two dis-
tances between a condition c and an effect e of the ac-
tion. We define disaE(c, e) as the distance between the time
point when e is asserted and the earliest time point when c
is needed; and disaL(c, e) as the distance between the time
point when e is asserted and the latest time point when c is
needed1. This is detailed in Table 1.

Definition 2 A temporal plan Π is a set of pairs of the form
(a, t), where a ∈ O and t is the start execution time of action
a. Given a proposition p, we denote by start(p) and end(p)
the time points when p is asserted and deleted, respectively,
by an action in Π. The duration (makespan) of a temporal
plan Π is durΠ = max∀(a,t)∈Π

(
t + dur(a)

)
. That is, the

1ε is used at PDDL2.1 level 3 to express the duration of an
instantaneous action, an amount so small that it makes no sense to
split it (Garrido, Fox, and Long 2002).

duration of the temporal plan is the end time of the action to
finish last.

Definition 3 A temporal planning problem with deadline
constraints is a tupleP =

〈
P,O, I,G,D

〉
, where D is a set

of deadline constraints of the form (l, t), denoting that l must
be achieved within t time units.

We are particularly interested in those problems that im-
pose a deadline TΠ for the whole plan. We thus assume that
D contains a set of constraints so that we can establish a
deadline tg for each g ∈ G, and, then: TΠ = max∀g∈G(tg).
In PDDL, there are two basic ways for expressing a deadline
tg over a goal g2:
• Explicitly, by means of the modal operator

of PDDL3 within, as stated in (Gerevini et
al. 2009):

〈
(S0, 0), (S1, t1), . . . , (Sn, tn)

〉
|=

(within tg g) iff ∃i : 0 ≤ i ≤ n • Si |= g ∧ ti ≤ tg .
Therefore, given a deadline expressed as (within tg g), a
constraint (g, tg) is added to D3.

• Implicitly, by means of the TILs of PDDL2.2, which is a
way to express time windows. A TIL is defined by a pair
(t, l), where t is the rational-valued time of occurrence
of the literal l (Hoffmann and Edelkamp 2005). Further-
more, a TIL (t, (not l)) corresponds to a deadline if l is
present in the initial state or added by another TIL, never
added by any action, and never reinstated by any other
TIL (t′, l), such that t < t′ (Coles et al. 2012). In general,
given a set of actions A that assert g and some TIL (ti, li)
that restrict the execution of these actions, the constraint
(g, tg) to be added to D is computed as follows:

tg = max
∀i

(
ti + max

∀a∈A
(disaE(li, g))

)
For example, let (t, (not p)) be the only TIL defined
in the problem and let a ∈ O be the only action that
has g as an effect, say g ∈ EAdd(a). Additionally,
p ∈ SCond(a), dur(a) = d and p ∈ I , g ∈ G. In this
case, the deadline constraint that would be added to D is
(g, t + d), given that disaE(p, g) = dur(a) = d.

Overview
Given P =

〈
P,O, I,G,D

〉
, our goal is to obtain a plan

that achieves G from I , while satisfying the constraints in D
(including the plan deadline TΠ). TempLM consists of two
components: knowledge compilation and search.

Knowledge Compilation. We distinguish two steps in
this component. In the first step, we generate a graph that
represents a plan sketch to a satisfactory solution. Initially,

2The definition of deadlines could be generalized for any other
proposition, it is not exclusive of goal propositions.

3This definition states that, if a goal is achieved more than once
in the plan, it suffices one appearance to fulfill the within constraint.
However, abusing from this notation, we consider that this con-
straint, when applied to a goal g, refers to the last appearance of
g. Operator hold-after does not imply persistence. Persistence would
be expressed with (within deadline (always goal)), which requires nest-
ing of the modalities and this is not allowed in standard PDDL3.0
syntax. (Derek Long, personal communication).

173



this graph is constructed by extracting the (non-temporal)
landmarks of the problem (Hoffmann, Porteous, and Se-
bastia 2004). Next, new (temporal) landmarks derived from
the deadline constraints are added to the LG. In the second
step, landmarks are annotated with three temporal intervals
(Marzal, Sebastia, and Onaindia 2008), which denote the va-
lidity of the temporal proposition. At this step, we also ana-
lyze other constraints involving temporal landmarks that will
determine the consistency of the graph and thus the solvabil-
ity of the problem.

Search. We apply a search algorithm guided by a heuristic
that exploits the information of the landmarks together with
the temporal and causal knowledge compiled in the land-
marks graph. The information comprised in the graph will
allow us to prune inconsistent sub-plans.

It is important to highlight that the output of the knowl-
edge compilation phase is a LG comprising information that
any solution plan of a problem should contain. In particular,
the non-temporal landmarks of the graph are the proposi-
tions that must be true in any solution plan, and the temporal
landmarks are the propositions that must appear in the plan
in order to satisfy the deadline constraints. For both types of
landmarks, their temporal intervals show when these propo-
sitions must be achieved in the plan. Consequently, if a sub-
plan not compliant (or consistent) with the information con-
tained in the LG is encountered during the search phase then
the search node that represents such a plan will be pruned.

