Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

Incremental Planning with Adaptive Dimensionality

Kalin Gochev

University of Pennsylvania

Abstract

Path planning is often a high-dimensional computationally-
expensive planning problem as it requires reasoning about
the kinodynamic constraints of the robot and collisions of the
robot with the environment. However, large regions of the
environment are typically benign enough that a much faster
low-dimensional planning combined with a local path follow-
ing controller suffice. Planning with Adaptive Dimensional-
ity that was recently developed makes use of this observation
and iteratively constructs and searches a state-space consist-
ing of mainly low-dimensional states. It only introduces re-
gions of high-dimensional states into the state-space where
they are necessary to ensure completeness and bounds on
sub-optimality. However, due to its iterative nature, the ap-
proach relies on running a series of weighted A™ searches. In
this paper, we introduce and apply to Planning with Adap-
tive Dimensionality a simple but very effective incremental
version of weighted A* that reuses its previously generated
search tree if available. On the theoretical side, the new algo-
rithm preserves guarantees on completeness and bounds on
sub-optimality. On the experimental side, it speeds up 3D
(x,y.heading) path planning with a full-body collision check-
ing by up to a factor of 5. Our results also show that it tends
to be much faster than applying alternative incremental graph
search techniques such as D* to Planning with Adaptive Di-
mensionality.

Keywords: Path Planning, Planning Algorithms, Heuristic
Search, Incremental Graph Search

Introduction

Path planning is frequently done in high-dimensional state-
spaces in order to represent a high degree of freedom robotic
system and to account for the system’s various kinodynamic
constraints and collisions with the environment. Unfortu-
nately, the high dimensionality of the state-space makes the
problem much more computationally expensive. However,
while planning in a high-dimensional state-space is often
necessary, large portions of the environment are typically

Copyright (©) 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This research was sponsored by ONR grant N00014-09-1-
1052, DARPA CSSG program D11AP00275 and the Army Re-
search Laboratory Cooperative Agreement Number W911NF-10-
2-0016.

Alla Safonova
University of Pennsylvania

82

Maxim Likhachev

Carnegie Mellon University

benign enough that a much faster low-dimensional plan-
ning, combined with a local path following controller suf-
fice. For example, a path for a 3-DoF (z,y,heading) non-
holonomic robot typically contains large portions that are
straight-line segments and therefore do not necessarily re-
quire 3-dimensional planning. On the other hand, sections
of the path that include turning or involve moving through
cluttered spaces do require full-dimensional planning, since
the turning radius of the vehicle must be taken into account,
and also, exact collision checking must be performed on
the full configuration of the robot to ensure a collision-free
path. The algorithm for Planning with Adaptive Dimension-
ality (Gocheyv et al. 2011; Gochev, Safonova, and Likhachev
2012) that was recently developed makes use of this obser-
vation and iteratively constructs and searches a state-space
consisting of mainly low-dimensional states. It only intro-
duces regions of high-dimensional states into the state-space
where they are necessary to ensure completeness and bounds
on sub-optimality. The algorithm has been shown to provide
strong theoretical guarantees, such as completeness with re-
spect to the underlying graph encoding the search problem
and bounds on solution cost sub-optimality.

However, due to its iterative nature, the algorithm for
Planning with Adaptive Dimensionality relies on running
a series of weighted A* searches. In this paper, we intro-
duce and apply to Planning with Adaptive Dimensionality
a simple but very effective incremental version of weighted
A* that reuses the valid portion of its previously generated
search tree if available. On the theoretical side, the new al-
gorithm preserves guarantees on completeness and bounds
on sub-optimality. On the experimental side, we apply the
algorithm in the context of 3-DoF (z,y,heading) path plan-
ning for Willow Garage’s PR2 robot, performing full-body
collision checking. Our results suggest that the algorithm
improves planning times by up to a factor of 5 over the orig-
inal algorithm for Planning with Adaptive Dimensionality.
We also observe that the the simple incremental weighted
A* tends to work better in the context of Planning with
Adaptive Dimensionality than alternative incremental graph
search techniques such as D*.

Related Work

In this paper we present an algorithm for performing incre-
mental weighted A* search and apply it to Planning with

Adaptive Dimensionality. As such, the related work can be
split it two groups—work relating to Planning with Adaptive
Dimensionality and work relating to incremental heuristic
search.

Researchers have used a variety of techniques to avoid
performing high-dimensional global planning in order to im-
prove planning times. Often, planners implement a two layer
planning scheme, where a low-dimensional global planner
provides input to a higher-dimensional local planner, which
operates only on a small local region of the environment.
The local planners have been implemented using reactive
obstacle avoidance planners (Thrun and others 1998) and
dynamic windows (Philippsen and Siegwart 2003; Brock
and Khatib 1999) to produce feasible paths from an under-
lying low-dimensional global planner. However these tech-
niques can result in highly sub-optimal paths and even paths
that are infeasible due to mismatches in the assumptions
made by the higher and lower level planners.

