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Abstract

Robot manipulation is a challenging task for planning as it
involves a mixture of symbolic planning and geometric plan-
ning. We would like to express goals and many action ef-
fects symbolically, for example specifying a goal such as for
all x, if x is a cup, then x should be on the tray, but to ac-
complish this we may need to plan the geometry of fitting all
the cups on the tray and how to grasp, move and release the
cups to achieve that geometry. In the ideal case, this could
be accomplished by a fully hybrid planner that alternates be-
tween geometric and symbolic reasoning to generate a solu-
tion. However, in practice this is very complex, and the full
power of this approach may only be required for a small sub-
set of problems. Instead, we plan completely symbolically,
and then attempt to generate a geometric plan by translating
the symoblic predicates into geometric relationships. We then
execute this plan in simulation, and if it fails, we backtrack,
first in geometric space, and then if necessary in symbolic.
We show that this approach, while not complete, solves a
number of challenging manipulation problems, and demon-
strate it running on a robotic platform.

1 Introduction

Planning for robotic manipulation tasks such as cleaning and
tidying a house is a challenging problem because it contains
a mixture of symbolic and geometric constraints. For exam-
ple, we can plan to tidy a table by placing cups and plates
on a tray and then moving them to the kitchen to be cleaned,
but to accomplish the task we need to not only reason about
the symbolic problem of having all the objects on the tray,
but also the geometric problem of fitting all the objects on
the tray and potentially stacking them if there is insufficient
space. This paper considers this problem, and in particular
the problem of translating back and forth between symbolic
and geometric states during planning. We assume the robot’s
actions are reliable and that the world is perfectly known,
and concentrate on the challenge of efficiently generating
plans for these kinds of tasks.

Many manipulation planning approaches (see Chapter 7
of (LaValle 2006) for an overview) assume that the task can
be treated entirely as a geometric problem, with the chal-
lenge being to place all the objects in their desired positions.
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However, it is clearly desirable to specify goals and reason
at a symbolic level. Specifying the exact geometric loca-
tion of every object essentially requires knowing the plan in
advance since, for example, if two of the cups need to be
stacked to get them all on the tray, this must be specified in
the goal. For this reason, we adopt a combination of task-
level symbolic planning using Fast Downward (Helmert
2006), geometric planning to decide the desired positions
of objects, and path planning (Kuffner and LaValle 2000;
Siméon, Laumond, and Nissoux 2000)) to generate trajecto-
ries for the robot to reach the object positions.

Due to the interactions between symbolic and geometric
planning, the ideal approach would be to interleave the two,
with geometric planning potentially causing symbolic back-
tracking when it fails, and vice versa. Unfortunately, be-
cause generating paths and geometric states is typically very
time-consuming, this hybrid planning approach can be un-
acceptably slow due to the many geometric states and robot
path plans generated for symbolic states that are not used
in the final plan. To overcome this, we take a different ap-
proach, preferring to generate a complete plan at the sym-
bolic level, then translate that plan into a geometric one and
generate paths to achieve the geometric configurations. If
this process fails, we allow a limited amount of purely ge-
ometric backtracking—proposing new positions for the ob-
jects moved by the robot—before giving up and trying back-
tracking at the symbolic level to generate a different plan.

Our approach requires us to be able to generate the ini-
tial symbolic state from the geometric state, and for any
symbolic state to generate a corresponding geometric state.
To do this we learn a bi-directional mapping between geo-
metric and symbolic states. The mapping is learned from
a large set of labelled training data of configurations and
the symbolic predicates that are true in them. One sig-
nificant advantage of this approach is that if the training
data comes from “natural” scenes (in our case, it is partly
generated by hand, and partly from existing robot pro-
grams), then the mapping will naturally reflect any implicit
constraints in the data, for example ensuring that no ob-
jects are too close to the edge of a table. From the train-
ing data we learn a kernel density estimate (Scott 2008;
Morariu et al. 2008) for each predicate. This allows us
not only to label unseen geometric states (the forward direc-
tion for the mapping), but also, via hill-climbing search in



the probability density function, to find geometric states that
match a symbolic predicates with high probability (the back-
wards direction). We extend this to find geometric states
for conjunctions of symbolic predicates and also—for back-
tracking—to find multiple, significantly different geometric
states for a predicate.

