Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

Automated Agent Decomposition for Classical Planning

Matthew Crosby
School of Informatics
University of Edinburgh
Edinburgh EH8 9AB, UK
m.crosby @ed.ac.uk

Abstract

Many real-world planning domains, including those used in
common benchmark problems, are based on multiagent sce-
narios. It has long been recognised that breaking down such
problems into sub-problems for individual agents may help
reduce overall planning complexity. This kind of approach
is especially effective in domains where interaction between
agents is limited.

In this paper we present a fully centralised, offline, sequen-
tial, total-order planning algorithm for solving classical plan-
ning problems based on this idea. This algorithm consists of
an automated decomposition process and a heuristic search
method designed specifically for decomposed domains. The
decomposition method is part of a preprocessing step and can
be used to determine the “multiagent nature” of a planning
problem prior to actual plan search. The heuristic search strat-
egy is shown to effectively exploit any decompositions that
are found and performs significantly better than current ap-
proaches on loosely coupled domains.

1 Introduction

Recent work has shown how the multiagent structure inher-
ent to certain planning domains can be exploited to improve
planning times (Nissim, Brafman, and Domshlak 2010;
Nissim, Apsel, and Brafman 2012). These approaches divide
planning domains into sub-problems such that each agent
can use only a subset of the available actions. This process
creates a new problem, one of co-ordination among agents,
which usually dominates search time. Therefore, the multi-
agent planning literature tends to focus on loosely coupled
domains with minimal interaction between agents.

Most multiagent planning approaches require agents to be
specified in advance. A human expert must work out the de-
composition and also has to be familiar with a particular
multiagent extension (beyond, e.g., standard PDDL). This
raises the following question: Can we create an automated
process to find multiagent decompositions of classical plan-
ning problems? In this paper we address this question, along
with its natural follow-up: Can we exploit the structure af-
forded by such decompositions to develop faster planning
algorithms?

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Michael Rovatsos
School of Informatics
University of Edinburgh
Edinburgh EH8 9AB, UK
mrovatso@inf.ed.ac.uk

46

Ronald P. A. Petrick
School of Informatics
University of Edinburgh
Edinburgh EH8 9AB, UK
rpetrick @inf.ed.ac.uk

In answer to the first question we present a novel, fully
automated process for calculating agent decompositions of
STRIPS-style planning problems. The decomposition algo-
rithm utilises the multi-valued planning task (MPT) repre-
sentation and causal graph generated by the Fast Downward
planning system (Helmert 2006). By analysing the causal
graph, it finds sets of variables with limited interactions be-
tween them, that form the basis of a decomposition. This
analysis is performed as part of a static preprocessing phase
and does not require state-space or plan-space search. As not
all domains have a useful decomposition, the algorithm will
sometimes report that no decomposition can be found and a
single-agent search method can then be applied.

As we are mainly interested in fast, scalable plan compu-
tation, we focus on benchmark domains from the Interna-
tional Planning Competition (IPC). Here, we find domains
which have very obvious multiagent decompositions (e.g.
Satellites, Rovers) with little or no interaction between the
agents. At the other end of the spectrum are domains for
which no sensible decomposition exists (e.g. Sokoban', Vis-
itall). However, there is also a middle ground where a de-
composition can be found, but interaction between the sub-
parts remains (e.g. Elevators, Airport). These constitute the
most interesting cases for our method.

In answer to the second question, we propose a heuris-
tic search algorithm which is based on the well-known “no
delete lists” relaxation. This algorithm uses a novel approach
to reduce the complexity of agent interactions. We present
the results of this algorithm on the IPC domains and com-
pare it to performant state-of-the-art planners, showing that
it performs significantly better on a broad range of domains.

The contribution of this paper is twofold: Firstly, we
present a fully automated decomposition algorithm that can
be used to break down planning domains into subproblems
with limited interaction and show that around a third of all
IPC domains have such a decomposition. Secondly, we in-
troduce a planning algorithm that exploits agent decomposi-
tions, and show that it greatly improves planning times.

The remainder of the paper is structured as follows: The
next section discusses the related literature and Section 3 in-

'Tt is possible to modify Sokoban domains to be multiagent by
adding additional ‘player’ objects. However, these are not present
in the standard IPC problem set.

troduces an example problem that we will refer to through-
out the paper. Section 4 introduces the required background
from the literature and Section 5 formalises our framework.
Sections 6 and 7 introduce algorithms for decomposition
and search, respectively. Together, these form our planner
(ADP). We present an empirical evaluation of our work in
Section 8§ and conclude with Section 9.

2 Related Work

The literature contains many different approaches related to
multiagent planning. These include plan coordination (Cox
and Durfee 2005) and plan merging/revision (Tonino et al.
2002) that assume post-planning coordination among indi-
vidual agents, and also partial-order and/or concurrent plan-
ning (Yang, Nau, and Hendler 1992; Boutilier and Brafman
2001) and interleaved planning and execution (Brenner and
Nebel 2009). In contrast, we follow the tradition of classical
planning, i.e. we only consider centralised, offline, sequen-
tial, total-order planning in STRIPS-style planning domains.