Knowledge compilation: Landmarks
extraction

In this section, we detail the first part of our knowledge com-
pilation process, the extraction of non-temporal and tempo-
ral landmarks.

Non-temporal landmarks
In a non-temporal setting, a landmark (Hoffmann, Porte-
ous, and Sebastia 2004) is defined as a proposition that must
be true at some point during the execution of any solution
plan. The process for the extraction of non-temporal land-
marks that we use in this paper was introduced in (Marzal,
Sebastia, and Onaindia 2011). It is a combination of several
existing methods that returns more landmarks than any other
known technique. The key concepts of this approach are the
first achievers and dependency labels. Let Γt

p be the set of
relaxed plans4 that reach a proposition p at a time t. The first
achievers of p at t are defined as follows:

fat(p) = {a ∈ Γt
p : p ∈ AddEff(a)}

The idea behind the first achievers is that this set contains
all of the actions that may achieve p at time t. Additionally,
the set of dependency labels for each proposition p at a time
point t, denoted by labelst(p), is defined as follows:

labelst(p) = p ∪
(⋂

labelst
(⋃

labelst(C)
))

,

4This set can be calculated by means of a relaxed planning
graph (Hoffmann and Nebel 2001).

where C =
⋃

∀a∈fat(p)

Cond(a)

The labels keep information about the propositions that must
necessarily be true in the plan before p becomes true at t.
These labels are computed forwards from the initial state.
The definition of a landmark derives from the concept of
first achievers and dependency labels (when the duration of
all actions is one time unit):

Definition 4 A landmark l is a proposition that belongs to
either one of the following sets:

1. the intersection of the conditions of the first achievers of
all goals g ∈ G at tg:

⋂
Cond(a),∀a ∈ fatg (g). The

set of landmarks that belong to this set become in turn
subgoals of the problem and the process is repeated again.
This iterative process allows to derive new landmarks.

2. the set of dependency labels of all goals g ∈ G at tg , that
is, the set formed with labelstg (g) for every goal in G.

Landmarks can be (partially) ordered according to the or-
der in which they must be achieved. This information will
be later used during the search to find a skeleton of the solu-
tion plan. The method in (Hoffmann, Porteous, and Sebas-
tia 2004) obtains a set of necessary orderings of the form
l ≺n l′ during the landmarks extraction, denoting that for
achieving l′, l must be true in the immediate preceding state.
Additionally, a set of dependency orderings of the form
l ≺d l′ is computed by a process inspired by the works
described in (Porteous and Cresswell 2002) and (Richter,
Helmert, and Westphal 2008). Generally speaking, a depen-
dency ordering indicates that l must be achieved before l′,
but not necessarily in the state immediately prior to the state
in which l′ is achieved. The set of landmarks along with the
necessary and dependency orderings between them define a
landmarks graph (LG).

Temporal landmarks
Let ΠP be the set of all the solution plans for a planning
problem P without deadline constraints. By definition, the
intersection of the propositions achieved along the execu-
tion of the plans in ΠP define the set of non-temporal land-
marks. Let’s assume that P ′ is a new problem where some
deadline constraints, D, are defined inP . Then, we have that
ΠP

′ ⊆ ΠP . That is, due to the existence of D, the number
of solution plans for P ′ can be smaller and, consequently,
more landmarks can be found in the set ΠP

′
. This set of

new landmarks are called temporal landmarks.
Informally speaking, a temporal landmark is a proposition

that must be achieved in any solution plan that satisfies D.
The set of non-temporal landmarks extracted are also con-
sidered as temporal landmarks. Moreover, we need to estab-
lish when a temporal landmark must be achieved in order to
satisfy D. We denote by [ming(l),maxg(l)] the generation
interval of a temporal landmark, where:

• ming(l) is the earliest time point when landmark l can
start in the plan. This value is determined by the time of
the first fact layer when l appears in a TRPG (Temporal
Relaxed Planning Graph) (Coles et al. 2008).

174



• maxg(l) represents the latest time point when l must start
in order to satisfy D. The propositions involved in a dead-
line constraint are initially assigned a maxg value. Even-
tually, the maxg value is propagated to other landmarks
across the LG.

Given a set of deadline constraints D, where (l, t) ∈ D, in
a first step of the process for extracting temporal landmarks,
l is added as a temporal landmark and maxg is set to be prior
or equal to t: maxg(l) ≤ t.

The second step of the temporal landmarks extraction ex-
ploits the idea that the existence of a deadline constraint in a
planning problem rules out the applicability of some actions
due to the time restrictions, as explained at the beginning
of this section. Given a proposition l in the LG, more land-
marks can be easily obtained by consulting the propositions
that l has some dependencies with at time maxg(l), which is
the latest time for l to appear in the plan. That is, the propo-
sitions included in labelsmaxg(l)(l)5 are considered as new
temporal landmarks. This second step is repeated while new
temporal landmarks are found.

