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Abstract

We propose a new problem we refer to as goal recognition
design (grd), in which we take a domain theory and a set of
goals and ask the following questions: to what extent do the
actions performed by an agent within the model reveal its ob-
jective, and what is the best way to modify a model so that
any agent acting in the model reveals its objective as early as
possible. Our contribution is the introduction of a new mea-
sure we call worst case distinctiveness (wed) with which we
assess a grd model. The wcd represents the maximal length
of a prefix of an optimal path an agent may take within a sys-
tem before it becomes clear at which goal it is aiming. To
model and solve the grd problem we choose to use the mod-
els and tools from the closely related field of automated plan-
ning. We present two methods for calculating the wed of a
grd model, one of which is based on a novel compilation to a
classical planning problem. We then propose a way to reduce
the wed of a model by limiting the set of available actions an
agent can perform and provide a method for calculating the
optimal set of actions to be removed from the model. Our em-
pirical evaluation shows the proposed solution to be effective
in computing and minimizing wed.

Introduction

Goal recognition is a subproblem of plan recognition with
the objective of discovering the terminal goal of an agent
given its behaviour (Pattison and Long 2011). We propose
a new related problem that we refer to as goal recognition
design (grd). A grd problem takes a domain theory and a
set of goals and answers the following two questions: (1) to
what extent do the actions performed by an agent within the
model reveal its objective, and (2) what is the best way to
modify a model so that any agent acting within it reveals its
objective as early as possible.

Goal recognition design is relevant to any domain for
which quickly performing goal recognition is essential and
in which the model design can be controlled. Applications
of goal recognition design may be found in many prob-
lems where goal recognition is useful, including intrusion
detection (Jarvis, Lunt, and Myers 2004; Kaluza, Kaminka,
and Tambe 2011; Boddy et al. 2005), assisted cognition
(Kautz et al. 2003), and natural language processing (Geib
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Figure 1: An example of a goal recognition design problem

and Steedman 2007). For example, due to security reasons,
tracking the activity of passengers in an airport may be per-
formed in order to detect where passengers are heading. In
addition, it is possible to set up barriers that control the flow
of the passengers to improve the goal recognition task, but
equally important to minimize the obstruction to the ease of
use of the airport.

As a first stage of our exploration of the new problem we
assume agents are optimal and that the actions of the agent
are fully observable. In order to achieve our objective, we
introduce a new concept called worst case distinctiveness
(wed), which represents the maximal length of a prefix of a
path an agent may take within a system before its objective
becomes clear.

Figure 1 offers a simple example that will help clarify the
concepts of our work. The model consists of a simple room
(or airport) with a single entry point, marked as ‘Start’ and
two possible exit points (boarding gates), marked as ‘Goal
1’ (domestic flights) and ‘Goal 2’ (international flights). An
agent can move vertically or horizontally from ‘Start’ to one
of the goals. Notice that for each of the goals there are sev-
eral optimal paths, some of which share a common prefix
with an optimal path to the other goal. In this model the goal
of the agent becomes clear once turning left or right. There-
fore, the wed is 4 since in the worst case an optimal agent
can move up 4 steps before it is obliged to turn towards its
goal.

The wed value helps in assessing a model and our goal is
to reduce it. Towards this end, we define the means avail-
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Figure 2: Solutions for reducing the wed

able for modifying a model. Since we want to limit the set
of possible optimal paths of an agent, an elegant way of in-
troducing changes into the model is by limiting the set of
available actions an agent can perform. As a way of main-
taining “user comfort” in the model we require the solution
to preserve the original optimal solution length of all goals.
In addition, given the maximal reduction achieved while re-
specting this constraint, we wish to minimize the change in-
troduced to the model.

In our motivating airport example, the solution of placing
barriers or screens in order to direct the flow of passengers
is a common and effective solution. Figure 2 portrays two
possible solutions that reduce the wed of a model from 4
to 0. Clearly, the option in Figure 2(b) is preferable since
it offers the same result by disallowing a single action and
creating a single barrier.

Goal recognition design, while relevant to goal recogni-
tion — interchangeably called in the literature plan recog-
nition (Kautz and Allen 1986; Cohen, Perrault, and Allen
1981; Lesh and Etzioni 1995; Ramirez and Geffner 2009;
Agotnes 2010; Hong 2001) — is a totally different task.
While goal recognition aims at discovering the goals (and
sometimes plans) of an agent according to observations of
its actions collected online, goal recognition design does not
include a specification of an observation sequence, but rather
offers an offline solution for assessing and minimizing the
maximal number of observations that need to be collected in
order to assure the goal of any optimal agent in the system
is recognized.