The idea of using decompositions dates back to Lansky’s
early work (Lansky 1991), which proposed decomposing
a domain into several potentially overlapping local search
spaces (regions), and applying a hierarchical constraint sat-
isfaction technique to combine them. However, this algo-
rithm requires the user to provide explicit meta-knowledge
about these regions in advance.

The idea of exploiting loose coupling among agents was
further developed and refined by Brafman and Domshlak
(2008). They investigate how to deal with “coordination
points” in multiagent planning problems based on the dis-
tinction between public and private fluents. We build on this
distinction in our work. Nissim et al’s (2010) distributed
multiagent planning algorithm also exploits loose coupling,
solving a distributed CSP for those parts of the global plan
where individual agents’ contributions overlap.

While these approaches provide ways of analysing a do-
main in terms of how closely agents are coupled, this analy-
sis can only be performed if the specification of the problems
involves a set of agents from the outset. Our approach lifts
this assumption by creating agents on demand.

In a similar vein, Nissim et al (Nissim, Apsel, and Braf-
man 2012) recently presented a similar automated method
for partitioning planning domains. In their work, domains
are decomposed based on a symmetry score which essen-
tially maximises the number of internal actions (actions that
do not affect other agents) each agent can perform. This is
a rough approximation of how well decomposed a domain
is based on the number of actions that can be pruned during
search. They leave more accurate decomposition finding as
an open challenge - one that we hope we contribute to.

In contrast to our heuristic approach they apply an opti-
mal planning algorithm to the decomposed domains. Their
algorithm has similarities with our search method that give
insights into the fundamental properties of multiagent plan-
ning that allow for efficient search. Specifically, we share
their idea to focus on single subgoals at a time and only look
at subsequent actions that achieve that subgoal.

There are many other multiagent plan search algorithms
in the literature that relate to the one we present: Ephrati

47

y' z'
C

x[— v =z
BB

Figure 1: An example problem. The larger lower case letters
represent robots that need to report to the starred square. The
smaller lower case letters label the locations.

and Rosenschein (1993) propose a mechanism where each
agent votes for or against the next joint action in a multi-
agent plan based on whether local constraints are satisfied
by a proposed state transition. Brafman et al (2009) apply
constraint satisfaction techniques on so-called “agent inter-
action graphs” that specify which preconditions are needed
from other agents for every action an agent intends to per-
form. Dimopoulos et al (2012) propose a multiagent exten-
sion of SATPLAN which models assistive actions through
“external” preconditions that agents assume to be satisfied
by other agents when needed. Our approach differs from
these as it primarily aims at finding a valid plan fast rather
than optimising against other criteria (e.g. game-theoretic
stability, social welfare maximisation).

3 Example

As an example, consider a simple grid-world domain in
which robots must report to a particular location without
bumping into each other. A particular instance of this do-
main is shown in Figure 1. There are three robots (a, b,
c) which must all report to the starred location. Robots can
move to any orthogonal adjacent empty grid square and
report at the intended destination. For example, if robot
a ia at location x in can perform the report action to achieve
the goal report_a.

This domain has a very obvious agent decomposition. If a
human was asked to solve the problem, they would probably
consider each robot’s possible plans separately, and work out
how to coordinate them. It is natural to attempt to find a plan
for a to get to the goal, then move a out of the way. The next
step is to find a plan for b to get to the goal and move it out
of the way. Finally, a plan is found for ¢ to reach the goal.
Standard single-agent heuristics such as the no delete-lists
heuristic will consider moving any robot closer to the goal
an equally good action.

Our approach attempts to follow the human reasoning
process as closely as possible. Firstly, our automated decom-
position algorithm correctly separates the robots and leaves
the grid-world itself as part of the public environment. Sec-
ondly, our planning algorithm proceeds to solve each indi-
vidual robot’s problem separately. This mimics the human
approach outlined above including adding subgoals to move
agents out of the way when necessary.

4 Background

The input for our planning algorithm is the Multi-valued
Planning Task (MPT) (Edelkamp and Helmert 1999) rep-
resentation calculated by the Fast Downward planner (FD)
(Helmert 2006). This means we can solve problems writ-
ten in propositional PDDL2.2, i.e. STRIPS domains with

arbitrary propositional formulae in preconditions and goal
conditions, and conditional as well as universally quantified
axioms and effects. For ease of presentation we assume a re-
duced form of MPTs without axioms and with conditional
effects compiled away.

Definition 1 (Multi-valued planning tasks (MPTs)) A
(reduced) multi-valued planning task (MPT) is a 4-tuple
I =(V,I,G, A) where:

e Vs a finite set of state variables v, each with an associ-
ated finite domain D,,,

e [is a full variable assignment over V' called the initial
state,

e G is a partial variable assignment over V called the goal,
and

e A is a finite set of (MPT) actions over V.