Once the set of temporal landmarks is extracted, we must
set the appropriate orders. In particular, let li be a land-
mark in the graph, l a temporal landmark to be inserted
in the graph, and At the set of actions that achieve l at t
where, if ∃(l, t′) ∈ D, then t = t′; otherwise, t = TΠ.
There is a necessary ordering between li and l (li ≺n l) if
li ∈

⋂
Cond(At). Likewise, there is a dependency ordering

between li and l (li ≺d l) if li ∈ labelst(l). The definition
of orders between landmarks may cause the appearance of
cycles in the graph, which indicate that a landmark must be
achieved more than once in the plan. In this case, a cycle is
broken by adding another instance of the same proposition,
as explained in (Hoffmann, Porteous, and Sebastia 2004).

Knowledge compilation: Propagation of
temporal information

Once we have the LG composed of both temporal and non-
temporal landmarks, we know which information (propo-
sitions) must necessarily appear in any solution plan that
satisfies the deadline constraints. We also know the last
time point when some temporal landmarks (actually, those
that appear in D) must be achieved. The second step of
the knowledge compilation is to propagate this information
across the LG, in order to progressively refine the intervals
that define a landmark. This will allow us to derive new tem-
poral landmarks by applying the second step of the temporal
landmarks extraction over the maxg time points that will be
updated during the propagation.

Let’s recall that start(l) and end(l) denote the time
points of the temporal occurrence of a landmark l in a
solution plan. Besides the generation interval, we define
the validity interval ([minv(l),maxv(l)]): it is the max-
imum interval of validity of landmark l in the plan. That
is, minv(l) ≤ start(l) ≤ end(l) ≤ maxv(l). Initially,
minv(l) = ming(l) and maxv(l) = TΠ; these values will
be updated when the information in the graph is propagated.

5In this case, the actual duration of the actions is considered.

Updating the generation and validity intervals
Necessary and dependency orderings. A causal relation-
ship between two landmarks li and lj , such that li ≺{d,n} lj ,
implicitly establishes some temporal constraints between
the endpoints of the intervals. For example, let (g, t) be
a deadline constraint in D; we know that maxg(g) = t.
Let’s assume that an action a has a duration of d, adds g
at the end and p is a at-start condition. Then, given that
p ≺n g, we can infer that maxg(p) ≤ maxg(g) − d and
that minv(g) ≥ minv(p) + d. In general, we can establish
that, if li ≺n lj , then (see Table 1):

maxg(li) ≤ maxg(lj)− disE(li, lj)

minv(lj) ≥ minv(li) + disE(li, lj)

A dependency relationship between two landmarks li and
lj , li ≺d lj , actually means there exists a sequence of actions
to reach lj from li, not just a single action. In this case, we
define DISE(li, lj) and DISL(li, lj) as a generalization of
disE and disL, which are recursively computed as the min-
imum distance between all the propositions in the path from
a state that contains li to a state that contains lj (Marzal,
Sebastia, and Onaindia 2008). Particularly, these values are
computed as:

DIS{E,L}(li, lj) = min(DIS{E,L}(li, l)+dis{E,L}(l, lj))

, where l is a condition of some action a and lj is an
AddEff of a. That is, l is a proposition in the path between
li and lj . In case of li = lj then DIS{E,L}(li, lj) = 0.

From these distances, we can establish some relationships
between the endpoints of the intervals of a pair of landmarks
when li ≺n,d lj . These relationships, called propagation
constraints, are propagated across the LG every time the
interval of a landmark is modified:

maxg(li) ≤ maxg(lj)−DISE(li, lj) (1)

minv(lj) ≥ minv(li) + DISE(li, lj) (2)

Mutex relationships. If two landmarks li and lj are mutex
(Blum and Furst 1997), this means that they will not coexist
in any state of a solution plan. Therefore, we can use this
information for updating the validity intervals in the LG. If
li and lj are mutex at time t and there exists a causal rela-
tionship between both landmarks of the form li ≺{d,n} lj ,
we set:

maxv(li) = min(maxv(li),maxg(lj)−DISL(li, lj))
(3)

This way, the end time of the validity interval of li is
set equal to the latest time point when lj must be true
(maxg(lj)) minus the minimum distance between them.
Moreover, the constraint maxv(li) ≤ minv(lj) is also
added to the set of propagation constraints. This information
will be then propagated to the rest of the graph.

Necessity interval
Along with the validity and generation intervals, we define
the necessity interval ([minn(l),maxn(l)]), which repre-
sents the set of time points when l is required as a con-
dition for an action to achieve other landmarks. That is,
start(l) ≤ minn(l) ≤ maxn(l) ≤ end(l).