In the next section we present the planning approach in
detail. In Section 3 we present the approach to learning the
mapping, and in Section 4 we examine previous approaches
to the problem. We present experiments to demonstrate the
effectiveness of the approach in Section 5, and our conclu-
sions and future work in Section 6.

2 Task Planning

The planning task is made challenging by the mixture of ge-
ometric and symbolic state. To plan optimally for both of
these we would need a hybrid planner that interleaved sym-
bolic and geometric planning, where a geometric problem
(e.g. a collision between objects) leads to backtracking in
the symbolic plan and vice versa. However, this approach is
slow because geometric states and arm motion paths will be
generated for states that are reached during search but never
used in the final plan. Since the translation from symbolic
to geometric states (described in Section 3) is quite slow,
this amount of backtracking is unnacceptable. Instead our
approach is to plan symbolically, then generate a geomet-
ric plan from the symbolic plan and use an RRT planner to
generate motion paths between the geometric states. If the
motion plan fails we attempt to generate different geometric
solutions by backtracking over the translation from symbolic
to geometric states, and if that fails we then backtrack in the
symbolic planner.

The high-level description of the algorithm is given
in Algorithm 1. We describe each step in more detail
below, using as a running example the task of placing two
stackable cups on a saucer. In the example, the goal is
(above cupl saucer) (above cup2 saucer) V?z

(not (holds ?x)) and the initial state iS (above cupl
table) (touching cupl table) (above cup2
table) (touching cup2 table) (above saucer
table) (touching saucer table). We assume there

are three actions available to the robot: (grasp ?2x) moves
the robot’s hand to object ?x and grips it, (release ?x)
releases object ?x if it has been grasped, and (move ?x
?y) moves grasped object 7x to be above and touching
object ?7y.

The symbolic planner we use is Fast Downward (Helmert
2006), using the FF heuristic. This typically generates
initial plans for these simple manipulation domains in
under a second—significantly faster than the translation
to geometric states or the generation of paths for the
robot. For our example, we might expect the initial
plan generated to be ((grasp cupl) (move cupl
saucer) (release cupl) (grasp cup2) (move
cup2 saucer) (release cup2)).

To produce a geometric plan from a symbolic one, we
extract the symbolic state after each action from the plan,
and starting with the last state, translate it to a geometric
state using the method described in Section 3. We work
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Algorithm 1 High-level description of planning.

Start-state <— geometric state mapped to symbolic predicates
Plan <— symbolic planner applied to domain, goal, start-state
states <— the sequence of states visited by the plan
for s € states, starting with the final state do

Find a geometric state that matches all geometric predicates
in s with high probability
end for
Generate RRT paths between the geometric states
if the RRT planner fails to generate a path or the geometric plan
fails in simulation then

Backtrack, first geometrically and then symbolically
else

Pass the plan to the robot for execution
end if

our way back through the states generating new geometric
states wherever the robot places an object in a location for
which a geometric state hasn’t already been generated. For
our example, this means finding a geometric state corre-
sponding to the symbolic state ( (above cupl saucer)
(touching cupl saucer) (above cup2 saucer)

(touching cup2 saucer)). Since the saucer is not
moved during the plan, its position is fixed in the geometric
search and only the positions of the two cups are optimised.
It is possible that the geometric translation fails immediately
at this point if no position with the two cups on the saucer
exists. In our example this is the only geometric translation
which needs to take place as we have now fixed the position
of every moved object, but in a more complex example
we may need to regress through the plan and optimise the
locations of other objects if they are moved more than once.