A partial (full) variable assignment is a function f from
V' C V (V' = V) such that f(v) € D, forallv € V.
An action {pre, eff) consists of a partial variable assign-
ment pre over V called its precondition, and a finite set of
effects eff. Each effect contains a variable v called the af-
fected variable, and d € D,, which represents the new value
for v. We use pre(a) to refer to the set of all variables that
are in an action’s precondition and eff (a) to refer to the set
of all variables belong to an effects of a.

Although different MPT encodings will lead to different
agent decompositions of the problem, we do not discuss the
details of their calculation here (see (Edelkamp and Helmert
1999)). We believe that, as long as the provided encoding at-
tempts to minimise the number of variables over some sen-
sible metric, it will be suitable for finding decompositions.

For our example problem, FD generates the following
variables:

- Three variables that each represent the location of one of
the robots (e.g. a_-loc), each of which has five possible
values,

- Three variables that represent whether or not each robot
has reported (e.g. a_rep), each of which has two possible
values,

- Five variables for whether or not each location is free (e.g.
x_free), each of which has two possible values.

Along with the MPT representation of the problem, we also
utilise the causal graph that FD creates. Causal graphs en-
code dependencies among variables based on the available
actions.

Definition 2 (Causal graphs) Let 11 be a multi-valued
planning task with variable set V. The causal graph of II,
CG(IT) is the directed graph with vertex set V containing
an arc (v,v") iff v # v and the following condition holds:

e Transition condition There is an action that can affect the
value of v’ which requires a value for v in its precondition.

It is a fairly simple procedure to generate the causal graph
from an MPT problem. Figure 2 shows the causal graph gen-
erated for our example problem.

48

Figure 2: The causal graph for the problem in Figure 1.
5 Agent Decompositions

A good multiagent decomposition should split the domain so
that as much as possible can be achieved independently and
the amount of coordination between agents is minimised.
We achieve this by finding sets of variables that can rep-
resent the internal states of agents. These internal variables
cannot be changed by and are not required (as preconditions)
by any other agents in the domain.

Even in easily decomposable domains there will be vari-
ables that are not internal to any agent. These are public vari-
ables and represent the environment that the agents are op-
erating in. In our example domain, the variables that encode
whether or not a particular location is free are public.

Definition 3 (Variable decomposition) A variable decom-
position of an MPT I = (V,I,G,A) is a set & =
{é1,...,¢n} along with a set P = V\|J ® such that either:

e & is a partition of V (and therefore P = (), or
e & U {P} is a partition of V.

Informally, a variable decomposition assigns a set of vari-
ables to each agent and a set of public variables. The vari-
able sets cannot overlap. In practice there will be many pub-
lic variables left over. For example, in the IPC Rovers do-
main (problem 20) there are 7 agents found (one for each
rover object in the problem), 41 variables in total amongst
the agent sets and 49 public variables. Even with this many
public variables, we are able to still assign most actions to a
single agent.

Definition 4 (Action Classification) For an MPT 11 =
(V,1,G, A), variable decomposition ®, agent i, and action
a€ A:
We call a an internal action of ¢ iff
- Jv € pre(a) : v € ¢; and
-vepre(a) > v e @ UP.
We call a a joint action of ¢ iff
- Jv € pre(a) :
- ' € pre(a) :

v € ¢; and

v E ¢j withi # j.

Finally, we call a a public action iff
-v€Epre(a) >vEP

We use Act; to denote the set of all actions that are either
internal or joint actions of 7.

The set of internal actions for an agent is the set of all
actions that require as preconditions at least one variable be-
longing to that agent’s variable set and no variables belong-
ing to any other agent. Joint actions are actions that require
preconditions from multiple agents. These are generally the
hardest to deal with in multiagent planning. Public actions
are all those that only deal with environment variables. For
the Rovers domain mentioned above we have 2004 internal
actions, only 6 shared public actions, and no joint actions.

Definition 5 (Agent Variable Decomposition) We call a
variable decomposition ® of MPT 11 = (V,I,G,A) an
Agent Variable Decomposition (AVD) or agent decomposi-
tion for short if |®| > 2, there are no joint actions, and for
all agents i and actions a € A:

Jv € eff(a) v € ¢y = a € Act;.
or equivalently:
Jv € eff(a) : v € ¢y — I €pre(a) : v € ¢;

In other words, only actions belonging to a certain agents
action set can affect the variables belonging to that agent.
This is what we mean by an agent’s variables being inter-
nal — there is no way for another agent to change them and
they are never required as preconditions for another agent’s
action. Interaction occurs only through public variables.

The agent decomposition found for our example domain
has each robot’s location and whether or not it has reported
as internal variables for that agent. Variables describing
whether each grid-square is free or not are considered public
variables common to all agents.

Finally, to help with classifying our decompositions we
make the following further distinction:

Definition 6 (Influenced and Influencing Actions) An ac-
tion a € A is influenced if:

Jv € pre(a) :v € P
An action a € A is influencing if:
Jveeff(a):veP

The easiest actions to deal with are internal actions that are
neither influenced or influencing: Influenced actions may re-
quire another agent to change the world before they can be
used, influencing actions may change what other agents can
achieve in the world. This means that internal actions can
be either influenced, influencing, or both. Public actions are
necessarily both influenced and influencing.