175



Figure 1: Representation of a temporal landmark

The necessity interval of a given landmark li is computed
by taking into account all the necessary orderings in which
li is needed as condition to generate another landmark:

minn(li) = min
∀lj :∃li≺nlj

(minv(lj)−DISE(li, lj))

maxn(li) = max
∀lj :∃li≺nlj

(maxg(lj)−DISL(li, lj))

That is, the start (resp. end) time of the necessity interval
of li is set to the earliest (resp. latest) time point in which li
is necessary to ensure the validity (resp. generation) of ev-
ery temporal landmark lj for which there exists a necessary
ordering with li.

If the end point of validity interval of a landmark li is
updated due to a mutex relationship, the end time point of
the necessity interval is updated accordingly: maxn(li) =
min(maxv(li),maxn(li)).

Interval Consistency
Figure 1 shows the relationships between the temporal oc-
currence of l in the plan and its temporal intervals. It also
shows the relationships between the endpoints of the inter-
vals of l (Marzal, Sebastia, and Onaindia 2008):

ming(l) ≤ minv(l) ≤ minn(l)
minv(l) ≤ maxg(l) ≤ maxv(l)

maxn(l) ≤ maxv(l)

The relationship ming(l) ≤ minv(l) always holds, given
that ming(l) is the earliest time point when l can start in
the plan, determined by the time of the first fact layer when
l appears in a TRPG. Although minv(l) is initially set to
ming(l), it can move forward in time due to the relationships
with other landmarks.

The inclusion and propagation of the deadline constraints
and the causal relationships in the LG causes a modification
in the endpoints of the intervals, as explained in the previ-
ous subsections. If one of the relationships above is violated
during the construction of the LG, it means that the prob-
lem is unsolvable, in which case TempLM will report that no
solution plan is found. For example, this is the case when
minv(l) > minn(l), which implies that l is needed be-
fore it is generated. Finding these inconsistencies allow us
to promptly detect that the constraints defined in the prob-
lem lead to an unsolvable problem, even before starting the
search. This will be shown in the experiments section.

Figure 2: Initial state of the explanatory example.

Finally, the LG can be viewed as a Simple Temporal Net-
work (Dechter, Meiri, and Pearl 1991), where the nodes are
the time points of the intervals. Additionally, note that, as in
constrained-based planning (Frank and Jónsson 2003), en-
forcing the interval consistency relationships allows to ex-
ploit the landmarks properties in strongly constrained prob-
lems thus facilitating an early detection of unsolvability.

Example
This section introduces an example on the driverlog domain
(Long and Fox 2003) to show the construction of the LG and
the calculation of the landmarks intervals. The initial state is
depicted in Figure 2, along with the goal deadlines. Figure
3 shows the LG obtained for this problem (after the prop-
agation process). In this case, only the propositions from
the initial and goal state are non-temporal landmarks, given
that there are two trucks for transporting the packages. The
deadline constraints impose that maxg(at P2 S3)= 50, so
only the actions that achieve (at P2 S3) at 50 are considered.
Therefore, the propositions in bold ((driving D1 T1), (at T1
S2), (in P2 T1) and (at T1 S3)), which belong to labels50(at
P2 S3), are temporal landmarks.

Once the landmarks are inserted in the LG, the neces-
sity and dependency orderings are established. For exam-
ple, (at T1 S3)≺n(at P2 S3), because the only action that
adds (at P2 S3) at time 50, a =(UNLOAD P2 S3 T1)
with dur(a) = 2, has (at T1 S3) as a start condition. More-
over, maxg(at T1 S3) is set to 50-2=48, given that disaE is
2 in this case. Similarly, as Figure 3 shows, there is a de-
pendency order between (at T1 S2) and (at T1 S3) because
there are several paths to achieve (at T1 S3) from (at T1 S2),
so a necessary order cannot be established. This dependency
order determines that maxg(at T1 S2)= 48 − 20 = 28, as
Equation 1 states. In this case, DISE is 20, which represents
the shortest distance between (at T1 S2) and (at T1 S3), as
Figure 2 shows. From all these orders, the start time point of
the validity intervals is also updated. For example, following
Equation 2, minv(at T1 S3)= 24 + 20 = 44. Thus, minv(at
T1 S3) is greater than its ming value, meaning that (at T1
S3) cannot be actually reached before 44.

Given that (at T1 S2) and (at T1 S3) are mutex and there
is a dependency order between them, we update the end

176



Figure 3: Landmarks Graph for the Example

point of the validity interval of (at T1 S2), which is ini-
tially set to TΠ = 200, as Equation 3 states: maxv(at T1
S2)= min(200, 48−20) = 28. As Figure 3 indicates, (at T1
S2) will only be valid in the plan during the interval [24, 28].
There are some intervals that cannot be updated, like the va-
lidity interval of (driving D1 T1), because, in this case, there
is no action in a solution plan that satisfies the goal deadlines
that deletes this proposition.