Rather than splitting the planning into two fixed layers,
Planning with Adaptive Dimensionality mixes the dimen-
sionalities of the planning problem within a single planning
process. This is similar to the hierarchical planners, which
use different methods of state abstraction to make better in-
formed heuristics to guide the search (Bulitko et al. 2007).

Researchers have also developed various methods for per-
forming incremental heuristic searches, based on the ob-
servation that information computed during previous search
queries can be used to perform the current search faster.
Generally, incremental heuristic search algorithms fall into
three categories.

The first class of algorithms, such as Incremental A*
(Koenig and Likhachev 2002a), D* (Stentz 1995), and D*-
Lite (Koenig and Likhachev 2002b), aim to identify and re-
pair inconsistencies in a previously-generated search tree.
These approaches are very general and don’t make limiting
assumptions about the structure or behavior of the underly-
ing graph. They also demonstrate excellent performance by
repairing search tree inconsistencies that are relevant to the
current search task.

The second class of algorithms, such as Fringe-Saving A*
(Sun, Yeoh, and Koenig 2009) and Differential A* (Trovato
and Dorst 2002), also try to re-use a previously-generated
search tree, but rather than attempting to repair it, these
approaches aim to identify the largest valid portion of the
search tree, so that it does not contain any modified states,
and resume searching from there. These approaches tend not
to be general and to make limiting assumptions. The Fringe-
Saving A*, for example, only works on 2D grids with unit
cost transitions between neighboring cells. However, the as-
sumptions made by these algorithms allow them to perform
very well in scenarios that meet these assumptions. The al-
gorithm presented in this work falls into this class of incre-
mental heuristic search algorithms.

The third class of incremental heuristic search algorithms,
such as Generalized Adaptive A* (Sun, Koenig, and Yeoh
2008), aim to compute more accurate heuristic values by us-
ing information from previous searches. As the heuristic be-
comes more informative, search tasks are performed faster.

The approach taken in (Holte et al. 1996) is similar to ours

83

in that it combines techniques of abstraction and incremental
planning.

Problem Definition

The focus of this work is on path planning for robotic sys-
tems, which usually operate in continuous state-spaces. In
order to be able to represent the path planning problem in a
graph-theoretical context, we discretize and bound the con-
tinuous state-space in which the system operates, to ob-
tain a discretized finite state-space S of dimensionality d.
d is the number of degrees of freedom considered in the
path planning problem. Every state X of the system can
then be expressed as a state-vector of size d. We also as-
sume a set of transitions T' = {(X;, X;)|X;, X; € S}
Each pair (X;, X;) € T corresponds to a feasible for the
robotic system transition between the corresponding state
vector values. Each transition is associated with a posi-
tive cost ¢(X;, X;). The state-space S and the transition
set T define an edge-weighted graph G = (5, 7T) with a
vertex set S and edge set 7. We will use the notation
7me(X;, X;) to denote a path from state X; to state X; in
G, and its cost will be denoted by c(ma(X;, X;)). We will
use 75 (X;, X;) to denote a least-cost path and 7§, (X;, X)
for ¢ > 1 to denote a path of bounded cost sub-optimality:
co(m& (X5, X)) < e-e(ng (X, X;)). The goal of the plan-
ner is to find a least-cost path in G from a given start state
X to a goal state X . Alternatively, given a desired sub-
optimality bound € > 1, the goal of the planner is to find a
path WE(Xs, XG).

Planning with Adaptive Dimensionality

In this section we will provide a brief overview of the al-
gorithm for Planning with Adaptive Dimensionality. For
a more detailed explanation of the algorithm, we refer the
reader to the original work on Planning with Adaptive Di-
mensionality (Gochev et al. 2011; Gochev, Safonova, and
Likhachev 2012).

Overview

The algorithm for Planning with Adaptive Dimensionality
builds on the fact that many high-dimensional path planning
problems have lower-dimensional projections that represent
the problem very well in most areas. For example, path plan-
ning for a non-holonomic vehicle needs to consider the pla-
nar position of the vehicle (x,y), but also the heading angle
to ensure that system constraints, such as minimum turning
radius, are obeyed. However, a two-dimensional representa-
tion of the problem, only considering the planar position of
the vehicle (z,y), can work well in many areas of the state-
space.

Thus, the algorithm for Planning with Adaptive Di-
mensionality considers two graphs as defined by their
corresponding state-spaces and transition sets—a high-
dimensional G"¢ = SS hd Thd) with dimensionality h, and
a low-dimensional G'? = (S' T'?) with dimensionality I.
S is a projection of S"¢ onto a lower dimensional man-
ifold (b > [, |S"4| > |S'|) through a projection function

Az Shd— 5t

The projection function A\~! maps low-dimensional states to
their high-dimensional pre-images:

AT S (st
and is defined as
AL XY = (X e SMINX) = X!}

where P(S"?) denotes the power set of S,

Each of the two state-spaces may have its own transition
set. However, in order to provide path cost sub-optimality
guarantees, the algorithm requires that the costs of the tran-
sitions be such that for every pair of states X; and X in
Shd,

¢(mgna (Xi, Xj)) = ¢(mgea (A(Xi), A(XG))) (D)
In other words, it is required that the cost of a least-cost
path between any two states in the high-dimensional state-
space to be at least the cost of a least-cost path between their
images in the low-dimensional state-space.