If the translation from a symbolic to a geometric plan suc-
ceeds, we then generate paths for the robot motions to grasp
and move the objects using the OpenRAVE RRT path plan-
ner. If this step fails, this indicates that it is impossible to
move an object without some kind of collision (either with
an obstacle, or a self-collision of the robot arm) occurring,
and backtracking will be required. Otherwise, we now have
a usable plan in the geometric space, and the robot can go
ahead and execute it. In our example, if the translation suc-
ceeds in placing the cups (very close together) on the saucer,
this is then simulated, and will likely fail because the robot
can’t place the second cup on the saucer without its gripper
colliding with the first cup.

If the simulation of the geometric plan fails, backtracking
is used to try to find a plan that will succeed. The first
backtracking is in the geometric translation as described in
Section 3. This generates alternative geometric states that
are consistent with the symbolic state. We try this only a
small number of times (a parameter that can be varied by the
user) as there are generally infinitely many geometric states
for a given symbolic one. If we fail to generate a geometric
state we can plan for in the small number of trials, we then
backtrack the symbolic planner to search for a different plan
to accomplish the goal. In our example this might produce
the new plan ((grasp cupl)
(release cupl) (grasp cup2)

(move cupl saucer)
(move cup2 cupl)



(release cup2)), which nests cup2 inside cupl on the
saucer. This is again translated to a geometric plan, the
robot motions planned by the RRT planner, the geometric
plan is tested in the simulator, and then finally passed to the
robot for execution.

3 Symbolic to Geometric Mapping

To use a symbolic planner for these kinds of problems we
need to translate the geometric initial state into a symbolic
state, and translate symbolic states generated in the plan into
euivalent geometric states. As we will discuss in Section 4,
most previous work has assumed a hand-built translation be-
tween geometric and symbolic states. Here we consider a
learning approach: Given training data in the form of ge-
ometric states labelled with the predicates true in them we
wish to learn a mapping between them that can be used in
both directions. Since the symbolic to geometric mapping is
clearly one-to-many and we wish to support backtracking in
the planner, we also require a representation from which we
can generate significantly different geometric states.

The approach we take is to represent the mapping us-
ing a kernel density estimate (KDE) (Scott 2008; Morariu
et al. 2008) which provides a probability density function
Pr(C|G) where C is a symbolic predicate and G is a geo-
metric state. This allows us to efficiently compute the prob-
ability of a predicate holding as a sum of Gaussians, and
to generate a geometric state where a predicate holds with
high probability by gradient ascent. Given a symbolic state
S = Cy ANCy A ... A C,, assuming that the probability of
each predicate is independent, the probability that the sym-
bolic state holds in a geometric state G is:

Pr(S|G) = [[Pr(Ci|G). (1)
i=1

Geometric state representation

For a predicate over two objects A and B, we assume each
object is represented by its bounding box, and position and
rotation in world coordinates. We define the geometric state
representation as:

G=[Sa Sp T§ Ra Rp] (2

where S,, R, are the size and rotation of object o respec-
tively, and T4 is the relative translation between objects A
and B. Using the difference in position between the objects
rather than absolute positions provides better generalisation
from the examples. However, the same can not be done with
the rotation as many predicates require specific orientations
(for example, containers need to be upright). We represent
the rotations using quaternions (although this adds an extra
dimension per rotation, it avoids discontinuities in the prob-
ability distributions) taking the geometric state vector to 17
dimensions. We can similarly define the geometric state rep-
resentation for a predicate of arity one as a ten dimensional
vector:

G=[S P R] 3)

where S and R are the size and rotation of the object as
before, and P is its absolute position.
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Figure 1: Example geometric state. The predicate labels for
this state are ((above cupl tray) (touching cupl
tray) (above cup2 tray) (touching cup2 tray)
(above tray table) (touching tray table)).

The training data is derived from a large set of object con-
figurations; an example is shown in Figure 1. Each geomet-
ric configuration is labelled with all the predicates true in
the scene, so for example the figure is a positive example for
(above cupl tray) and a negative example for (above
cupl cup2). We can then derive the 17-dimensional rela-
tionship between the objects for each predicate and use these
to train a KDE for each predicate.

