
Temporal-Difference Search in Computer Go

David Silver
Department of Computer Science

University College London
Gower Street, London WC1E 6BT

Richard Sutton, Martin Müller
Department of Computing Science

University of Alberta
Edmonton, Alberta T6G 2E8

Abstract

Temporal-difference (TD) learning is one of the most
successful and broadly applied solutions to the rein-
forcement learning problem; it has been used to achieve
master-level play in chess, checkers and backgam-
mon. Monte-Carlo tree search is a recent algorithm
for simulation-based search, which has been used to
achieve master-level play in Go. We have introduced
a new approach to high-performance planning (Silver,
Sutton, and Müller 2012). Our method, TD search,
combines TD learning with simulation-based search.
Like Monte-Carlo tree search, value estimates are up-
dated by learning online from simulated experience.
Like TD learning, it uses value function approxima-
tion and bootstrapping to efficiently generalise be-
tween related states. We applied TD search to the
game of 9 × 9 Go, using a million binary features
matching simple patterns of stones. Without any ex-
plicit search tree, our approach outperformed a vanilla
Monte-Carlo tree search with the same number of sim-
ulations. When combined with a simple alpha-beta
search, our program also outperformed all traditional
(pre-Monte-Carlo) search and machine learning pro-
grams on the 9× 9 Computer Go Server.

Introduction
In this article we demonstrate that an agent can achieve high-
performance planning by applying reinforcement learning
to simulated experience. We focus on the game of Go as
a concrete example of a large, challenging environment in
which traditional approaches to planning have failed to pro-
duce significant success. Recently, Monte-Carlo tree search
(MCTS) algorithms, have revolutionised computer Go and
achieved human master-level play for the first time (Coulom
2006; Gelly and Silver 2007). The key idea of these algo-
rithms is to use the mean outcome of random simulations to
evaluate positions. Many thousands of games are simulated,
starting from the current position, and rolling out games by
randomised self-play. A search tree maintains the value of
each visited position, estimated by the mean outcome of all
simulations that visit that position. The search tree is used
to guide simulations along promising paths, by selecting the
child node with the highest value or potential value (Kocsis
and Szepesvari 2006).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, MCTS suffers from two major deficiencies:
each position is evaluated independently, without any gen-
eralisation between similar positions; and the mean value
estimates can have high variance. As a result, MCTS can
require prohibitively large numbers of simulations when ap-
plied to very large search spaces, such as 19 × 19 Go. In
practice, the strongest current Go programs deal with these
issues by using domain specific solutions (Gelly and Sil-
ver 2007; Gelly et al. 2006). In this article we develop a
much more general framework for simulation-based plan-
ning that addresses these two weaknesses. Our approach in-
cludes Monte-Carlo tree search as a special case, but it uses
value function approximation to generalise between related
positions; and it uses bootstrapping to reduce the variance
of the value estimates.

In classic games such as chess (Veness et al. 2009), check-
ers (Schaeffer, Hlynka, and Jussila 2001), and backgammon
(Tesauro 1994), temporal-difference learning (TD learning)
has been used to achieve human master-level play. In each
case, a value function was trained offline from games of self-
play; this value function was then used to evaluate leaf po-
sitions in a high-performance alpha-beta search. However,
in challenging environments such as Go, it is hard to con-
struct an accurate global value function (Müller 2002). In-
stead, we approximate the value of positions that occur in
the subgame starting from now until termination. This new
idea is implemented by re-training the value function online
in real-time, by TD learning from games of self-play that
start from the current position. The value function evolves
dynamically throughout the course of the game, specialising
more and more to the particular tactics and strategies that are
relevant to this game and this position. We demonstrate that
this method, which we call temporal-difference search (TD
search), can provide a dramatic improvement to the quality
of position evaluation.

Temporal-Difference Learning in Go
We learn a position evaluation function for the game of Go,
without requiring any domain knowledge beyond the grid
structure of the board. We use a simple and efficient repre-
sentation, based on local 1 × 1 to 3 × 3 patterns of stones,
to capture intuitive shape knowledge. We evaluate posi-
tions using a linear combination of these pattern features,
and learn weights by TD learning and self-play.

We use a reward function of r = 1 if Black wins and
r = 0 if White wins, with no intermediate rewards. The

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

486

Learning Search Elo rating
TD learning None 1050
TD learning Alpha-Beta 1350
TD learning TD search 2030
TD learning TD search + Alpha-Beta 2130

Table 1: The Elo ratings established by RLGO 2.4 on the
Computer Go Server in October 2007.

value function V π(s) is the expected total reward from state
s when following policy π for both Black and White. This
value function is Black’s winning probability from state
s. Black seeks to maximise his winning probability, while
White seeks to minimise it. We approximate the value func-
tion by a logistic-linear combination of local shape features
φ(s) with weights θ, using two forms of weight sharing to
capture rotational, reflectional and translational symmetries,

V (s) = σ (φ(s) · θ) (1)

where σ is the logistic function, σ(x) = 1
1+e−x . Weights are

updated by TD learning (Sutton and Barto 1998), by updat-
ing Black’s winning probability towards Black’s subsequent
estimate of winning probability at her next move (and vice
versa for White),

∆θ = α(V (st+2)− V (st))φ(st) (2)

Updating values from successor values is known as boot-
strapping, and is known to significantly reduce variance
(Sutton and Barto 1998). Actions are selected by maximis-
ing/minimising V (succ(s, a)) for Black/White respectively,
while selecting random move with probability ε.