Algorithm

The algorithm for Planning with Adaptive Dimensional-
ity iteratively constructs and searches a graph G%¢ =
(S94, T?) consisting mainly of low-dimensional states and
transitions. The algorithm only introduces regions of high-
dimensional states and transitions into the graph where it
is necessary in order to ensure the feasibility of the resulting
path and maintain path cost sub-optimality guarantees. Each
iteration of the algorithm consists of two phases: planning
phase and tracking phase.

In the planning phase, the current instance of G%¢ is
searched for a path wg”,i‘;" (Xs,Xg). Any graph search al-
gorithm that provides a bound on path cost sub-optimality
can be used to compute wg’ﬂ". The original implementa-
tion of the algorithm for Planning with Adaptive Dimen-
sionality used weighted A* algorithm (Gochev et al. 2011;
Gochev, Safonova, and Likhachev 2012).

In the tracking phase, a high-dimensional tunnel 7 (a sub-
graph of G"?) is constructed around the path found in the
planning phase. Then 7 is searched for a path 7. (Xg, Xg).
If ¢(mr) < €track - c(m2™), then 7, is returned as the
path computed by the algorithm. If no path through 7
is found or c(m,) does not satisfy the above constraint,
the algorithm identifies locations in G%¢, where the search
through 7 got stuck or where large cost discrepancies be-
tween 77235‘;" and 7 are observed. The algorithm then intro-
duces new high-dimensional regions in G%¢ centered at the
identified locations. For more details on how the locations
of new high-dimensional regions are computed and how
high-dimensional regions are introduced in G?, please re-
fer to (Gocheyv et al. 2011; Gochev, Safonova, and Likhachev
2012). The algorithm then proceeds to the next iteration.

84

. -

X
v

=

]

—

o --Be [
2 B I I Y

If the shaded states are

Q) The state of a weighted A™

search at the end of a successful modified, a part of the back-

search episode pointer tree remains valid.

Flgure 1: Simple 8-connected grid weighted A™ example (assuming a perfect heuristic for
simplicity). Light gray: C LOSED list (expanded states), dark gray: O PE N list, striped:
modified states, black: obstacles/invalid states, solid arrows: valid back-pointer tree, dashed arrows:
invalid back-pointer tree.

Theoretical Properties

If the high-dimensional state-space S”? is finite, the algo-
rithm for Planning with Adaptive Dimensionality is com-
plete with respect to the underlying graph G"? encoding the
search problem and is guaranteed to terminate. If a path 7 is
found by the algorithm, then 7 satisfies

C(’IT) < €plan * €track * ’/Tz'hd (X57XG)

In other words, the cost of a path returned by the algorithm
is bounded by €47, - €4rack times the cost of an optimal path
from Xg to X in the high-dimensional graph G"?. These
theoretical properties are proven in (Gochev et al. 2011).

Tree-Restoring Weighted A* Search

In this section we describe a technique for performing
weighted A* graph search in an incremental fashion and how
it is beneficial in the context of Planning with Adaptive Di-
mensionality.

Motivation

The algorithm for Planning with Adaptive Dimensionality
performs multiple iterations of searches of the graph G,
In the original implementation of the algorithm (Gochev et
al. 2011; Gochev, Safonova, and Likhachev 2012) the plan-
ning phase of each iteration performs a weighted A* search
of G from scratch. However, the structure of G¢ only
changes inside the high-dimensional regions that have been
introduced by the previous algorithm iteration. Therefore,
large portions of G remain the same between subsequent
iterations. Starting a new weighted A* search with each
iteration leads to many redundant expansions of unmod-
ified states, while portions of the search tree constructed
by the previous weighted A* search episode need not be
recomputed and can be re-used (Fig. 1). Moreover, as
the algorithm for Planning with Adaptive Dimensionality
progresses, new high-dimensional regions tend to be intro-
duced closer and closer to the goal, which means that larger
and larger portions of the search trees generated during the
previous iterations remain unmodified and need not be re-
computed. Thus, the performance of the algorithm for Plan-
ning with Adaptive Dimensionality could be improved sig-
nificantly by using an incremental weighted A* search. An
important property of Planning with Adaptive Dimensional-
ity is that upon introducing a new high-dimensional region

s x| 1.
EH'A'A 3 N
68 7I7fe HEAN |F |y
\2 &
8 -|8%9]3 .| -
Ty T
314 0|0 |o%idid
3 . 1o bl -
ﬁ/ \\
- |11 - g -
i sl -

(a) Tree-restoring A™ search showing the (b) The first modified state is generated at
creation time (bottom left) and expansion step 5. Restoring the weighted A™* search
time (bottom right) of each state. A dash in- state at step 4 produces a valid A* search

dicates co. state.