Let’s now show how an inconsistency in the graph is
found. What would happen if the deadline of (at P2 S3) were
40 time units instead of 50? Its minv would take the same
value shown in Figure 3 (46) because the value of minv is
propagated from the initial state to the goals. Then, the va-
lidity interval of (at P2 S3) would be [46, 200] and its gen-
eration interval would be [35, 40]. Obviously, there is an in-
consistency between these two intervals because maxg(at
P2 S3) is not contained within the validity interval. It is im-
portant to note that this inconsistency would not be found
in the TRPG expansion; the first time layer at which (at P2
S3) appears is 35 (ming). Therefore, any deadline greater
than 35 would be found as satisfiable by the TRPG, whereas
our LG would identify any deadline lower than 46 (minv)
as unsolvable.

Searching for a solution plan

In this section, we summarize some aspects of the search
process. We apply a search process in the space of partial
plans. A node in the search tree is denoted by a pair (Π, St),
where t = dur(Π). Π represents a conflict-free partial plan
and St represents the state reached (at time t) after the ex-
ecution of Π from I . Search is guided by: (1) the temporal
and causal knowledge compiled in the LG, used to prune
the plans that are not compliant with the information in the
graph and (2) a (non-admissible) heuristic based on action
landmarks for sub-optimal temporal planning.

Evaluation function
The search process is guided by a standard evaluation func-
tion f(n) = g(n) + h(n). In temporal planning problems,
the parallelism of the plans must be taken into account to ob-
tain an accurate g(n). Therefore, given a node n = (Π, St),
we define g(n) = dur(Π). This way, the g-value of a node
accurately reflects the cost of its plan.

The heuristic used in our algorithm is a temporal approx-
imation of the well-known landmark cut heuristic hLM−cut

(LM-cut for short). This is an admissible heuristic based on
delete relaxation that provides one of the best-known poly-
time approximations of h+ (Helmert and Domshlak 2009).
LM-cut has been successfully used in optimal sequential
planning ((Helmert and Domshlak 2009), (Domshlak, Katz,
and Lefler 2010), (Bonet and Helmert 2010), (Bonet and
Castillo 2011)). Generally speaking, LM-cut computes a set
of groups of actions, called cuts, each of them correspond-
ing to an action landmark of the planning problem P: with-
out at least one action of each cut, P cannot be solved. Thus,
the value of the LM-cut estimate is the sum of the cost of all
the cuts; i.e. the number of cuts.

When adapting the LM-cut heuristic to a temporal con-
text, the cost of an action must be its duration. Therefore,
the heuristic value is an estimate based on the makespan of a
sequential plan. This value is clearly an overestimate of the
actual plan makespan as it ignores the possible overlapping
of the actions. The good results exhibited by the LM-cut in
propositional planning led us to adopt the LM-cut heuristic
as an approximation for sub-optimal temporal planning. As
for further work, we intend to test admissible heuristics for
plan makespan, as those introduced in (Haslum 2009).

Search process
The search starts with the basic node (∅, I). As the search
goes on, new nodes are created in the search tree as a result
of the application of an action in the parent node. Given a
node (Π, St), the whole set of applicable actions in St, Ot,

177



is considered for expanding the node. Only reversible ac-
tions that lead to an already visited state are ruled out during
search expansion. By definition, an action a ∈ Ot is appli-
cable in state St of a node (Π, St) at time t, but it is also the
case that a could be executed before t in Π. Obviously, this
consideration makes a difference in the plan makespan. For
this reason, the algorithm computes the earliest start time of
each new action.

Definition 5 Given a node (Π, St) and an action ai ∈ Ot,
the earliest start time of ai (denoted by tai

E ) is the first time
point from I where ai is applicable and does not interfere
with any other action in Π. Action ai is said to interfere with
the action (aj , taj

) ∈ Π if any of the following situations
holds:

• ∃p ∈ Inv(aj) and ai deletes p within the execution inter-
val of aj

• ∃q ∈ SCond(aj) and ai deletes q between the time point
when q is produced and taj

• ∃r ∈ ECond(aj) and ai deletes r between the time point
when r is produced and taj

+ dur(aj)

In other words, if ai interferes with aj (already in Π), then
ai is not introduced in Π. However, both actions (joint with a
third action ak that re-achieves p, q or r (resp.)) can be found
in a plan of another branch of the search tree if actions are
inserted in this order: ai, ak, aj .