To model and solve the grd problem we choose to use the
models and tools from the closely related field of automated
planning. The advantage of this choice is that by compiling
our problem into a classical planning problem we gain the
option of using various established tools and techniques.

The paper is organized as follows. We start by provid-
ing the necessary background on classical planning. We
continue by introducing the formal model representing the
grd problem and the wed value. The following sections
present the methods we developed for calculating and re-
ducing the wed value of a given grd problem. We conclude
with an empirical evaluation, a discussion of related work,
and a conclusion.

155

Background: Classical Planning

The basic form of automated planning, referred to as classi-
cal planning, is a model in which the actions of the agents
within it are fully observable and deterministic. A com-
mon way to represent classical planning problems is the
STRIPS formalism (Fikes and Nilsson 1972). A STRIPS plan-
ning problem is a tuple P = (F,I, A,G,C) where F is
the set of fluents, I C F is the initial state, G C F’ repre-
sents the set of goal states, and A is a set of actions. Each
action is a triple a = (pre(a), add(a), del(a)), that repre-
sents the precondition, add, and delete lists respectively, and
are all subsets of F'. An action a is applicable in state s if
pre(a) C s. If action a is applied in state s, it results in the
new state s’ = (s\ del(a))Uadd(a). C : A — R+ isacost
function on actions, that assigns each action a non-negative
cost.

Given a planning problem, the objective is to find a plan
T = ai,...,an, a sequence of actions that brings an agent
from I to a state that satisfies the goal. The cost ¢(r) of a
plan 7 is 3(c(a;)). Often, the objective is to find an optimal
solution for P, an optimal plan, 77*, that minimizes the cost.
We assume the input of the problem includes actions with a
uniform cost equal to 1. This means that plan cost is equiv-
alent to plan length, and the optimal plans are the shortest
ones.

Goal Recognition Design

We define a goal recognition design (grd) problem as a tu-
ple D = (Pp,Gp), where Pp = (F, I, A) is a planning
domain formulated in STRIPS and Gp is a set of possible
goals G, G C F (whenever D is clear from context we will
use P and G). It is worth noting that the model includes an
initial state, common to all agents acting in the system. In
case there are multiple initial states, there is a simple compi-
lation, which adds a zero cost transition between a dummy
common initial state and each initial state, making the model
and the methods we propose applicable.

Given a grd problem, our objective is to find a measure
that assesses the ability to perform goal recognition within
the model and compute it. Once such a measure is estab-
lished, we would like to modify the model such that the
recognition ability is maximized, while respecting the spec-
ified constraints. There are several issues that need to be
explained: first, we need to define a measure for the ability
to recognize the objective of an agent in a concrete form and
what it means to maximize it. Secondly, we need to make
precise the allowed modifications to the model that have the
potential of improving this ability. Before we elaborate on
these two issues we detail three assumptions on which our
model is based.

1. Agents in the system are acting optimally,

2. the outcomes of the actions are deterministic, and

3. the model is fully observable to the agent and system.
The removal of any combination of these assumptions cre-
ates an interesting scenario and a challenging problem to
solve. However, as a first stage we want to keep our model
as straightforward as possible and defer more complex prob-
lems to future work.



We start by defining what it means for the goal of the
agent to be clear. As mentioned above, we are concerned
with the design of a model and not with the behaviour of a
specific agent. Accordingly, we need to recognize the op-
tions an agent may have within a model and examine the
characteristics of the various paths available. Let IT*(G)
represent the set of optimal paths to G.

Definition 1 Given a problem D = (P,G), a sequence of
actions w is a non-distinctive path in D if 3G’',G" € G s.t.
G' # G" and 7' € TT*(G') and "' € I*(G") s.t. wisa

prefix of ™ and 7. Otherwise, T is distinctive.

We aim at creating a model in which agents reveal their
goal as early as possible. The wed value we propose serves
as an upper bound on the number of actions any optimal
agent can perform in a model before revealing its goal by
selecting a distinctive path. Using the definition above, we
can formally define the wcd value of a model as follows.