Probability model

Given a set of n example geometric states G that a pred-
icate holds in, and a set of n~ geometric states G~ in which
the same predicate does not hold, we model the probability
as:

Pr(G|C) @
Pr(G|C) 4+ Pr(G|-C)’
where Pr(G|C) and Pr(G|—=C) are the multivariate KDEs

of the positive and negative datasets for C respectively, eval-
uated at G:

Pr(C|G) =

nt

]. 2 2
Pr(G|C) = FZQ—HG?—CEH /h (5)
i=1
1 & PP
Pr(G|-C) = nf_ze*HGi —ellF/h7 (6)
i=1

where h is the kernel bandwidth. We use the FigTree Fast
Gaussian Transform library (Morariu et al. 2008) for effi-
cient KDE implementation.

Figure 2 shows an example of the probability model for
a one dimensional case. In areas of negative examples the
function is near zero and in areas of positive examples it
is near 1. In the boundary between positive and negative
examples the function varies smoothly with a smoothness
dependent upon the width of the Gaussian example points
either side. This allows numerical hill-climbing techniques
as described below. Figure 3 shows a geometric state and the
learned distributions for a variety of predicates and symbolic
states.
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Figure 2: 1D example of a probability distribution modelled
using equation 4.

() (d

Figure 3: Probability distributions superimposed on a geo-
metric state. (a) Tray and two cups. (b) Probability of a cup
above the table. (c) Probability of a cup above the table and
not touching other cups. (d) Probability of a cup above and
touching other cup.

Using the learned mapping

The learned probability distribution can now be used to gen-
erate the initial state for the symbolic planner by classify a
geometric state into a symbolic state, and to generate a geo-
metric plan from a symbolic plan by translating the symbolic
states encountered in the plan into geometric states.

Mapping from geometric states to symbolic is straightfor-
ward: we simply threshold the class probability according to
the KDE at some sensible value. In practice we use values
close to one.

The more interesting case is generating geometric states
matching desired symbolic configurations. For a single
predicate goal we achieve this by maximising the 17D prob-
ability function, keeping the 6 elements corresponding to ob-
ject size constant. The smooth and continuous nature of the
function allows maximisation to be carried out numerically
using hill climbing from an initial estimate selected from
GT. We found the Broyden-Fletcher-Goldfarb-Shanno op-
timisation method performs suitably for this purpose.
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When considering more than one predicate using Equa-
tion 1, the dimensionality of the space increases, but not in a
simple way. If an object appears in more than one predicate,
the size and rotation of the object should only appear in the
space once. Similarly, if the state contains a translation from
object A to B, and from B to C, the translation from A to C
is determined, so should not be seperately optimised. We
avoid these problems by optimising over the absolute poses
of all non-fixed objects in a single step, rather than optimis-
ing each object’s relative pose.

As an example consider using the approach to find a geo-
metric state for the 5 clause symbolic state (and (above
cupl tray) (touching cupl tray) (above cup?2
tray) (touching cup?2 tray) (not (touching cupl
cup2)) ). If each predicate was treated independently then
the search space would contain 85 dimensions. Removing
the repeated dimensions for the orientations of objects ap-
pearing in the state multiple times, and setting the sizes of
all the objects that the state concerns constant leaves a search
space of 27D. However, optimising directly in this space
could lead to an impossible geometric state as the space con-
tains a loop of transformations: if a transformation between
cupl and the tray is found, and a transformation between
cup2 and the tray is found, then the transformation between
cupl and cup?2 has to be fixed and can not be found inde-
pendently. Hence we optimise over the rotation and absolute
position of each object, so for the three objects in the exam-
ple we have 21 dimensions. We then evaluate a solution by
generating the 17D vector for each predicate and computing
the product of the KDEs as in Equation 1.