In our example domain, under the obvious decomposition,
each report action is internal and neither influenced or in-
fluencing. Each move action is internal and both influenced
and influencing because it relies on and changes the pub-
lic free variables. An action that toggles whether or not a
particular grid square is free would be a public action.

6 Agent Decomposition Algorithm

The agent decomposition-based planner (ADP) we propose
has two parts: In a first step, it calculates an agent decompo-
sition for the given MPT. This does not require plan search
and is based on a static analysis of the causal graph created
by FD. In a second step, it uses the decomposition of the

49

Find Possible
Agents

Extend Agent
Sets

Merge Agent
Sets

»
'

.

Figure 3: Overview of the agent decomposition algorithm

Algorithm 1: Agent Decomposition Algorithm
Input : MPTII=(V,I,G,A),® =10

1) Find Possible Agents
foreach Variable v € V do
ifv(v',v) € CG : (v,v') € CG and
A(v,v") € CG: (v"",v) ¢ CG then
| @+ dU{v}
if |®| < 2 then
| return

repeat
2) Extend Agent Sets
foreach Agent set ¢; = {v1,...,v,} € ©do
foreach vy € V : v; is an internal successor of an
element of ¢; do
‘ (]51 +— (Z)Z U vg

3) Merge Agent Sets

foreach Pair of agent sets ¢;, p; € © do

if ¢; N ¢; # 0V 3 a joint action of both i and j then
| Merge ¢; and ¢; into one agent

if |®| < 2 then
| return(

until ® is unchanged

return ¢

problem to search for a plan. As not all domains are multi-
agent the first step may return that no decomposition can be
found. In this case, our search algorithm defaults to a stan-
dard single-agent algorithm.

We discuss the decomposition algorithm first, which is
split into three parts as shown schematically in Figure 3. The
first part finds variables that are candidates to become mem-
bers of an agent set. The second part of the algorithm extends
the found nodes to their neighbours maximising the number
of internal variables for each agent. The third part of the al-
gorithm combines agents to remove joint actions and merge
agents with overlapping variable sets. If the second and third
parts change the decomposition then they are repeated. Any
leftover variables belong to the public variables set.

1) Find Possible Agents This part of the algorithm is
shown at the top of Algorithm 1. Looking back at the causal

Figure 4: The causal graph for our example problem with
cycles removed

graph definition we can see that root nodes in the causal
graph (if they exist) have the property that they do not de-
pend on the value of other variables. Taking each root node
of a causal graph as a separate agent set always creates an
agent decomposition when there are two or more root nodes.
However, as can be seen from Figure 2, even in very simple
domains, it may be that no root nodes exist.

If there are no root nodes in the causal graph then it must
contain cycles. Cycles of dependencies in causal graphs are
a common complication for many planning approaches. Fast
Downward for example cannot deal directly with cycles, and
employs a heuristic method to remove certain edges to make
the causal graph acyclic. In our case, we only need to remove
cycles of order 2 from the graph to ensure that all possible
agents become root nodes. The causal graph of our example
problem with 2-way cycles removed is shown in Figure 4.

The algorithm checks each variable to see if it would be a
root node once all 2-way cycles are removed from the graph.
If that variable has at least one successor left (ie. it is not
completely disconnected from the rest of the graph) then it is
added to ® as a separate agent. If no root nodes are found by
this method then there is no possible agent decomposition.

2) Extend Agent Sets This part of the algorithm extends
the agent sets we have so far to make them as large as possi-
ble.

Definition 7 (Internal Successors) We call a variable v an
internal successor of variable set V' if v is a successor of a
member of V in the causal graph and all predecessors of v
arein'V.

The operation of expanding the agent sets like this preserves
the agent variable decomposition property. However, at this
stage of the algorithm it is still possible to have a decompo-
sition that is not an agent decomposition.

3) Merge Agent Sets The previous part of the algorithm
can create agents that share variables. The first merging step
combines those agents into one. It is also possible that there
are joint actions under our decomposition. The second merg-
ing operation combines agents that share joint actions.

Theorem 6.1 The algorithm presented in this section for
finding an agent decomposition given an MPT is both sound
and complete.

Sketch of Proof The proof of this uses the following steps
and relies heavily on the link between the transition condi-
tion definition for causal graphs and the AVD property. In
the case where all variables found in Part 1 are root nodes in
the original graph then Part 1 produces an agent decomposi-
tion and parts 2 and 3 preserve this. In the other case for any
pair of sets that violate the agent decomposition property it
can be shown that there must be a path between them and
that they will be merged in Part 3. Finally, when an agent
decomposition exists it can be shown that there must be at
least two variables found in Part 1 that will not be merged in
Part 3 of the algorithm.