Flgure 2: Simple 8-connected grid tree-restoring weighted A™ example (assuming a perfect
heuristic for simplicity). Light gray: CLOS E D list (expanded states), dark gray: O PE N list,
striped: modified states, black: obstacles/invalid states, solid arrows: valid back-pointer tree, dashed
arrows: invalid back-pointer tree.

into G4, costs of edges cannot decrease as ensured by Eq.
1. The tree-restoring weighted A* search algorithm makes
use of this property.

Algorithm

The state of a weighted A* search can be defined by the
OPEN list,the CLOSED list, the g — values of all states,
and the back-pointer tree. Note the distinction between a
state of a search and a state in the graph; we will use “state”
when referring to a state of a search. The idea of our ap-
proach to incremental weighted A* planning is to keep track
of the state of the search, so that when the graph structure
is modified, we can restore a valid previous search state and
resume searching from there.

We call a state of a weighted A* search valid with respect
to a set of modified states, if the OPEN and CLOSED
lists, and the back-pointer tree do not contain any of the
modified states and the g-values of all states are correct with
respect to the back-pointer tree.

At any one time during a weighted A* search, each state
falls in exactly one of the following categories:

e unseen - the state has not yet been encountered during
the search; its g-value is infinite; the state is not in the
back-pointer tree.

e inOPEN - the state is currently in the OPEN list; the
state has been encountered (generated), but has not yet
been expanded; it’s g-value is finite (assuming that when
states with infinite g-values are encountered, they are not
put in the OPEN list); the state is in the back-pointer
tree.

e inCLOSED - the state is currently in the CLOSED
list; the state has been generated and expanded; it’s g-
value is finite; the state is in the back-pointer tree.

One important assumption that we make when developing
the tree-restoring weighted A* algorithm is that edge cost
cannot decrease between search episodes. This is certainly
true in the context of Planning with Adaptive Dimensional-
ity as mentioned above. We also assume that the weighted
A* search expands each state at most once, which preserves

85

the sub-optimality guarantees of the algorithm (Likhacheyv,
G. Gordon, and Thrun 2003). The tree-restoring weighted
A* algorithm keeps a discrete time variable step that is ini-
tialized at 1 and incremented by 1 after every state expan-
sion. Thus, if we record the step C'(X) in which a state X
is generated (first placed in the OPEN list, C(X) = oo
if state has not yet been generated) and the step F(X) in
which a state is expanded (placed in the CLOSED list,
E(X) = oo if the state has not yet been expanded), we
can reconstruct the OPEN and CLOSED lists at the end
of any step s.

CLOSED, = {X|E(X) < s}
OPEN, = {X|C(X) < sand E(X) > s}

Note that C(X) < FE(X) (i.e. a state’s creation time is
before the state’s expansion time), and if F(X) = F(X')
then X = X’ (i.e. no two states could have been expanded
during the same step).

In order to be able to reconstruct the back-pointer tree and
g-values for all states at the end of a previous step s, each
state must store a history of its parents and g-values. Every
time a better g-value g and parent X, are found for a state
X (when X, is being expanded), a pair (X, g) is stored
for the state X. Note that the pair stores the g-value of the
state X itself, not the g-value of its parent X,,. Thus, we can
compute the parent P;(X) and g-value gs(X) of a state X
at the end of a previous step s by going through X’s list Lx
of stored parent/g-value pairs.

(Ps(X), 95(X)) =
(XP’Q)GLX|V(X/7QI)ELX : E(X,) S E(Xp) S S

In other words, the valid parent/g-value pair of X at step s is
the pair containing the parent that was expanded last (most
recently), but before or during step s. Storing the history in
a list or array and searching it backwards seems to be very
effective in quickly identifying the most recent valid parent
and g-value.

When a set of states M get modified between search
episodes, we identify the earliest step ¢,,;, in which a mod-
ified state was created: ¢, = min(C(X)|X € M). If we
then restore the search state at the end of step ¢, — 1, we
will end up with a valid search state with respect to the mod-
ified states, and thus, we can resume searching from there.

Algorithm 1 gives the pseudo code for all the important
functions in the tree-restoring weighted A* algorithm. Fig-
ure 3 shows an example of the tree-restoring weighted A*
algorithm used in the context of Planning with Adaptive Di-
mensionality.

Theoretical Properties

Theorem 1 All states X with C(X) > ¢ will become
unseen after the function restoreSearch(c) is called.

Proof The function will not insert X into the OPEN or
CLOSED lists since C(X) > c¢. g(X) will be set to co and
the parent pointer of X will be cleared, making X unseen. Also,
any descendant X4 of X in the back-pointer tree must have been
created after X (C(X4) > C(X) > ¢). Thus, the call to
restoreSearch(c) will make X4 unseen as well.