The node resulting from applying ai in St is denoted by
(Π′, St′), where Π′ = Π∪ (ai, t

ai

E ) and t′ = dur(Π′). St′ is
computed in two steps:

1. S1
t′ = St − SDel(ai) ∪ SAdd(ai)

2. St′ = S1
t′ − EDel(ai) ∪ EAdd(ai)

The definition of St′ is only expressed in terms of the ac-
tion ai to be inserted in Π but, actually, all the actions con-
current with ai are considered in the calculation of St′ . The
next step is to discard, among the nodes resulting from the
applicable actions Ot, those that are not compliant with the
information in the LG. A search node is ruled out if one of
these two situations holds:

1. Temporal intervals: If the start(l) and/or end(l) of a
landmark l in a plan Π is not consistent with its valid-
ity and/or generation interval, then Π is pruned. Thus, the
corresponding node is discarded if any of the following
conditions holds:

(a) start(l) < minv(l)

(b) start(l) > maxg(l)

(c) end(l) > maxv(l) (only applicable if end(l) is known)

2. Causal relationships: Given a pair of landmarks li and
lj in a plan Π, such that li ≺{d,n} lj , if start(li) ≥
start(lj), Π is pruned.

TempLM inherits the foundations of landmarks and tem-
poral reasoning for confirming the logical and temporal con-
sistency of plans. Note that nodes in the tree represent valid
partial plans so any state for which the constraints expressed
in (1) or (2) cannot be satisfied is immediately pruned.

TempLM-noLG TempLM OPTIC
Makesp Time Makesp Time Makesp Time

Satellite IPC4
PF1 176.69 0.4 176.69 0.4 176.69 2.47
PF2 176.52 1.68 176.52 0.86 191.28 6.2
PF3 106.77 0.64 106.77 0.64 106.77 4.53
PF4 171.85 7.37 171.85 35.13 169.18 72.85
PF5 180.46 41.86 180.46 34.95 183.91 16.28
PF7 - T.E. 134.38 1467.77 140.13 13.85
PF8 - T.E. - T.E. 119.94 35.2

Satellite Unsolv.
S1U* - 5.2 - 0.01 - 0.28
S2U* - 11.26 - 0.01 - T.E.

PipesWorld IPC4
PF1 6 0.13 6 0.16 6 1.44
PF2 12 0.25 12 0.21 18 46.22
PF3 14 0.63 14 0.33 14 3.5
PF4 16 2.24 16 3.47 20 245
PF5 12 0.84 12 3.39 14 4.12
PF6 14 1.11 14 1.09 14 118.85
PF7 12 1.07 12 1.29 12 1179.8
PF8 14 3.15 14 1.29 14 4.29
PF9 18 18.9 18 15.67 18 4.5

PipesWorld Unsolv.
PW1U* - 0.22 - 0.01 - 0.03
PW2U* - 4.79 - 0.144 - T.E.
PW3U* - 83.27 - 18.85 - T.E.
PW4U* - 170.6 - 23.67 - T.E.
PW5U* - T.E. - 112.04 - T.E.
PW6U* - 1202.6 - 44.11 - T.E.
PW7U* - T.E. - 84.78 - T.E.
PW8U* - T.E. - 294.28 - T.E.
PW9U* - T.E. - 118.93 - T.E.

Table 2: Results for the domains from IPC4 (time in secs.).

Experiments
In this section, we present the experiments we performed to
compare TempLM with OPTIC. As we were also interested
in the impact of the knowledge compilation component of
our approach, we created two configurations: one version
which only uses the search stage, without the LG (TempLM-
noLG), and a second one which corresponds to TempLM as
described in the previous sections. We selected 5 domains
from the International Planning Competitions (IPC):

• Two domains from the IPC4, Satellite and PipesWorld,
with deadlines encoded by means of TIL (Table 2, group
Satellite/PipesWorld-IPC4). We also generated some ad-
ditional problems with non-reachable deadlines (Table 2,
group Satellite/PipesWorld-Unsolv., indicated with a *).

• The Trucks domain from the IPC6, with deadlines en-
coded by means of the modal operator within (Table 3,
group Trucks-IPC6). We also generated some additional
problems with tighter time deadlines (Table 3, group
Trucks-Tight, indicated with a *).

• Two domains from the IPC3, DriverLog and ZenoTravel.
As goal deadlines were not defined in IPC3, for each orig-
inal problem, we generated three versions with a different
value of TΠ, obtained by constraining the makespan of

178



TempLM-noLG TempLM OPTIC
Makespan Time Makespan Time Makespan Time

Trucks IPC6
PF1 843.2 0.03 843.2 0.03 1582.4 3.97
PF2 1711.4 1.33 1711.4 0.66 3510.2 4.63
PF3 1470.1 4.74 1470.1 3.83 2043.5 5.16
PF4 2629.4 24.84 2629.4 20.17 3703.7 6.94
PF5 1671.6 321.97 1671.6 349.92 3476.8 22.94

Trucks Tight
T1T* 843.2 0.03 843.2 0.04 845.2 21.53
T2T* 1711.4 1.59 1711.4 0.59 1711.4 21.71
T3T* 1470.1 5.21 1470.1 3.79 1482.9 15.16
T4T* 2629.4 27.43 2629.4 14.54 2770.2 30.39
T5T* 1671.6 345.48 1671.6 168.86 1673.6 300.16

Table 3: Results for the domains from IPC6 (time in secs.).

the solutions w.r.t. the makespan of the best solution plan
found by LPG (Gerevini, Saetti, and Serina 2003) (indi-
cated with a *). Then, loosely-constrained problems were
generated by increasing the makespan of the best LPG so-
lutions a percentage between 20-40, tightly-constrained
problems by increasing the makespan between 0 and 20
percent of the best LPG solution and unsolvable problems
by establishing non-reachable deadlines.