Backtracking

When the planner backtracks we need to ensure that the geo-
metric states it generates are sufficiently different from those
already generated. The use of a KDE representation lends it-
self to a straight forward solution: At each backtrack j we
generate a masking function for each predicate. The mask-
ing function consists of a Gaussian centred on the geomet-
ric state found by hill-climbing for that predicate. For each
point in the optimisation space we then subtract the value of
the masking Gaussian that is largest at that point for each
specific predicate. Let u; be the geometric state found for
predicate C;. To mask the predicate for backtracking we
create a Gaussian with mean p; and covariance matrix );:

KJC (G) = e 3(G—n)T QTN (G—pi) 7)
We then modify Equation 1 as follows:
Pr(S|G) = HPr (Cy]@) — mach (G) (8)

This forces the hill climbing to avoid masked geometric
states. The set of masked states G™** (one set per pred-
icate) expands as candidate states are generated, so if we
backtrack multiple times, we end up with multiple masks
for each predicate. Varying the covariance matrix (); varies
the masked area around the predicate. In the experiments
reported here we are using a covariance selected to mask an
area about the size of the object being moved.



4 Related Work

Typical manipulation planning systems (see Chapter Seven
of (LaValle 2006) for an overview) treat planning as a com-
pletely geometric problem of searching in the set of reach-
able geometric configurations to reach a goal. However, this
requires the goal to be completely specified geometrically,
which means that the kinds of alternative ways of achieving
a symbolic goal that we can generate are impossible. A re-
cent alternative (Mdsenlechner and Beetz 2009) is to specify
goals symbolically but evaluate the plan geometrically. The
idea is to use a high-fidelity physics simulation to predict
the effects of actions and a hand-built mapping from geo-
metric to symbolic states. However, this is likely to be very
expensive for complex plans.

More closely related to our approach is aSyMov (Gravot,
Cambon, and Alami 2003), which solves tasks very simi-
lar to ours using a planner that combines a symbolic plan-
ner with a probabilistic roadmap (Siméon, Laumond, and
Nissoux 2000) for geometric planning. The planning algo-
rithm is broadly similar to ours, using a mixture of sym-
bolic and geometric planning, although in a fully hybrid ap-
proach. However, the approach appears to rely on the fact
that the mapping between symbolic and geometric states is
much simpler: There is only a single predicate “on” that
corresponds to a geometric state, and they restrict the ob-
jects to certain fixed world positions so the translation from
symbolic to geometric states is trivial.

Other recent fully hybrid approaches include (Dornhege
et al. 2012) and (Gregory et al. 2012). In both approaches
the symbolic planning language includes calls to specialised
solvers that check preconditions of actions or calculate their
effects. For a manipulation domain, as described in (Dorn-
hege et al. 2009) the RRT planner would be used in this
way. In both cases it’s unclear if it would be possible in a
general way to use the specialised solvers with our learned
geometric predicates.

Another example is (Kaelbling and Lozano-Pérez 2011),
which does full hybrid planning, but to reduce the complex-
ity of the problem, uses a hierarchical planner and inter-
leaves planning with execution. As with the above approach,
it again only seems to use a single symbolic predicate for a
geometric concept. Their mapping from symbolic to geo-
metric states is handled by geometric suggesters which are
hand-built functions for generating geometric states. Similar
approaches are found in (Wolfe, Marthi, and Russell 2010)
and (Karlsson et al. 2012) which both use a hierarchical task
network planner to constrain the search space.

The idea of learning the mapping from geometric to sym-
bolic state has been considered before in the literature. How-
ever, what sets our approach apart from others is the idea
of using the learned mapping in reverse, generating geome-
try from symbolic description to enable symbolic planning
operators to be utilised to produce geometric effects. The
closest work in this area is (Sjoo and Jensfelt 2011), which
learns to classify object relationships by generating samples
in simulation. While classification of several relations is
successful, they are only interested in learning the mapping
from geometric to symbolic states; using the mapping in re-
verse is not considered. Furthermore, the geometric state
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is described by a 93 dimensional feature vector compris-
ing of contact points, surface normals and object poses, and
the symbolic object relationships are learned from this fea-
ture vector. The high dimensionality means that far more
training data is required to learn a good mapping and makes
adapting their approach to compute the reverse mapping im-
practical. A similar approach is presented in (Rosman and
Ramamoorthy 2011). Again, contact points are used, this
time between segmented point clouds. However, the use of
K-Nearest neighbours for classification again prevents using
the classifier in reverse.