Algorithm 1 Tree-Restoring Weighted A* Search Algorithm

Data:

CLOSED : Set
OPEN : MinHeap
CREATED : Array
step : Integer

function INITIALIZESEARCH(X s X&)
CLOSED + ()
OPEN + {Xs}
g(Xs) 0
f(Xs) + g(Xs) + e h(Xs)
step < 1
C(Xg)+ 0
insertt(CREATED, Xgs)
E(Xs) < 00

end function

function RESUMESEARCH()
if heuristic has changed then
recompute heuristic
update f-values and re-order OPEN
end if
while OPEN # () do
X <+ extractMin(OPEN)
if X = X then
return reconstructPath()
end if
Expand(X)
end while
end function

function EXPAND(X)
for all X’ € successors of X do
if X’ ¢ CLOSED and isValidState(X ") then
g+ g(X) + cost(X, X")
if (X’ ¢ OPEN org’ < g(X’))and g’ # oo then
9(X') ¢
storeParent(X’,(X, g’),step)
FX) g + e h(X')
if X’ ¢ OPEN then
insertOPEN(X’, f(X"))
C(X') + step
insert(CREATED, X')
else
updateOPEN(X ', f(X'))
end if
end if
end if
end for
E(X) < step
insert(CLOSED, X)
step <— step + 1
end function

> record when state is encountered first

> record when state is expanded

function RESTORESEARCH(S)

> restores the search state to just after the expansion at step s
OPEN + 0
CLOSED «+ 0
CREATED + 0
if s < 0O then
initializeSearch(X s, X &)
return
end if
forall X ¢ CREATED do
if £(X) < s then
> the state has been created before and expanded before or during

step s

(Xp, g) < updateParents(X, s)
9(X) +g
parent(X) «+ X,
insert(CLOSED, X)

else if C(X) < s then

> the state has been created, but not expanded at step s

(Xp, g) < updateParents(X, s)
9(X) g
parent(X) «+ X,
F(X) — g+e-h(X)
insertOpen(X, f(X))
E(X) + oo

else

> the state has not been created at step s

clearParents(X)
g(X) < oo
parent(X) + &
C(X) + oo
E(X) + o

end if

end for
step < s+ 1

end function

function UPDATEPARENTS(X, s)

latestG < 0
latestParent <— <&
latest ParentStep < 0
for all (X,, gp) in stored parent/g-value pairs of X do
if E(Xp) < sthen
> X, is a valid parent for step s
if E(X,) > latestParentStep then
> Found more recent parent
latestParentStep < E(Xp)
latest Parent < X,
latestG < gp
end if
else
> X, is not a valid parent for step s as it has not been expanded before

or during step s

Remove (X, gp) from stored parent/g-value pairs
end if
end for
return (latest Parent, latestG)

end function

86

Theorem 2 The contents of the OPEN and CLOSED
lists after the function restoreSearch(c) is called are iden-
tical to what they were at the end of step c of the algorithm.

Proof Let OPEN, and CLOSED. be the OPEN and
CLOSED lists at the end of step c of the algorithm. Let OPEN’
and CLOSED' be the OPEN and CLOSED lists after the
function restoreSearch(c) is called. Let X € CLOSED., then
X has been created and expanded before or during step c. Thus,
C(X) < cand E(X) < c. Then X will be placed in CLOSED’
by restoreSearch(c). Let X € CLOSED’, then C(X) < ¢
and E(X) < c¢. Thus, X has been created and expanded be-
fore or during step ¢ of the algorithm and X € CLOSED,. Let
X € OPEN,, then X has been created, but not yet expanded at
the end of step ¢. Thus, C(X) < cand E(X) = oco. Then X will
be placed in OPEN’ by restoreSearch(c). Let X € OPEN’,
then C(X) < cand E(X) > c. Thus X has been created, but
not yet expanded at the end of step c. Then X € OPEN,.. Thus,
OPEN,=OPEN' and CLOSED. = CLOSED'.

Theorem 3 All states X with C(X) < ¢ will have cor-
rect g-values and parent pointers after restoreSearch(c)
is called.

Proof We proceed with a proof by contradiction. Suppose a state
X has an incorrect parent pointer. In other words, there exists a
state P’ € CLOSED such that g(P’) + cost(P', X) < g(P) +
cost(P, X) (abetter parent P’ for X exists in the CLOSED list).

Suppose P was expanded before P’. Then E(P) < E(P') <
c. The call to updateParents(c), then should have found P’ as
the parent of X as P’ has been expanded more recently than P, but
still before or during step c—a contradiction. Then, P must have
been expanded after P’ and E(P’) < E(P) < c. However, since
the g-value obtained through P is larger than the g-value obtained
through P’, P would not have been recorded as a parent of X when
P was expanded because a better parent had been found already.
Thus, P could not be a parent of X—contradiction.

Thus, the parent pointers for all states are correctly computed by
restoreSearch(c). Since parent pointers are stored together with
their corresponding g-values, then restoreSearch(c) also com-
putes the correct g-values for all states.