Definition 2 Let IIp = (r|m is a non-distinctive path of D)
and let || denote the length of a path w. Then, worst case
distinctiveness (wcd) of a model D, denoted by wed(D), is:

wed(D) = max |7l
wellp

Finding wcd

In this section we describe two methods to calculate the
wed of a model, both based on the following observations.

Theorem 1 If 7 is non-distinctive, any prefix of 7 is non-
distinctive.

Proof: According to Definition 1, the fact that 7 is non-
distinctive means that 3, 7"/, G’, G” s.t. 7' € II*(G’) and
7' € II*(G") and 7 is a prefix of both 7/, 7. This in turn
means that any prefix of 7 is necessarily a prefix of both 7/
and 7", and therefore non-distinctive. ]

Corollary 1 If 7 is distinctive, any path ©' € 11*(G) for
which m is a prefix, is distinctive.

Proof: Assume to the contrary that 7 is distinctive and is a
prefix of a non-distinctive path 7/. However, according to
Theorem 1, if 7’ is non-distinctive, any prefix of 7/, includ-
ing 7 is non-distinctive, which serves as a contradiction. ®

The above observations assure us that given a single initial
state, any optimal agent will start its progress in the system
by following a (possibly empty) non-distinctive path and end
with a distinctive path, leading to its goal. This allows us
to establish the following relation between a goal recogni-
tion design model D = (P, G) and a plan recognition prob-
lem, as defined by Ramirez and Geffner (2009), which is
achieved by adding to D the set of observations O. G, rep-
resents the set of goals G € G such that some optimal plan
for GG is compatible with O.
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Theorem 2 For a plan recognition model defined by the tu-
ple T = (D,0), in which O represents the full sequence
of actions performed by an agent, if |O| > wcd(D) then
0<1G5 <1

Proof: By definition, wed(D) represents the maximal prefix
a set of more than one goal in G may share. If the set O is
the full sequence of observations it represents the prefix of
the path of the agent, therefore, if it is bigger than wed(D),
then 0 < |G| < 1. =

A key issue to notice regarding the calculation of the
wed value of a model is that, as opposed to classical planning
problems in which we are interested in finding any optimal
path to the goal, or goal recognition problems in which we
are interested in finding any optimal path that fits a set of
observations, in our problem we need to take into account
all optimal paths to the relevant goals.

A basic way to discover all paths to all goals within a
model is to perform an exhaustive exploration of the state
space using, for example, a BFS tree search. The BFS tree
search starts at the initial state and explores, at each level, all
states that are reachable from the previous level. The search
continues up to the level in which the most distant goal is
found. The result is a tree depicting all paths of length up
to the length of the longest optimal path, including all opti-
mal paths to all goals in G. In order to reveal the wed value
of the model, we need to find the set of goals that share the
longest non-distinctive path. We can do this by performing
a backward search starting at the most distant leafs, and ad-
vancing one level at time, marking for each node the goals
on which it appears on an optimal path, and stop once a node
that appears on the path to more than one goal is discovered.
Although this method is sound, it is highly inefficient, es-
pecially in scenarios in which there are many optimal paths
to each goal. We next present two methods for finding the
wed of a model, which both rely on Corollary 1 to reduce
the state space that is explored.

wed-bfs

The first solution we present is a variation of the BES tree
search presented above — only instead of blindly exploring
all paths in the model we trim the search by pruning the
nodes that represent distinctive paths. Corollary 1 assures us
that further exploring such a node is futile, since any path
that has a distinctive prefix, is also distinctive.

The search starts at the initial state and performs a
BFS search in which the nodes of the search graph represent
sub-paths and the edges represent the actions that are avail-
able at each state. A node representing a distinctive path is
marked as solved and is not expanded, otherwise it is added
to the queue to be later explored. Notice that we choose the
nodes to be sub-paths and not states since we need to find
all paths that lead to a certain state. The search continues as
long as there are nodes in the queue. The wed value of the
model is the length of the sub-paths that were expanded at
the last iteration of the algorithm.

A node 7 is pruned once G < 1, where G represents the
set of goals to which 7 is a prefix to an optimal plan. We



find the size of G by solving a planning problem for each
of the goals in G,, where 7’ is the direct predecessor of .
Let C; (G) denote the cost of achieving goal (7 starting at
the state achieved by applying = and let C(7,) denote the
cost of applying plan 7. A goal G € G, is added to G if

C*(G) = C; (G) — C(mn),

ensuring that a goal GG is added to G only if 7 is a prefix to
an optimal plan to G.