5 Experiments and Results

To test our system, example geometric states of two cups and
a tray were used for the geometric-symbolic mapping. Each
state was labelled to indicate whether one cup was ‘above’
and/or ‘touching’ the tray or the other cup. The data set for
the ‘above’ predicate comprised of 328 positive and 1672
negative examples, and the data set for the ‘touching’ predi-
cate comprised of 384 positive and 1872 negative examples.
The samples were then used to create the 17 dimensional
probability distribution detailed in Section 3. Examples of
the z and y dimensions of the distribution with z 3cm above
the tray are shown in Figure 3. Each point on the plane is
coloured according to the probability that a cup placed at
that (X,Y,Z) position meets the specific symbolic state: sub
image (b) shows the probability that the position is above the
tray; (c) above the tray and not touching either other cup; (c)
above and touching the cup on the right. The bandwidth
parameter (variance of the Gaussians) to the Kernel density
estimation was selected manually. Larger values make the
boundary transitions slower, while low values lead to abrupt
transitions that are more difficult for the optimisation.

Learned Mappings

The forward mapping To evaluate the predicate classi-
fiers in the forward direction we carried out leave-one-out
cross-validation for each predicate. Carrying out the cross-
validation for several classification thresholds suggested an
optimum value of about 0.8. We found that with signifi-
cantly less training samples than the already small number
that we demonstrate with here, the classification results in
large numbers of false negatives. The resulting confusion
matrices when using a threshold of 0.8 were as follows:

Predicted
above | not above
Tzs above 328 0
< | not above 24 1648
Predicted
touching | not touching
Tg touching 376 8
not touching 24 1848
Figure 4 illustrates the forward mapping by showing four

simulated geometric configurations. For each of them, we
compute the probability of a number of symbolic predicates,
with the results in Table 1. From the table it can be seen that



Table 1: Classification probabilities for the states shown in
Figure 4

State [ @ ] ® [ © [ @
(above cup tray) 0.999 | 1.000 | 1.000 | 0.999
(touching cup tray) | 0.971 | 0.000 | 0.001 | 0.643
(above cup? tray) 0.999 | 0.016 | 0.999 | 0.999
(touching cup?2 tray) || 0.974 | 0.000 | 0.962 | 0.962
(touching cup cup2) || 0.038 | 0.000 | 0.105 | 0.925
(above cup cup2) 0.009 | 0.000 | 0.983 | 0.970

(d)

Figure 4: The geometric states tested in Table 1

even with a higher threshold in the region of 0.9 these states
are classified correctly. Although the geometric configura-
tions differ from the examples that the system was trained
with, the choice of representation for the probability distri-
bution means that states falling between two positive exam-
ples are awarded near 1 probability. The smooth nature of
the probability estimate can be further seen in example (d)
(one cup stacked inside another) when deciding if the upper
cup is touching the tray or not. A probability of 0.643 indi-
cates that it is close to the tray, but not as close as the cup
below which is touching with probability greater than 0.9.

The reverse mapping Figure 5 shows four geometric con-
figurations automatically generated to match the compound
states listed in Table 2. States (b) and (¢) demonstrate the
result of combining the individual predicate distributions.
Trying to find a geometric state that has multiple cups on
the tray, but not touching each other results in a process
somewhat like a spring-and-mass system during hill climb-
ing where the cups are pushing each other apart while the
tray is pulling them towards it. The end configuration is the
cups on the tray and as far apart from each other as possible.
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Table 2: Classification probabilities for the states shown in
Figure 5

[ Goal state supplied

(and (above cup tray) (touching cup tray))
(and (above cup tray) (touching cup tray)
(above cup2 tray) (touching cup2 tray) (not
(touching cup cup2)))

(and (above cup tray) (touching cup tray)
(above cup? tray) (touching cup?2 tray) (above
cup3 tray) (touching cup3 tray) (not (touch-
ing cup cup2)) (not (touching cup cup3)) (not
(touching cup2 cup3)))

(and (above cup tray) (touching cup tray)
(above cup? tray) (touching cup?2 tray) (above
cup3 cup2) (touching cup3 cup2) (not (touch-
ing cup cup2)))

| Prob.
0.989

(a)
(b)

0.977

(© 0.941

0.887

Figure 5: Geometric states generated for the symbolic states
give in Table 2.