Theorem 4 Let M be the set of all modified states after
a successful incremental A* search episode. Let Cpip =
min(C(X)|X € M). restoreSearch(cmin — 1) results in
a search state that is valid.

Proof The result follows directly from the above theorems.

Since introducing high-dimensional regions into the adap-
tive graph G cannot decrease edge costs, the heuristic
function remains admissible (underestimating the actual cost
to goal) for all search episodes of the incremental search.
Therefore, the tree-restoring weighted A* graph search al-
gorithm preserves the theoretical properties of weighted A*
such as termination, completeness, and bounds on solution
cost sub-optimality in the context of Planning with Adaptive
Dimensionality.

Experimental Results

The domain we chose to experimentally validate our algo-
rithm was path planning for non-holonomic vehicles in three
dimensions—(x,y,heading) with full-body collision check-
ing. We used Willow Garage’s PR2 robot as our exper-
imental platform. We compared three implementations of

87

E»
() start (left) and Goal (right)

(b) Iter. 1 Expanded States (2D: lighter, 3D:
darker)

(C) OPEN at the end of iter. 1 (arrows) (d) OPE N atbeginning of iter. 2 (arrows)

and new 3D region after tree-restoring

(e) Iter. 2 Expanded States (2D: lighter, 3D: (f) OPEN at the end of iter. 2 (arrows)

darker) and new 3D region

(g) OPEN atbeginning of iter. 3 (arrows) (h) Iter. 3 Expanded States (2D: lighter, 3D:

after tree-restoring darker)

Flgure 3: Example of Planning with Adaptive Dimensionality using tree-restoring A™* search
(with no heuristic for illustration purposes). New high-dim. regions introduced in the graph are
represented by the inner circles. The outer circles represent states that are affected by the introduction
of the new region (modified states). Dark cells indicated by arrows represent the OPEN list
(search frontier). Note the reduction of the number of expanded states as iterations progress.

the algorithm for Planning with Adaptive Dimensionality—
the non-incremental version of the algorithm, an incremental
version using tree-restoring weighted A*, and an incremen-
tal version using D*-Lite planner (Koenig and Likhachev
2002b). We used the same approach to 3-DoF planning
as in (Gochev et al. 2011)—we used lattice-based graphs
of uniform resolution (2.5cmx2.5cm) and heading angle
values were uniformly discretized into 16 on the interval
(—m,7]. We used a set of pre-computed transitions for a
non-holonomic robot for 3D states and simple 8-connected
2D grid transitions for the 2D states. The costs of 2D tran-
sitions were representative of the distance traveled and the
costs of 3D transitions were computed based on the distance
traveled, inflated by a pre-computed penalty factor: 3D tran-
sitions that required the robot to move backwards had higher
penalty factors than transitions moving forward. We used
a 2D 8-connected grid-based distance-to-goal heuristic, ac-
counting for obstacles. The heuristic values were computed
by a single backward Dijkstra search on the 2D grid. In
the incremental versions of the algorithm, every time a new
high-dimensional region was introduced, all states falling in-
side the region and all states on the boundary of the region
(states that have valid high-dimensional transitions into the

Algorithm Sub-opt Time (s) _ # Iterations # 3D Expands # 2D Expands Total Expands Successful
Bound mean std dev min max mean std dev mean std dev mean std dev mean std dev Searches
3D Weighted A™ 5.0 39.41 34.45 242 118.57 n/a 37.29K 32.53K n/a 37.29K 32.53K 23 of 30
Non-incremental Adaptive 5.0 14.43 15.92 0.89 48.69 2.07 1.10 13.92K 15.52K 1.41K 0.99K 15.31K 16.39K 30 of 30
Tree-restoring A™ Adaptive 5.0 6.86 2.75 0.89 21.75 2.07 1.10 6.83K 6.34K 0.69K 0.29K 7.51K 6.59K 30 of 30
Incremental D* Adaptive 5.0 10.40 10.80 0.89 34.97 2.07 1.10 7.35K 8.96K 2.22K 1.76K 9.55K 9.96K 30 of 30
Bi-directional RRT n/a 22.56 20.48 0.03 87.87 n/a n/a n/a n/a 286 of 300

Table 1: Experimental results on 30 scenarios for 3-DoF (x,y,heading) path planning (weighted A™* planner vs. non-incremental adaptive-dimensionality planner vs. adaptive-dimensionality planner using
tree-restoring weighted A™ vs. adaptive-dimensionality planner using D*-Lite vs. sampling-based bi-directional RRT planner). The deterministic search-based planners were run only once on each scenario.
RRT results are averaged over 10 runs on each scenario. The reported times for RRT do not include trajectory post-smoothing. A search was reported as successful if it took less than 60 seconds to compute a path

to the goal.
Algorithm Sub-opt. Time (s) # Iterations Time spent in planning phase
Bound mean std dev min max mean std dev mean std dev min max
Non-incremental Adaptive 5.0 2291 15.50 6.41 48.69 2.78 0.83 15.35 13.28 2.11 40.21
Incremental A™ Adaptive 5.0 12.03 5.67 4.96 21.75 2.78 0.83 5.16 3.30 1.42 9.75
Inremental D™ Adaptive 5.0 17.08 10.87 5.29 34.97 2.78 0.83 10.94 8.94 1.69 27.27

Table 2: Statistical data for the 18 scenarios that required more than one iteration of planning demonstrating the benefits of using incremental graph searches in the context of Planning with Adaptive
Dimensionality. Using tree-restoring weighted A™ reduced the time spent in the planning phase of the algorithm by a factor of 3.