When comparing this method to the basic search pre-
sented above, it is clear that pruning prevents many unneces-
sary states from being expanded, especially in a domain with
a large branching factor. However, using planning several
times for each node is expensive and impractical for large
domains. One way of improving efficiency is by discover-
ing bounds for the wed of a model that can help trimming the
search space further. For such a bound we observe that the
wed of a grd model is bound from above by the cost of the
second most expensive goal. Wereferto G = {G1,...,G,}
as the set of goals, ordered according to the optimal cost of
achieving them, where (3 is the cheapest goal and GG, is the
most expensive one. We can therefore state the following.

Theorem 3
wed(T) < C*(Gp-1)

Proof: For any pair of goals, the longest possible non-
distinctive prefix is the optimal path to the less expensive
goal. If we choose the two most expensive goals in the
model, i.e., G, and G, _1, we get the two goals for which
the possible length of the non distinctive prefix is the maxi-
mal. u

The above theorem proves an upper bound on the size of
the search space |S] to be:

|S‘ < bc*(Gn—l)

where b is the maximal branching factor. This bound can
be used to prune any paths with a length that exceeds it and
therefore reduces the computational cost. However, the fact
that a separate search is performed at each node leaves this
method impractical for large domains, as our empirical eval-
uation shows.

latest-split

The latest-split method, which we present in this section,
finds the wed of a model by performing a single search for
each pair of goals. This is done by compiling the original
grd problem into a classical planning problem and solving
the resulting model with a classical planner.

Given a grd problem with a set G of goals, the latest-
split method seeks the maximal non-distinctive path a set
of agents, each aiming at a separate goal, may share. We
start by presenting the application of this idea to a grd model
where |G| = 2. Next, we extend the discussion to include
problems where |G| > 2, and show that the method for
|G| = 2 can be used to solve a problem with any number
of goals.

We compile the grd problem T" (with |G| = 2) into a plan-
ning problem 7", in which we have 2 agents, starting at the
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same initial state, acting within the same model but each
aiming at a different goal. We then solve a planning problem
where each agent attempts to achieve its respective goal, but
the agents can get a discount for “working together.” Fol-
lowing the STRIPS notation in which an action is defined as
the set of (pre, add, del), we define the latest-split compila-
tion as follows.

Definition 3 For a goal recognition design problem D =
(P,G) and cost function C, where P = (F,1,A) and
G = {Go,G:1} we create a planning problem P’ =
(F',T', A’ G') and cost function C' that are defined as fol-
lows:

o F' ={fo, f1lfi € F} U {split} U {doney}
o I'={fo, hIficI}
o A" ={Ao,1, Ao, A1} U{DoSplit} U {Done,} where

- Ao1={fo, f1lf € pre(a)} U {—split},
{fo, [rlf € add(a)}, {fo, frlf € del(a)})|a € A
= Ao=({folf € pre(a)} U {split} U {~done,},
{fo.|f € add(a)},{folf € del(a)})|a € A
- A1={f1lf € pre(a)} U {split} U {doney},
{f1,1f € add(a)}, {f1]f € del(a)})]a € A
— {DoSplit} = (0, split, D)
— {Done,} = (split, doneg, D)
o G' = (folf € Go) U(filf € G1)
o C's.t. C'(ag) =C'(a1) =C(a), C'(ap1) =2C(a) — ¢

fi is a copy of F' for agent i, split is a fluent represent-
ing the no-cost action DoSplit has occurred, and done is a
fluent indicating the no-cost Doney has occurred. The ini-
tial state is common to both agents and does not include the
split and doneg fluents. Until a DoSplit action is performed,
the only actions that can be applied are the actions in Ay 1,
which represent the actions the agents perform together. The
DoSplit action adds split to the current state thus allowing
the actions in Aq to be applied. After agent O accomplishes
its goal, Doney is performed, allowing the application of
actions in A until G1 is achieved.

The compiled problem P’ is solved using standard classi-
cal planning tools that produce an optimal plan 75, (G’) in
which each agent i achieves goal GG;. The definition of the
model imposes 75, (G’) to start with actions in Ay ;, after
which DoSplit occurs, and end with actions in Ag and A,
which are the actions that each agent performs separately.
This structure is supported by Corollary 1, that assures us
that as long as both agents act optimally, after the agents
reach a point in which the DoSplit is an optimal choice,
they will follow distinctive paths. We enforce agent 1 to
wait until agent O reaches its goal before starting to act in
order to make the search for a solution to P’ more efficient
by removing symmetries between different interleavings of
agent plans after DoSplit occurs.