Temporal-Difference Search in Go
Rather than planning for every possible eventuality, TD
search focuses on the subproblem that arises from the cur-
rent state st: how to perform well now. In a nutshell, TD
search applies TD learning to simulations drawn from the
local subproblem. Specifically, each simulation begins from
the root state st, and uses the current value function V (s)
to generate moves for both Black and White (again select-
ing a random move with probability ε), until the simulated
game is completed. After each simulated move, the value
function is updated by TD learning (Eqns 1 and 2). The
key difference is that the weights are specialised to simula-
tions starting from st, rather than full games from the start
position s1. Finally, an actual move is selected by maximis-
ing/minimising V (succ(st, a)) and the root state is updated
to the new position st+1 = succ(st, a). Another search is
then started from st+1, reusing the previous weights as an
initial estimate.

Dyna-2: Long and Short-Term Memories
We now develop a unified architecture, Dyna-2, that com-
bines both TD learning and TD search. The agent main-
tains two distinct value functions: using a long-term mem-
ory 〈φ, θ〉 and a short-term memory 〈φ, θ〉. TD learning
is applied to train the long-term memory, to learn general
knowledge about the game. TD search is applied to train
the short-term memory, to learn local knowledge about the
problem, i.e. corrections, adjustments and special-cases to
the long-term memory that provide a more accurate local

Long and Short-Term: 1x1,2x2,3x3
Long and Short-Term: 1x1,2x2
Long and Short-Term: 1x1
Short-Term: 1x1,2x2,3x3
Short-Term: 1x1,2x2
Short-Term: 1x1
Long-Term: 1x1,2x2,3x3
Long-Term: 1x1,2x2
Long-Term: 1x1
Vanilla UCT

W
in

ni
ng

 P
er

ce
nt

ag
e

vs
. G

nu
G

o

Figure 1: Winning rate of RLGO 2.4 against GnuGo in 9× 9 Go,
when varying number of simulations. Local shape features from
1× 1 up to 3× 3 were used in long-term memory (dotted), short-
term memory (dashed), or both (solid). Local shape features varied
in size. Each point represents winning rate over 1,000 games.

approximation to the true value function. One simple imple-
mentation of this idea uses the same features φ = φ for long
and short-term memories; in this special case the short-term
weights can simply be re-initialised to long-term weights,
θ ← θ, at the start of each new game; TD search then pro-
ceeds as described in the previous section. Figure 1 shows
the performance of our Go program, RLGO 2.4, using ei-
ther TD learning with a long-term memory, TD search with
a short-term memory, or the combination of both.

Combining TD Search and Alpha-Beta Search
TD search can be combined with traditional search methods
such as alpha-beta search. The value function V (s) is used
as a leaf evaluation function. As the game progresses, the
evaluation function adapts online to specialise to the current
position. Table 1 gives the Elo ratings of our Go program,
RLGO 2.4, using various combinations of TD learning, TD
search, and alpha-beta search.

References
Coulom, R. 2006. Efficient selectivity and backup operators in
Monte-Carlo tree search. In 5th International Conference on Com-
puter and Games, 72–83.
Gelly, S., and Silver, D. 2007. Combining online and offline learning
in UCT. In 17th International Conference on Machine Learning,
273–280.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Modification
of UCT with patterns in Monte-Carlo Go. Technical Report 6062,
INRIA.
Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-Carlo
planning. In 15th European Conference on Machine Learning, 282–
293.
Müller, M. 2002. Computer Go. Artificial Intelligence 134:145–179.
Schaeffer, J.; Hlynka, M.; and Jussila, V. 2001. Temporal difference
learning applied to a high-performance game-playing program. In
17th International Joint Conference on Artificial Intelligence, 529–
534.
Silver, D.; Sutton, R. S.; and Müller, M. 2012. Temporal-difference
search in computer go. Machine Learning 87(2):183–219.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: an Intro-
duction. MIT Press.
Tesauro, G. 1994. TD-gammon, a self-teaching backgammon pro-
gram, achieves master-level play. Neural Computation 6:215–219.
Veness, J.; Silver, D.; Blair, A.; and Uther, W. 2009. Bootstrapping
from game tree search. In Advances in Neural Information Process-
ing Systems 19.

487