Flgure 4: Example run of an Adaptive-Dimensionality planner on an indoor environment. The
high-dimensional regions introduced by the algorithm, represented by circles, and the computed path
are shown in the embedded figure. 3D planning is performed inside the circles and 2D planning is
performed everywhere else in the environment.

region) were tagged as modified.

We also compared the three Adaptive-Dimensionality al-
gorithms with a 3-DoF weighted A* lattice-based planner
and a 3-DoF sampling-based bi-directional RRT planner
based on the approach taken in (LaValle and Kuffner 2001).
The RRT planner used controllers for a non-holonomic robot
with the same parameters (minimum turning radius and
nominal velocity) as the 3D transitions used by the search-
based planners. We ran all algorithms on 30 indoor envi-
ronments of varying degree of difficulty (example can be
seen in Fig. 4). Most scenarios exhibited challenging fea-
tures such as pronounced heuristic local minima and nar-

tor

o

£
o 4
s |
= 3
w
o
& 2
=
2 9
kS
1 2 3 4
lterations

Flgure 5: Relationship between the number of iterations performed and the average speed-
up factor between non-incremental Adaptive-Dimensionality planner and incremental Adaptive-
Dimensionality planner using tree-restoring weighted A™ observed in our 30 experimental sce-
narios. The incremental algorithm demonstrates better speed-up as the difficulty of the problem
increases.

88

row passages. All algorithms performed full-body collision
checking (base, torso, arms and head) to ensure that the com-
puted paths were completely collision-free. This is much
more computationally expensive (orders of magnitude) than
collision-checking just the footprint of the robot, but is much
more precise. The Adaptive-Dimensionality planners used
simpler collision checking for 2D states, treating the robot
as a point and inflating the obstacles by the robot’s inscribed
circle radius.

As seen in Table 1, both the 3-DoF weighted A* lattice
planner and the bi-directional RRT planner are outperformed
by the Adaptive-Dimensionality algorithms. The poor per-
formance of the RRT algorithm can be attributed to the many
narrow passages (such as doorways and narrow gaps be-
tween furniture) present in our test environments. A sig-
nificant drawback of the bi-directional RRT algorithm was
the fact that it frequently produced highly sub-optimal paths
and paths that required the robot to drive backwards for long
periods, which we consider undesirable. The performance
of the 3-DoF weighted A* lattice planner was reasonable
only in a few scenarios that did not exhibit local minima
of the heuristic function. We observed that the Adaptive-
Dimensionality algorithm using tree-restoring weighted A*
performed best on average, improving performance over the
non-incremental version by a factor of 2.

Table 2 compares the performance of the incremental and
non-incremental versions of the Adaptive-Dimensionality
algorithm on 18 of the 30 scenarios, which required mul-
tiple search iterations to produce a path. On scenarios that
required only a single iteration of planning, all three versions
of the algorithm behaved identically, since no re-planning
was needed. The Adaptive-Dimensionality algorithm us-
ing D*-Lite performed significantly better than the non-
incremental version of the algorithm, improving the over-
all planning time by a factor of 1.35. However, using D*-
Lite seems to introduce significantly more overhead than
using the simple tree-restoring technique for incremental
weighted A* planning. This can be explained by the fact
that D*-Lite needs to generate both successor and prede-
cessor states for all modified states in the graph in order
to propagate the inconsistencies in its search tree. This in-
volves expensive collision-checking and some book-keeping

overhead. Also, in the context of Planning with Adap-
tive Dimensionality, edge costs only increase when a new
high-dimensional region is added, which results in under-
consistent states (g(X) < rhs(X), defined in (Koenig and
Likhachev 2002b)) in the D* search. D*-Lite propagates
the consistency by expanding these underconsistent states
to make them overconsistent (g(X) > rhs(X), defined in
(Koenig and Likhachev 2002b)), after which it may have to
expand these states again to make them consistent (g(X) =
rhs(X)). Thus, while attempting to correct its search tree,
D*-Lite might have to expand many states twice, which in-
troduces significant overhead. On the other hand, the tree-
restoring weighted A* does not attempt to correct its search
tree, but rather quickly identifies a usable portion of the
search tree and resumes searching from there. In our ex-
periments we observed that the tree-restoring weighted A*
algorithm needed an average of 5 milliseconds to restore it-
self to a valid previous search state and resume searching.
As a result, tree-restoring weighted A* improves the perfor-
mance of the planning phase of the algorithm for Planning
with Adaptive dimensionality by a factor of 3 and seems to
be a better incremental search alternative than D*-Lite in
this context. As shown in Fig. 5, the performance benefit
of using tree-restoring weighted A* increases as the diffi-
culty of the search problem increases and more iterations
are needed to solve it.