The wcd value of the model is the length of the action
sequence until the DoSplit action occurs. In order for this
value to be correct, the cost function C’ for the latest-
split transformation needs to comply with two objectives.
On the one hand, we want to make sure both agents act
optimally, namely that the projection of 7*(P’) on P for



each agent 7 represents an optimal path in 7" to G;. On the
other hand, we want to make sure the agents act together
as long as possible, ensuring that the prefix of 7*(P’) until
DoSplit occurs is the longest. The way we accomplish both
objectives is by making sure that acting together is cheaper
than acting separately, but the difference between costs is not
enough to cause an agent to diverge from an optimal path in
the original problem.

According to the above requirements, we define the cost
function C’ as one that provides a discount for acting to-
gether. C” therefore assigns to ag 1 the cost of applying a;
separately for each agent, minus the discount denoted by e.
We ensure that agents act optimally in 7" in spite of this
discount by establishing an upper bound on e.

Theorem 4 Given a goal recognition design model D and
a transformed model T', both agents act optimally in T’ if

1

< -
S e (Gn)

Proof: Let i, denote the projection of 75, (G’) on P for
agent . We require that both agents choose a path that is
optimal in P, ie., 7T§3 € II*(G,) for all 4. To ensure this,
we require that the difference between the cost of achieving
G’ in T” and achieving Go and G in T is smaller than the
cost of the minimal diversion from the optimal paths in 7.
Assuming an action is associated with a positive cost and
that a diversion from an optimal path in 7" will cost at least
1 we require the following:
C' (i (G) = S(wp(Gi)) < 1

Since the difference between the costs of achieving the
goals in P’ and P is due only to the reduction in costs for
the non-distinctive prefix in 7}, (G'), whose maximal length
is equal to wed(T'). We therefore need to ensure that:

e-wed(T) < 1

and thus when 1

wed(T)
the agents will act optimally.

Theorem 3 proves an upper bound on wed(T'). Therefore
when

€<

1
c* (Gn 1 )
the agents will act optimally. u

€<

In the airport example from Figure 1, the wed value is 4
and ¢*(Gp—1) = 6. Ife < % < 1, agents will act optimally
in T”, and therefore reveal the real wed value of the model.

Multiple goals The Ilatest-split compilation finds the
wcd between a pair of goals. This compilation can be ap-
plied to n > 2 agents acting within the model. However, in
order to integrate n separate searches into a single search,
we need to create a copy of the state variables in I’ for each
agent, and of the actions in A for any set of agents that may
act separately or together. This may result in a compiled do-
main with size exponential in n and a planning problem with
a branching factor bound by |A|(2™ — 1).
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For a more efficient solution we observe that wed(T') rep-
resents the maximal non-distinctive path between all possi-
ble sets of goals of size greater than 1. We use wed g1 gy
to represent the maximal non-distinctive path between two
goals G’ and G”, that is the maximal non-distinctive path
between all pairs 7', 7’ s.t. #’ € II*(G’) and 7" € II*(G").
‘We use this notation to state the following :

Lemma 1 Given a goal recognition design problem D =
(P.G),
wed(D) = G%@ég(wcd@/ﬂ@)

Proof: According to the definition of a non-distinctive path,
if we find the maximal non-distinctive path of a model de-
noted by 7,4, We are guaranteed to find a set of goals
G’ > 2 for which T, is a prefix of an optimal plan. For
any pair of goals G',G"” € G', wedr vy = wed(T) and
since Tryq 1S maximal, there is no pair of goals that share a
longer prefix. u

Using Lemma 1, we propose to find the wed of a grd prob-
lem with n > 2, by performing a version of latest-split for
all goal pairs and assign wcd to be the maximal wed of all
pairs. This method involves solving O(n?) planning prob-
lems, each with a branching factor of 2| A|.