We selected these domains because they fit our require-
ments: deadlines expressed by means of TIL or within, with
no metric features or ADL. Tables 2, 3 and 4 show the results
for all problems where at least one planner found a solution.
We show the makespan and the time in seconds needed for
solving it with OPTIC and both configurations of TempLM.
As for unsolvable problems, we present the time needed to
detect it. We restricted the execution time to 30 minutes
(”T.E.” stands for ”Time Exhausted”). The experiments were
performed in an Intel-Core-i5-3.2-GHz with 16GB-RAM.

In general, OPTIC solved fewer problems compared to
both configurations, TempLM-noLG and TempLM. This is
specially remarkable in unsolvable problems, where OPTIC
could only detect 7 out of 20 whereas TempLM detected all
of them. The most costly unsolvable instance took 0.33 sec-
onds in OPTIC; this is likely to be the case that at least one
of the goal deadlines were not reached before their dead-
lines in the TRPG. In these cases, TempLM was as fast as
OPTIC. For the unsolvable problems which OPTIC returned
T.E., TempLM solved a few instances very rapidly, because
it detected an inconsistency in the landmarks intervals be-
fore even starting the search. As shown in the explanatory
example, the earliest times of propositions recorded in the
LG are more accurate than in the TRPG. For the rest of un-
solvable problems in which TempLM took longer, unsolv-
ability was detected during the search. We also highlight that
TempLM-noLG found 9 unsolvable problems, an indication
that the search process is sufficiently efficient to rapidly ex-
plore the search tree. In summary, the high number of un-
solvable problems identified by TempLM relies on the use-
fulness of the LG to check consistency of the landmarks in-
tervals as well as to discard the search nodes not compliant
with the graph.

TempLM-noLG TempLM OPTIC
Makespan Time Makespan Time Makespan Time

Driver Unsolv.
D1U* - 22.77 - 0.01 - 0.27
D2U* - 22.54 - 0.01 - 0.28
D3U* - T.E. - 295.13 - T.E.
D4U - T.E. - 0.01 - 0.33

Driver Tight
D1T* 91 0.04 91 0.05 92 1.31
D2T* 47 4.81 40 0.87 40 11.76
D3T* 51 57.67 51 58.4 - T.E.
D4T* 49 68.83 49 69.56 - T.E.
D5T* 98 100.27 98 302.85 - T.E.
Driver Loose
D1L* 91 0.07 91 0.04 92 1.22
D2L* 47 4.98 40 0.97 40 13.27
D3L* 60 47.45 60 49.1 - T.E.
D4L* 49 72.86 49 69.72 61 6.55
D5L* 98 100.47 98 343.92 148 76.79

Zeno Unsolv.
Z1U* - 0.51 - 0.01 - 0.33
Z2U* - 1 - 1.12 - T.E.
Z3U* - T.E. - 704.15 - T.E.
Z4U* - T.E. - 0.01 - 0.3
Z5U* - T.E. - 575.36 - T.E.
Zeno Tight
Z1T* 592 0.25 592 0.12 592 3.45
Z2T* 592 0.13 592 0.12 592 3.43
Z3T* 393 8.31 393 8.81 - T.E.
Z4T* 542 16.86 542 17.52 536 625.35
Z5T* 529 63.51 522 24.95 - T.E.
Z6T* 323 32.84 320 34.36 - T.E.
Zeno Loose
Z1L* 173 0.01 173 0.02 173 0.91
Z2L* 592 0.15 592 0.15 592 3.37
Z3L* 280 0.39 280 0.46 280 8.35
Z4L* 549 13.06 549 13.97 683 217.63
Z5L* 400 2.12 400 2.39 400 164
Z6L* 443 14.45 442 15.42 - T.E.

Table 4: Results for the domains from IPC3 (time in secs.).

With respect to the original problems from the IPC4 and
IPC6 in Tables 2 and 3, in general, TempLM obtains plans
with a shorter makespan in less time. In the Trucks do-
main, the makespan of OPTIC plans is rather larger. This is,
though, mitigated in the Tight problems because the exist-
ing deadline constraints lead the planner to find plans of bet-
ter makespan but at the expense of a worse performance. In
contrast, one of the key benefits of TempLM is that the more
constrained the problem is, the more efficient the search.