Robotic Manipulation Planning

To demonstrate the applicability our planning approach in a
real world robotics context we used the learned predicates
and planning system to generate plans for execution by a
robot manipulator. We constructed a planning domain de-
scription in PDDL (McDermott et al. 1998) comprising ac-
tions to pick objects and place them on other objects. For
each symbolic action we created a chunk of robot code to
perform the action, with additional parameters for the geo-
metric positions. The actions make calls to the OpenRAVE
RRT path-planner to move the 6 DOF arm between poses.
We tested our approach using the Fast Down-
ward (Helmert 2006) symbolic planner with the initial
state being four cups and a tray on a table, and the goal of
having no cups on the table or held. The planner generated
the sequence of actions necessary to arrange the cups and
turned the symbolic plan into a full geometric plan ready for
executing on the robot. The plan was executed on the robot



Figure 6: The test planning scenario on the Kuka arm. (a) The initial configuration. (b) Ready to grasp a cup. (c) Cup above

table. (d) Cup above another cup.

(a) (b) (c
()] (e) ®

Figure 7: The tray states for evaluating the planner. The
objects on the tray are not moveable by the robot.

)

as shown in Fig. 6!. The robot was an industrial arm (Kuka
KR5-Sixx R850) with a two finger gripper (RoadNarrows
Graboid). Object localisation used a Kinect RGBD camera.
The point cloud was segmented into clusters above the table
plane, with each cluster centroid giving the location of an
object. The transformation from Kinect frame to robot
frame was calculated using a calibration board at a known
location in the robot frame.

"Video of execution available at: http://goo.gl/Qrm6B
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We then tested our planning system in a simulation of the
Justin robot (Fuchs et al. 2009), again using OpenRAVE as
the RRT planner, to evaluate both the symbolic and the geo-
metric backtracking. Twenty-four scenarios were evaluated:
six configurations of the tray with unmoveable objects on it
(see Figure 7), each with between one and four cups next to
the tray on the table. The goal each time was that none of the
cups be touching the table. The results are shown in Table 3.

The results show that typically only one or two geometric
backtracks are necessary even on a cluttered tray. This is be-
cause the masking of the predicates quickly pushes the hill
climbing away from occupied areas. Masking each predi-
cate individually rather than simply using one mask for the
complete state helps too. If it is found that one cup does
not fit in a given location on the tray then this information
is stored at the predicate level and prevents the system from
trying to put any other cups in that location.

Table 4 shows how the total time is split between symbolic
planning, geometry generation and path planning, with each
time being cumulative over all the times that procedure was
run (so in four cups on tray (d), the symbolic planner and ge-
ometry generation ran twice each, with the sum of the times
reported). The efficiency of the approach hinges on the num-
ber of geometric backtracks, which is why a fully hybrid
approach that may generate geometric states that aren’t on
the way to the goal appears unlikely to be efficient. As the
table shows, time to generate a geometric state varies from



Table 3: Resulting states and backtrack counts when creat-
ing plans to place different numbers of cups onto the tray
states shown in Figure 7. In all cases except placing four
cups in configurations (d) and (f) all the cups were placed
individually on the tray. For four cups in (d) one cup was
nested in another; in (f) the three reported results correspond
to three different outcomes: In F; the planner failed to return
aplan, in Fs it returned a plan with all four cups individually
on the tray, while in F3 it nested one cup.