Example In our example domain, ignoring 2-
way cycles results in the graph shown in Figure 4.
The variables corresponding to robot locations are

50

Input AVD of
MPT

Generate
Goal Relaxed Extract Distribute
Distribution Planning Subgoals Goals
Graphs
Plan for
Individual Agent with
Search Most Layer 1
Goals

Output plan

Figure 5: Overview of the search component of ADP.

root nodes of this graph and Part 1 creates the set
{{a-loc},{b_loc},{c_loc}}. Part 2 extends the agent
sets to {{a_loc, a.rep},...,{c.loc, c_rep}}. The
third part does not alter the decomposition. The remaining
variables are public variables for the domain.

7 Plan Synthesis Algorithm

We now turn to the plan synthesis component of ADP. For
plan synthesis, we use forward state-space search and utilise
the common “no delete lists” heuristic (Hoffmann and Nebel
2001). We only search for a single agent in all parts of the al-
gorithm. To achieve this, we use a goal distribution method
to identify which agent should be used next, and what goals
it needs to achieve. These goals might include propositions
that are needed to help other agents to find the overall solu-
tion, but which are not members of the final goal set.

The full search algorithm proceeds in iterations of goal
distribution and plan search as outlined in Figure 5. In every
iteration, goal distribution determines a set of useful propo-
sitions that can be solved from the current state by a sin-
gle agent. FF heuristic search is then used (on the relevant
agent’s subproblem only) to find a plan that achieves those
propositions. This results in a new state. The process is re-
peated from this new state until a plan has been found or a
dead end is reached.

Any plan search conducted as part of this algorithm only
considers individual planning problems. An agent ¢;’s indi-
vidual planning problem is the planning problem made up
of only the variables in ¢; U P. In other words, a plan search
for agent ¢ only considers actions in Act; and public actions.

Goal Distribution

The aim of goal distribution is to find the next set of propo-
sitions to achieve. This is split into three parts: First, re-
laxed planning graphs are generated for each agent until all
goal propositions have been reached. In the second part, re-
laxed plans are extracted in order to find out which propo-
sitions need to be achieved to traverse between agents’ in-
dividual problems. These become subgoals for our problem.
The third step distributes the goals and subgoals among the
agents that can achieve them.

Generating Relaxed Planning Graphs We start by gen-
erating the internal relaxed planning graph for every agent
¢; from the current state. This relaxed planning graph (us-
ing the no-delete-lists relaxation) is generated by repeated
application of elements of Act; and public actions.

Algorithm 2: Search Algorithm

repeat
Generate Planning Graphs
S < current state
G <+ original goal set
repeat
foreach Agent ¢; do
Generate Internal Relaxed Planning Graph for ¢;
from S
S < S U the final state of each relaxed planning
graph.
until All goals reached O R no new propositions added
if Not all goals reachable then
| return dead end

Extract Subgoals
foreach g € G do
Extract relaxed plan for g
if layer(g) > 1 and p is required by previous layer
then
G+~ GUp
Extract relaxed plan for p

Distribute Goals
foreach g € G : layer(g) == 1 do
‘ Add g to G; for agent with lowest estimated cost

Agent Search

@i < ¢; € @ such that |G;| is maximized

FF search ¢;’s subproblem with G; as goal set
Current state < result of ¢;’s plan applied to .S
until All goals reached or dead end found

Naturally, some of the propositions reachable in the over-
all planning problem may not appear in any of the agents’
internal relaxed planning graphs, as their achievement may
requite interaction among the agents. For example, in the
problem shown in Figure 1, robot b cannot perform any ac-
tions from the initial state even though it can clearly reach
its goal once another robot moves out of the way.

To share states between agents efficiently, we simply
combine all propositions reached in the individual planning
graphs. This creates a new state which can be used as the
input for a subsequent layer of individual planning graphs.
From this new state it may be possible to reach new areas of
the state space. By repeating this process as many times as
required, it is possible to reach any proposition that is reach-
able in the full planning problem.

Definition 8 (Planning Graph Layer) Given a state S,
planning graph layer 1 contains each agent’s individual
planning graph starting from state S. Each subsequent
layer* contains each agent’s individual planning graph
starting from the combined states of all graphs in the pre-
vious layer. We use layer(p) to represent the layer in which

proposition p first appears.

In our example problem, free_y is false initially, so

Note that the term layer here should not be confused with lay-
ers in relaxed planning graphs. When used in this document it refers
to a collection of individual relaxed planning graphs that have all
started from the same state.

51

robot b cannot move into this space. In the internal planning
graph for robot a from layer 1, a move action sets free_y
to true. Because we are using the no delete lists heuristic,
the value of free_y is now both true and false. This means
that in the second layer of planning graphs robot b can move
into this space.

Planning graphs are built until all unreached goal propo-
sitions are found or no new actions can be performed. If the
full goal set has not been reached, then we have reached a
dead end in the search space. For goal propositions that only
appear beyond layer 1, plan extraction can be used to deter-
mine the input that is required from other agents.