Reducing wed

Having defined the wed value as a measure to assess a model
and describing ways to calculate it, we turn to our second ob-
jective: given a grd problem D = (P, G), how to modify D
in order to minimize the wed value, while respecting speci-
fied constraints. First, we need to select a method to modify
the model. A key issue to notice about the selection of the
modification method is that in order to have an effect on the
wed of the model, any method we choose needs to modify
Ugeg I (G), which is the set of optimal paths to the goals
in the model. More specifically, the wed may change only
if we remove paths from the set of optimal paths. One way
of accomplishing this could be to disallow specific paths in
the model. However, our chosen approach consists of the
removal of actions from the model as a tool for changing
it. Notice that when we disallow a grounded action a from
the model we are in fact disallowing the set of paths that
include a. Although the proposed technique can only be ap-
plied to situations in which the behaviour of the agent can
be controlled, we believe removing actions has an appeal in
many real-world situations. In our airport example, putting
barriers is an easily applicable and common approach for di-
recting the flow of passengers by disallowing specific move
actions.

Let D be a grd model, A_ be the set of actions that are
removed from the original model and D 4\ 4_ be a grd model
different from the original model D in that its actions are A\
A_. Our objective is to minimize the wcd of a model without
increasing the cost of achieving any of the goals. Given the
minimal wed possible, we want to achieve the reduction with
the smallest set A_. Our objective is therefore expressed
by the following bi-objective optimization problem with a



strict ordering between the primary objective to minimize
the wed and the secondary objective to minimize the size of
the action set.

minj‘mize (wed(Daya, ), |[A-])
subjectto VG € G,Cp(G) =Cp, , (G)

where C7,(G) and C7, | (G) represent the optimal costs

of achieving goal G in D and D 4\ 4 _, respectively.

Returning to our example from Figure 2, where both pre-
sented solutions minimize the wed, we seek a method that
produces the solution presented in Figure 2(b), since it re-
quires the elimination of the smallest set of actions. We
next present several methods for reducing the wed value of
a model while respecting the above requirements.

Exhaustive Search: exhaustive-reduce

The first method we present is an exhaustive search, which
is a variation of the classical BFS and whose search space
are the sets of grounded actions. For a grd problem D, a
node in the search tree represents a set A, C A, which in
turn represents a transformed model D 4\ 4 . For each node
we calculate the wed and the optimal costs of achieving ev-
ery goal G € G in the corresponding model. The root node
of the search is the original model with A_, = (), for which
we calculate the original wed and optimal costs for all goals.
The successors of a node are formed by the concatenation
of every action a from A to the set A, of the ancestor node.
A node is only explored if the optimal costs to all goals are
the same as in the original model. The search continues, in-
creasing at each level of the tree the size of A_, until reach-
ing a model in which wed = 0 is found or until there are
no more nodes to explore. The result of the search is the
set A* for which the wed value is minimized. In addition
to satisfying the main objective of minimizing the wed of
the model, the iterative nature of the algorithm fulfills our
secondary requirement by guaranteeing the size of A_, is the
minimal needed to achieve the reduction. However, in the
worst case, the exhaustive-reduce method examines all sets
of action combinations. Next we seek improvement through
pruning, exploiting the characteristics of the grd problem.

Pruned Search: pruned-reduce

The solution to finding the wed of a grd model includes a
pair of paths to distinctive goals that share the maximal non-
distinctive prefix, which we denote by 7. ,(Da\a_). We
rely on the fact that when an action is removed from the
model, paths that include it are removed as well, to state the
following.

Theorem 5 Given a model D and a transformed model
Dava_, ifVa € A-,a & mhq(Dava.), then wed(T) =
wed(T").

Proof: The search for the wcd value of a model is performed
within the set of optimal paths | JqoI1*(G). Since the re-
moval of actions from the model does not create new opti-
mal paths, but only eliminates them, the removal of actions
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Algorithm 1 pruned-reduce
wed= 0 (init)
A* = () (init)
create a list Closed = ()
create a queue (Q initialized to ()
while @ is not empty:
A_ + @Q.dequeue()
solve(D g\ 4_)
Closed < A,
ifvVG € G,CH(G) = C’}SA\Aﬁ
if wed(D g\ a_,) < wed
wed = wed(D g\ 4)
AY =A,
fora € 7). (Daa) :
if a U A- notin Closed
enqueue A U {a} onto Q

(@)

return A*

is guaranteed not to add new paths to | J;cgI1*(G). There-
fore, if the pair of paths in 7} ,(D 4\ 4_) are a part of the
transformed model D 4\, the wed remains unchanged and
wed(T) = wed(T). L

We rely on the above observation to create the pruned-
reduce algorithm (whose pseudocode is given in Algo-
rithm 1) which is similar to the wcd-bfs in that a search node
is defined by the set A it represents. The difference is that
instead of creating a successor node for every action in A,
a successor node is created only for actions that appear in
the optimal solution used to find the wcd of the parent node.
Since a set of actions may appear in more than one optimal
path, we keep a Closed list, of all the action combinations
that were previously examined that need not to be solved
again.