Tray | No. of | Geometric Symbolic Total

State | Cups | Backtracks | Backtracks | Time (s)
A 1 0 0 6.01
A 2 0 0 16.33
A 3 0 0 27.51
A 4 0 0 46.03
B 1 1 0 11.17
B 2 0 0 15.27
B 3 0 0 28.46
B 4 0 0 49.84
C 1 0 0 5.95
C 2 1 0 30.67
C 3 1 0 55.29
C 4 1 0 91.41
D 1 0 0 5.87
D 2 2 0 54.39
D 3 1 0 70.35
D 4 6 1 246.26
E 1 0 0 6.27
E 2 1 0 36.35
E 3 1 0 61.47
E 4 1 0 124.73
F 1 0 0 6.40
F 2 2 0 44.37
F 3 1 0 59.13
Fq 4 6 4 528.60
Fa 4 1 0 110.85
F3 4 1 1 270.08

3.5 seconds for a simple scenario to over 100 seconds for
placing four cups on a cluttered tray. However, in the lat-
ter case this time consists of multiple gradient ascents since
many attempts do not lead to a maximum of sufficiently high
probability, so gradient ascent is randomly restarted.

Symbolic backtracking occurred when trying to place four
cups on tray (d) and (f). For tray (d), geometric backtracking
six times failed to find a configuration for the first symbolic
plan. Symbolic backtracking generated a new plan to place
three cups on the tray and stack the fourth. A geometry was
then found without further backtracking. For tray (f), dif-
ferent runs produced different outcomes, with 40% (F; in
Table 3) failing to find a plan despite generating five differ-
ent symbolic plans (four of them variations on stacking one
of the cups in another), 10% finding a solution with all four
cups squeezed onto the tray (Fs), and 50% of runs symboli-
cally backtracking to find a plan with a stacked cup (F3).
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Table 4: Times in seconds for each stage in plan generation
for selected problems from Table 3.

Tray | No. of | Sym. | Geom. | Path | Total

State | Cups | Plan | Gen. | Plan | Time
A 0.02 3.50 2.49 6.01
B 1 0.02 6.20 456 | 11.17
D 1 0.02 3.49 2.36 5.87
D 2 0.04 | 40.09 | 13.46 | 54.39
D 4 0.92 | 210.60 | 34.74 | 246.26

6 Discussion and Future Work

The combination of geometric and symbolic planning makes
manipulation planning a difficult task. In this paper we have
attempted to show that by planning purely symbolically,
then translating the plan to a geometric one we can generate
plans more efficiently than by using a complete hybrid plan-
ner. Since the computation time is far larger for generating
geometric states and robot motions, minimising the number
of times this needs to be done is critical to keeping the over-
all computation time down. Performing the geometric trans-
lation backwards through the symbolic plan makes this even
more efficient by optimising the positions of as many objects
as possible simultaneously, thus greatly reducing the num-
ber of optimisations that must be performed—even though
the optimisation is in a higher dimensional space, this is less
significant than doing repeated searches with backtracking.

The approach we describe is not complete—there are
solvable problems for which it will not find a plan. The
simplest example of these is if there is a movable object that
completely blocks the tray in the initial state. In this case the
planner will generate a plan to place the cups on the tray, that
plan will fail because no geometric state can be found, but
symbolic backtracking will never generate a plan to move
the object because from the symbolic planner’s perspective
the object is irrelevant. While we are choosing to sacrifice
completeness for efficiency, we are nevertheless considering
ways to solve this problem. One possibility is to allow the
geometric path generation to change the symbolic problem
to report obstacles before triggering backtracking.

The learned mapping between the symbolic and geomet-
ric states has a number of important properties from a plan-
ning perspective. Firstly, it means the planner generates
“natural” geometric positions for the objects, which helps
capture constraints that may not be explicit in the domain.
Also, it can be easily extended to additional geometric pred-
icates in more complex domains. In fact, we are currently
investigating whether we can automatically detect properties
of human-built robot programs that might be useful predi-
cates for planning. An example of this might be the rela-
tionship between two cups when stacking one cup inside the
other—often the bounding boxes should intersect to nest the
cups, rather than releasing the top cup when it is above and
touching the other. Similarly, unsupervised learning from
arm trajectories might yield constraints such as that cups
should be kept open-end-up when moving them.
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