Extracting Subgoals Plan extraction is used in FF to gen-
erate relaxed plans for calculating heuristic values. It pro-
ceeds by picking a goal proposition, and then working back-
wards through a relaxed planning graph. Preconditions are
found for an action that adds the goal proposition. These pre-
conditions are then added to the list of propositions to extract
from. Eventually, plan extraction leads back to propositions
that only appear in the starting state.

In our case, if plan extraction is performed on a proposi-
tion added in any layer beyond the first one, we will end up
at the root state of the planning graph corresponding to that
layer. This may include propositions from the initial state but
also propositions added by other agents. Whenever a propo-
sition added by another agent is reached, we add it to the
goal set and extract a relaxed plan to reach this proposition.

We call propositions that are added to the goal set in this
way subgoals. As we only ever search one agent’s subprob-
lem at a time and are therefore limited to propositions reach-
able in the first layer, we only care about subgoals that are
reachable in layer 1.

Distributing Goals In this phase of the algorithm, as we
want to identify the most suitable agent for every goal reach-
able in layer 1 (including newly generated subgoals). We as-
sign each goal to the agent with the lowest estimated heuris-
tic value based on their extracted relaxed plans. The choice
of which agent to plan for next is then made based on which
agent appears has greatest number of goals in layer 1. Any
goals that have already been achieved are included in the
goal list to make sure they are not undone during agent
search.

Agent Search We use standard FF planning to solve that
agent’s subproblem from the current state to a goal state
where all of its layer 1 goal propositions hold. We addi-
tionally require that a plan cannot end up in a state that
has already appeared. This prevents cycles between agents
from occurring. The entire process is repeated from the state
reached by agent search.

It may be possible to create a subset of goals that are not
solvable from the current position. It is an open research
question what the best method for solving this problem is.
In our current implementation we join the agents together,
thus effectively reverting to the original planning problem.
In this case, our search method behaves roughly equivalent
to normal FF.

Domain Agents Agent | Percentage of Each Action Type | Decomposition

Name Min | Max | Var % I >1 | I< | >I< | P | Variables

Airport 2 15 0.5 | 50 0 5 45 0 | (Plane locations)

Depot 3 7 28 | 48 0 9 41 2 | (Truck locations) + (all Crate locations)

Driverlog 2 6 18 | 46 0 17 33 4 | (Truck locations)

Elevators 4 5 17 | 50 1 0 49 0 | (Lift locations)

Logistics 3 7 34 | 50 4 0 46 0 | (Truck locations)+(Plane locations)

Rovers 2 14 43 | 52 33 0 15 0 | (Rover locations, Calibrated and Images)

Satellite 2 12 72 | 51 49 0 0 0 | (Satellite locations, Calibrated, Images and Instruments)
SatelliteHC 5 15 38 | 50 50 0 0 0 | (Satellite locations, Calibrated, images and instruments)
Tpp 2 8 3|50 0 0 50 0 | (Truck locations)

Transport 4 4 15 | 50 1 0 49 0 | (Truck locations)

Zenotravel 2 5 39 | 50 37 0 12.8 0 | (Plane locations, Fuel-Level)

Floortile 2 3 7| 13 0 0 50 | 37 | (Robot has x)

Freecell 2 6 38 | 34 0 10 40 | 16 | (Home suits) + (large collection of other variables)
Mprime 2 16 15 | 33 0 2 48 | 18 | (Craves(X,Y))

Pathways 6 66 21 | 36 0 18 32 | 14 | (Chosen(X))

Woodwork 6 85 12 | 23 0 1 49 | 27 | (Colours) + (all Available and saw)

Table 1: Decomposition results for [PC domains that returned agent decompositions. Agent Var % is the percentage of variables
in the domain that are in an agent’s variable set. I represents internal actions. We use the shorthand > to mean influenced and
< to mean influencing. The >I< column therefore lists the percentage of both influenced and influencing internal actions. P

are public actions.

Solving Our Example Problem

In our example, robot a can reach the goal report_a from
the initial state. The goals report_b and report_c are
only reachable in layer 2. Plan extraction adds the subgoal
free_y to agent a’s goal set. The first plan to be found
is therefore one for agent a that reaches report_a and
free_y. The plan that achieves this moves a one square
to the left and then a performs its report action.

From this new state, robots b and c still cannot reach
square x to report in layer 1 of their planning graphs. Plan
extraction again reveals that robot a needs to move out of
the way. As this is the only achievable layer 1 goal then this
is solved next. Eventually we reach a state where robot b
can reach the goal report_b in layer 1. From here a sim-
ilar process is repeated for robot c to be able to achieve
report_c.

8 Results

To evaluate the performance of our method, ADP was imple-
mented as an extension of the Fast Downward planning sys-
tem (Helmert 2006). The translation and preprocessing steps
were left unmodified and ADP was added as an alternative
search option. We ran ADP over every domain included in
FD’s benchmarks, using the 2008 Satisficing Track version
whenever multiple instances were available.

Decomposition Results

The results of applying our decomposition algorithm are
shown in Table 1 for those domains for which a decomposi-
tion was found at least for some instances.