Regarding the problems from the IPC3, OPTIC showed to
have more difficulties in problems with tight deadlines, be-
ing unable to solve 6 of these problems. In the Driverlog and
ZenoTravel domains, TempLM outperformed OPTIC both in
terms of number of problems solved and makespan.

TempLM also shows better performance than TempLM-
noLG. In most of the problems, both obtain plans of very
similar makespan, but TempLM requires less time. Here, the
LG shows to be very beneficial for discovering unsolvable
problems and pruning the search space. We must also no-

179



tice that TempLM shows signficantly higher times in some
problems like PF7 of Satellite or PF5 of Trucks. These are
loosely-constrained problems, which are the cases in which
the exploitation of landmarks reveals less effective.

We can conclude that the knowledge compilation com-
ponent of TempLM turns out to be very helpful to discover
unsolvable problems and obtain an efficient temporal plan-
ning system. Additionally, our approach works, in general,
better than OPTIC in problems with deadline constraints.

Conclusions
We have presented TempLM, a domain-independent tempo-
ral planning model to solve problems with deadline con-
straints. The key contribution of our work is the design and
incorporation of a knowledge compilation component into
the planning system. TempLM puts the emphasis on repre-
senting, modeling and exploiting the temporal knowledge
of the problem rather than simply delegating resolution to a
search process. We have empirically demonstrated that Tem-
pLM is capable to solve more problems with deadline con-
straints than the planner OPTIC. We have also shown that
the use of the LG helps reduce the search space and allows
for a promptly detection of unsolvable problems.

As for further work, we are developing a method for using
information from the valid sub-plans as a feedback to the
LG, which in turn may give rise to new helpful information
for solving the problem.

Acknowledgements
We thank anonymous reviewers for their very useful com-
ments and suggestions and Derek Long for solving our
doubts about the modal operators in PDDL3. This work
has been partially supported by Consolider Ingenio 2010
CSD2007-00022 and Spanish Government Project MICINN
TIN2011-27652-C03-01 and Valencian Government Project
Prometeo II/2013/019.

References
Allen, J. F. 1984. Towards a general theory of action and time.
Artificial Intelligence 23(2):123–154.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal planning
with preferences and time-dependent continuous costs. In Proc.
Int. Conference on Automated Planning and Scheduling.
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90(1-2):281–300.
Bonet, B., and Castillo, J. 2011. A complete algorithm for
generating landmarks. In Proc. Int. Conference on Automated
Planning and Scheduling, 315–318.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In European Conference on Artificial
Intelligence, 329–334.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal planning
using subgoal partitioning and resolution in SGPlan. Journal of
Artificial Intelligence Research 26:323–369.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with problems requiring temporal coordination. In Proc. of the
AAAI Conference on Artificial Intelligence, 892–897.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research 44:1–96.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1-3):61–95.
Domshlak, C.; Katz, M.; and Lefler, S. 2010. When abstrac-
tions met landmarks. In Proc. Int. Conference on Automated
Planning and Scheduling, 50–56.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-scale op-
timal pddl3 planning with mips-xxl. In 5th International Plan-
ning Competition Booklet, 28–30.
Fox, M., and Long, D. 2003. PDDL 2.1 : An extension to pddl
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute and
interval planning. Constraints 8(4):339–364.
Garrido, A.; Fox, M.; and Long, D. 2002. A temporal planning
system for durative actions of pddl2. 1. Proc. of the European
Conference on Artificial Intelligence 586–590.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Dimopou-
los, Y. 2009. Deterministic planning in the 5th International
Planning Competition: PDDL3 and experimental evaluation of
the planners. Artificial Intelligence 173(5-6):619–668.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in LPG. J.
Artificial Intelligence Research 20:239–290.
Haslum, P. 2009. Admissible makespan estimates for pddl2.1
temporal planning. In ICAPS’09 workshop on Heuristics for
Domain-independent Planning.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Interna-
tional Conference on AI Planning and Scheduling.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic part of
ipc-4: An overview. Journal of Artificial Intelligence Research
24:519–579.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artifi-
cial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning. Journal of Artificial Intelligence Research
22:215–287.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. Journal of Artificial Intelli-
gence Research 20:1–59.
Marzal, E.; Sebastia, L.; and Onaindia, E. 2008. Detection
of unsolvable temporal planning problems through the use of
landmarks. In Proc. of the European Conference on Artificial
Intelligence, 919–920.
Marzal, E.; Sebastia, L.; and Onaindia, E. 2011. Full Extrac-
tion of Landmarks in Propositional Planning Tasks. In Sympo-
sium of the Italian Association for Artificial Intelligence, vol-
ume 6934, 383–388.
Porteous, J., and Cresswell, S. 2002. Extending landmarks
analysis to reason about resources and repetition. In PLANSIG,
45–54.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. of the AAAI Conference on Artificial Intelli-
gence, 945–982. AAAI Press.

180