In order to justify the pruning we perform, we rely on
the observation that the removal of an action can only re-
move existing paths from the model and not introduce new
ones. Therefore, the removal of actions is guaranteed not
to reduce the optimal cost of achieving any of the goals. At
each level of the pruned-reduce algorithm we add one action
from 75 ,(Da\a_) to A- , thus removing at least one of the
optimal paths to a goal in G. Accordingly, if the optimal
cost of achieving at least one goal increases the node may
be pruned, since the optimal costs will not decrease for any
of its successors.

Empirical Evaluation

We now turn to compare the results and performance of
the two methods for calculating the wcd value, namely
wed-bfs and the latest-split, and the exhaustive-reduce and
pruned-reduce methods for reducing the wed of a model.
We describe first the datasets and the experiment setup be-
fore presenting and discussing the experiment results.

Datasets We perform our evaluations using the benchmarks
proposed by Ramirez and Geffner (2009) for plan recogni-
tion. This dataset provides a setting where it is not trivial to
deduce the goal of an agent. Also, the task of reducing the
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Figure 3: Calculating wed: individual results

wced of a model is possible since there may be more than one
path to each goal.

The dataset consists of problems from 4 domains, namely
GRID-NAVIGATION, IPC-GRIDT, BLOCK-WORDS, and
LoGisTIcS. The problem description contains a domain de-
scription, a template for a problem description without the
goal, and a set of hypotheses. For each problem we ran-
domly generated hypothesis combinations of varying sizes
and created a separate grd problem for each combination.
All-in-all, we tested 94 GRID-NAVIGATION instances, 163
IPC-GRIDT instances, 233 BLOCK-WORDS instances, and
220 LOGISTICS instances. .

Setup For each problem instance, we calculate the
wced value by applying both the wcd-bfs and the latest-
split methods. We measure the wcd, execution time, and
number of expanded states. The calculation of the re-
duction of the wed is performed by applying both the
exhaustive-reduce and pruned-reduce (with all suggested
pruning) methods with the requirement that the optimal cost
of all goals does not increase. Each execution was assigned
a time bound of 30 minutes, after which we measured the
execution time, number of expanded states, the minimal
wed that was achieved and the action set that was removed.
Results Table 1 compares the wcd-bfs and the latest-
split methods. The comparison is broken into domains, com-
paring execution time, number of expanded states, and per-
centage of solved problems within the time bound. Each en-
try in Table 1 represents an average measure over all exper-
iments in the domain. The latest-split method outperforms

'Benchmarks can be found in:
sim$sarahn/final-benchmarks-icaps-2014/

http://technion.ac.il/$\
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the wed-bfs method in all domains, with up to two orders of
magnitude better performance.

Table 1: Calculating wed

time expanded % solved
bfs split bfs split bfs split
grid navigation || 20.3 | 0.4 928.4 48.1 100{ 100
ipc-grid+ 7.4 14 1263.3 | 2328.7 | 100| 100
logistics 59.6 | 27.5 | 51947.8] 86596.1| 89 | 92
block-words 456 | 1.9 3816.2 | 3473.1 | 99 | 100

In addition to the aggregated results, we take a look at
the individual performance of the two methods. For that
purpose, we have compared the execution time of both the
wed-bfs and the latest-split methods, partitioning it accord-
ing to domains and wcd (for clarity of presentation some
outliers were omitted). Figure 3 presents the results for each
of the domains. The figure shows that the individual perfor-
mance follows the aggregated one. In addition, an increase
in runtime is observed for both methods with the increase
of wcd, however this increase is far more prominent with
wed-bfs then with latest-split.

Table 2 summarizes the set of experiments comparing
exhaustive-reduce and pruned-reduce methods. For each do-
main we record the percentage of problems that were solved
within the time limit, the percentage of problems for which
a reduction was found and the average amount of reduction
in the wed. The results show that the pruned-reduce method
solves more problems and is more effective in reducing the
wed value.

The results show that in many cases the reduction in
wed was possible with the removal of very few actions.