The top half of the table lists domains for which a decom-
position was found in all but the simplest problem instances.
Some of the the simplest instances for each domain contain
only one of the objects that would be normally identified as
an agents. For example, the first few Rovers problems con-
tain only one rover. In cases like these, the algorithm returns

52

no decomposition. This is the behaviour we would expect as
these are effectively single-agent problems.

The bottom half of the table contains domains where a de-
composition could only be found for a few instances of the
problem. As can be seen in the table, these decompositions
contain large numbers of public actions and both influenced
and influencing internal actions. As expected, these are do-
mains in which the plan synthesis part of our method does
not perform well compared to planning without decomposi-
tion.

The first two columns are included to give an idea of the
numbers of agents we deal with. Smaller problem instances
often contain less agents than larger ones. As the size of
problems increase, more agents are added, yet the action ra-
tios remain relatively stable. To exemplify this, the Satel-
lite is split into two separate rows (satellite and satelliteHC).
As can be observed, the ratios of different action types are
roughly the same across both subsets of instances.

The percentage of purely internal (neither influenced nor
influencing) actions provides a good estimate of how well
a multiagent approach will perform. As we can see, these
actions account for around 50% of all actions for most eas-
ily decomposable domains. Influenced only internal actions
(>I column) are the next easiest to plan with as no other
agents are affected when these are performed. This means
that they can be used freely when solving an individual plan-
ning problem, as they they cannot undo goals that others
have already been working towards.

Generally speaking, the decompositions found are the
ones a human designer would expect: In the Airport domain,
agents are planes, in Driverlog agents are trucks, in Elevators
lifts become agents, etc. The Logistics domain is separated
into one agent for each truck and one for each airplane, and
agents in Satellites are the satellites combined with their re-
spective instruments and other apparatus.

Max Coverage Search Time (s) Cost States Expanded x 10° Ratio

Layer | ADP | FF | LM | ADP | FF | LM | ADP | FF LM | ADP FF LM | ADP | PB
Airport 3 19 17 15 0.6 66 1.8 | 1080 | 1078 | 1066 | 1.1 92 2.4 110 | 0.96
Depot 3 19 18 20 214 | 237 | 138 | 1109 | 1128 | 890 | 578 724 127 1.1 | 1.03
Driverlog 1 20 20 20 83 60 24 | 1497 | 1520 | 1307 | 635 447 127 0.7 1.2

Elevators 2 12 10 14 | 0.54 | 316 | 0.37 | 2072 | 2504 | 1879 | 13.4 | 4865 3 585 -
Logistics 3 28 28 28 0.0 0.1 0.1 | 1184 | 1189 | 1190 | 1.9 5.0 22 1 2.15
Rovers 1 38 38 38 2.0 21 61 | 4300 | 4484 | 4233 | 9.2 51.9 769 | 10.5 | 2.61
Satellite 1 18 18 18 0.2 0.3 1.6 892 | 797 751 3.0 3.7 12.9 1.5 | 13.7
SatelliteHC 1 13 11 11 11.5 | 102 38 | 1938 | 2013 | 1693 | 12.5 | 283 19.3 89 | 137
Tpp 1 25 25 25 134 | 28.0 | 71.4 | 4038 | 3641 | 3482 | 27.3 | 288 | 435 2.1 | 1.03
Transport 1 18 14 15 0.09 | 3.57 | 0.13 | 3047 | 3812 | 2188 | 308 | 11976 | 343 40 1.5
Zenotravel 1 18 18 18 0.6 27 | 44 | 741 673 | 683 2.3 7.3 5.1 4.5 2.7

Average 1 20.7 | 197 | 202 | 29.6 | 76.1 | 31.0 | 1991 | 2076 | 1760 | 145 1657 69 - -

Table 2: Results comparing ADP to FF and LAMA on the IPC domains for which it found a good decomposition. Max Layer
shows the maximum number of layers needed for ADP’s generate planning graphs step. Coverage shows the number of suc-
cessfully solved problems. The middle columns show the sum over all the problems that were successfully solved by all three
planners. The right hand columns are comparison between ADP and (Nissim, Apsel, and Brafman 2012).

Search Results

Alternative multiagent planning approaches follow distinct
objectives, making it problematic to make direct compar-
isons. As FF (Hoffmann and Nebel 2001) and LAMA
(Richter and Westphal 2010) are competitive satisfying plan-
ners based on a similar implementation to ADP we choose
to evaluate ADP against these two algorithms. We use the
implementation of FD as this shares large amounts of code
with ADP. All experiments reported below were run on the
same 2.66GHz machine and every planner was given a max-
imum of five minutes to solve each problem.

Table 2 shows the results of our empirical analysis. We
present search time instead of total time because the prepro-
cessing process is the same for all three algorithms. In fact,
we only need to run the preprocessing once per problem and
can use its output as the input for each of the three planners.
The agent decomposition part of ADP is included as part of
the search time of the ADP algorithm but is negligible com-
pared to the time needed to perform plan search.