Discussion and Future Work

To verify that the Adaptive-Dimensionality algorithm using
tree-restoring weighted A* scales well with increasing the
dimensionality of the problem, we have begun work on ap-
plying it in the context of 4-DoF (z,y,z,yaw) navigation for
an unmanned areal vehicle and 11-DoF mobile manipulation
planning on the PR2 platform as in (Gochev, Safonova, and
Likhachev 2012). Our preliminary results are very similar
to the results presented in this work and suggest that the per-
formance of the algorithm does not deteriorate significantly
in larger state-spaces.

From the results shown in Table 2 we can see that
the Adaptive-Dimensionality algorithm using incremental
weighted A* spends roughly 43% of its overall search time
in planning phases and 57% in tracking phases. We have
seen that incremental search techniques can significantly im-
prove the performance of the planning phases of the algo-
rithm. In the future, we would like to investigate the pos-
sibility of performing incremental searches to speed up the
tracking phases as well. This problem is challenging, since
the tunnel 7 being searched during the tracking phase is only
a subgraph of G"¢ and can change drastically between sub-
sequent iterations.

Conclusion

In this work we have presented an incremental version of
the previously-developed algorithm for Planning with Adap-
tive Dimensionality using a simple, but effective technique
for performing incremental weighted A* graph searches.
We have proven that this technique preserves the theoret-
ical properties of weighted A*, such as completeness and

89

bounds on solution cost sub-optimality. Experimentally,
we have demonstrated that using incremental weighted A*
graph search can improve the performance of the algorithm
for Planning with Adaptive Dimensionality by up to a fac-
tor of 5 in the context of 3-DoF (x, y, heading) path plan-
ning for a non-holonomic vehicle. We also believe that tree-
restoring weighted A* can be used more generally than in
the context of Planning with Adaptive Dimensionality. We
plan to investigate this further.

References

Brock, O., and Khatib, O. 1999. High-speed navigation us-
ing the global dynamic window approach. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 341-346.

Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. Journal of Artificial
Intelligence Research (JAIR) 30:51-100.

Gochev, K.; Cohen, B.; Butzke, J.; Safonova, A.; and
Likhachev, M. 2011. Path planning with adaptive dimen-
sionality. In Proceedings of the Symposium on Combinato-
rial Search (SoCS).

Gochev, K.; Safonova, A.; and Likhachev, M. 2012. Plan-
ning with adaptive dimensionality for mobile manipulation.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA).

Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A.J. 1996. Speeding up problem solving by abstraction: a
graph oriented approach. Artif. Intell. 85(1-2):321-361.

Koenig, S., and Likhachev, M. 2002a. Incremental A*.
In Dietterich, T. G.; Becker, S.; and Ghahramani, Z., eds.,
Advances in Neural Information Processing Systems (NIPS)
14. Cambridge, MA: MIT Press.

Koenig, S., and Likhachev, M. 2002b. D*-lite. In Eigh-
teenth national conference on Artificial intelligence, 476—
483. Menlo Park, CA, USA: American Association for Ar-
tificial Intelligence.

LaValle, S., and Kuffner, J. 2001. Randomized kinody-
namic planning. International Journal of Robotics Research
20:378-400.

Likhachev, M.; G. Gordon; and Thrun, S. 2003. ARA%*:
Anytime A* with provable bounds on sub-optimality. In
Advances in Neural Information Processing Systems (NIPS).
Cambridge, MA: MIT Press.

Philippsen, R., and Siegwart, R. 2003. Smooth and efficient
obstacle avoidance for a tour guide robot. In /CRA, 446-451.

Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. In Proceedings of the 14th international joint
conference on Artificial intelligence - Volume 2, IICAT’95,
1652—-1659. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized
adaptive A*. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems -
Volume 1, AAMAS ’08, 469—476. Richland, SC: Interna-

tional Foundation for Autonomous Agents and Multiagent
Systems.

Sun, X.; Yeoh, W.; and Koenig, S. 2009. Dynamic fringe-
saving A*. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS 09, 891-898. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Thrun, S., et al. 1998. Map learning and high-speed nav-
igation in RHINO. In Kortenkamp, D.; Bonasso, R.; and
Murphy, R., eds., Al-based Mobile Robots: Case Studies of
Successful Robot Systems. Cambridge, MA: MIT Press.

Trovato, K. I., and Dorst, L. 2002. Differential A*. IEEE
Trans. on Knowl. and Data Eng. 14(6):1218-1229.

90