Table 2: Reducing wed
% completed % reduced

exhaustive exhaustive

average reduction

reduce reduce exhaustive reduce

grid navigation || 9 95 18 21 1.64 3.45
ipc-grid+ 44 85 28 47 2.07 3.36
logistics 22 86 5 14 2.1 3.46
block-words 11 63 2 9 1 1

For example, the original formulation of the p5-5-5 prob-
lem in the IPC-GRID™ domain with at-robot place-0-4 and
at-robot place-1-4 as the hypotheses set has wed equal to 4.
By disallowing the action move from place-0-2 to place-1-2,
the wed is reduced to O - thus guaranteeing that one step is
enough to recognize the goal of any optimal agent.

Related Work

Due to its generic nature, goal recognition has been
solved using various approaches and descriptions, including
Bayesian networks (Bui 2003; Han and Pereira 2011), graph
construction (Hong 2001), and specialized procedures (Lesh
and Etzioni 1995), most of which rely on a specification of
a plan-library to be supplied. Instead of computing the set
of all optimal plans as a plan library, our method relies on a
compilation to a classical planning problem to find one op-
timal plan that encodes the wed.

Despite its similarity to the task of automated planning,
which aims to discover plans that lead to a desired goal,
it was only recently that the work by Ramirez and Geffner
(2009) established the connection between the closely re-
lated fields. They present a compilation of plan recog-
nition problems into classical planning problems result-
ing in a STRIPS problem that can be solved by any plan-
ner. Several works followed this approach (Agotnes 2010;
Pattison and Long 2011; Ramirez and Geffner 2010; 2011)
by using various automated planning techniques to analyze
and solve plan recognition problems. Although our work
uses automated planning models and tools in order to solve
the grd problem, our problem is a new and different one. In-
stead of analyzing the behaviour of an agent according to a
specific observation sequence, we create a design-time tool
that measures and minimizes the maximal number of obser-
vations that need to be collected in a fully observable setting
before the goal of an agent is recognized.

We are not the first to highlight the influence common
prefixes of plans have on the task of goal recognition. Geib
(2004) presents a theoretical discussion on the complexity
of performing plan recognition on the basis of an analysis
of prefixes of plans in a plan library. However, no concrete
measure is given that can be used in our model. In the work
of Geib (2009), the analysis of plan heads is proposed as a
way to increase the efficiency of performing goal recogni-
tion given an observation set. Our work relates to a different
setting that does not commit to a specific observation se-
quence and does not rely on a plan library being supplied.

Goal recognition design can be seen as a mechanism de-
sign problem, where we want to influence future interactions
between the agent and the goal recognition system. Specifi-
cally, our approach of reducing the wed by eliminating legal
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actions can be seen as a social law (Shoham and Tennen-
holtz 1995), where specific actions can be viewed as being
made illegal. This idea was applied in (Agotnes, Van der
Hoek, and Wooldridge 2012) where a model is represented
by a kripke structure and a social law, defined as the elimi-
nation of some of the available transitions, is applied in or-
der to achieve a specified objective. A distance measure be-
tween structures is defined to assess the quality of a given
law. However, this work offers no method for finding the
social laws that fulfill the specified objective. We describe a
concrete method for finding the optimal set of actions A_,,
whose removal from the model will accomplish the objec-
tive of minimizing the wcd value.

Conclusion

We presented a new problem we refer to as goal recognition
design (grd). We introduced the wed value of a grd model
that represents the maximal number of steps an agent may
perform before revealing its final goal. We presented ways
of calculating the wed of a model, followed by a presentation
of methods for reducing it by disallowing actions from being
performed.

The novelty of our approach is in replacing the online
analysis of specific observation sequences conventionally
performed in goal recognition by a general offline analysis
of the goal recognition model. We propose the wcd measure
that reveals an upper bound on the number of observations
that need to be collected in a fully observable setting, before
goal recognition can be performed. In addition to providing
a crisp definition of the wcd, we provide methods for calcu-
lating it, one of which is based on a novel compilation to a
classical planning problem. The latest-split method avoids
the need to explore the plan graph and instead finds the
wcd shared by two goals by solving a single planning prob-
lem including two agents, each aiming at a separate goal.
This method is used as a basis for calculating the wcd for a
grd problem with multiple goals.

The method we present for reducing the wed of a model is
based on the observation that the only actions that should be
considered for removal from the model are the ones that ap-
pear on optimal plans to the goals. We show that for many of
the benchmarks we have tested, the reduction of the wed was
possible without increasing the optimal cost of any of the
goals.
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