In this table, the “coverage” column shows the number
of problems solved by each algorithm within the time limit.
ADP solves more problems than the other algorithms on Air-
port, Satellite and Transport, while only solving fewer prob-
lems than the other algorithms in Depot and Elevator. For
most of the domains, however, all multiagent problems are
solved by all planners and it is hard to predict what would
happen with larger instances.

The rest of the table gives averages over only the problems
solved by all three planners. The algorithm that expands the
smallest number of search states is always the fastest for that
problem. This suggests that the goal decomposition stage of
ADP is not very expensive as it is called many times dur-
ing search and does not increase the number of expanded
states directly. LAMA has the lowest average number of ex-
panded states despite only being better in three of the eleven
domains. If we were to choose to only use a decomposi-
tion when no public actions at all exist, then ADP would be
clearly ahead of its competitors.

ADP tends to find longer plans than LAMA but shorter

53

plans than FF. This suggests that it would be worthwhile for
the algorithm to spend more time on analysing the relaxed
planning graphs created during the goal distribution phase.
A more elaborate goal distribution method might lead to bet-
ter subgoals being generated, and improve planning times by
reducing the number of states that need to be expanded.

As mentioned in Section 2, an approach that is closely re-
lated to ours is the partition-based pruning (PBP) approach
presented by (Nissim, Apsel, and Brafman 2012). Unfortu-
nately, the two algorithms do not lend themselves to a direct
comparison of planning times or costs due to the different
nature of the algorithms: Partition-based pruning is part of
an optimal planning algorithm and therefore returns plans
of lower cost, albeit at the expense of much longer planning
times than ADP. To overcome this incomparability, we look
at the the speedup that both methods provide compared to
their respective single-agent versions (A* and FF). This is
shown in the rightmost columns of Table 2.

Nissim et al’s decomposition method finds decomposi-
tions for many more domains than ADP. This is because
PBP does not require decompositions to be agent variable
decompositions. However, the only domains for which de-
compositions help speed up their search but don’t help for
ADP are Driverlog and Pathways. On the other hand, our
approach is more effective in Airports, Elevators and Trans-
port.

9 Conclusion

In this paper, we have presented a new decomposition
method that breaks down classical STRIPS-style planning
domains into a set of individual sub-problems for different
agents, and a novel planning algorithm that exploits the ad-
ditional structure afforded by such decompositions.

Our empirical evaluation shows that around one third of
the IPC domains are suitable for our approach. For these
domains, our ADP algorithm is shown to outperform state-
of-the-art planners in the majority of cases. In domains that
require some interaction between the agents it outperforms
its single agent counterpart by many orders of magnitude.

References

Boutilier, C., and Brafman, R. 2001. Partial-order planning
with concurrent interacting actions. Journal of Artificial In-
telligence Research 14:105-136.

Brafman, R., and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 18, 28-35.

Brafman, R.; Domshlak, C.; Engel, Y.; and Tennenholtz, M.
2009. Planning Games. In Proceedings of the International
Joint Conference on Artificial Intelligence, volume 21, 73—
78.

Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Journal of Au-
tonomous Agents and Multi-Agent Systems 19:297-331.

Cox, J., and Durfee, E. 2005. An efficient algorithm for
multiagent plan coordination. In Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems, volume 4, 828—835.

Dimopoulos, Y.; Hashmi, M. A.; and Moraitis, P. 2012. p-
satplan: Multi-agent planning as satisfiability. Knowledge-
Based Systems 29(0):54 — 62.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length. In
ECP, 135-147.

Ephrati, E., and Rosenschein, J. 1993. Multi-agent planning
as the process of merging distributed sub-plans. In Katia
P. Sycara, M. F, ed., In Proceedings of the Twelfth Interna-
tional Workshop on Distributed Artificial Intelligence (DAI
1993), 115—129.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. J. Artif. Intell.
Res. (JAIR) 14:253-302.

Lansky, A. 1991. Localized search for multiagent planning.
In John Mylopoulos, R. R., ed., Proceedings of the Twelfth
International Joint Conference on Artificial intelligence (1J-
CAI 1991), 252-258.

Nissim, R.; Apsel, U.; and Brafman, R. I. 2012. Tunneling
and decomposition-based state reduction for optimal plan-
ning. In Raedt, L. D.; Bessiere, C.; Dubois, D.; Doherty,
P.; Frasconi, P.; Heintz, F.; and Lucas, P. J. F., eds., ECAI,
volume 242 of Frontiers in Artificial Intelligence and Appli-
cations, 624-629. 10S Press.

Nissim, R.; Brafman, R.; and Domshlak, C. 2010. A gen-
eral, fully distributed multi-agent planning algorithm. In
Proceedings of the International Joint Conference on Au-

tonomous Agents and Multiagent Systems, volume 9, 1323—
1330.

Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. J. Artif.
Intell. Res. (JAIR) 39:127-1717.

Tonino, H.; Bos, A.; de Weerdt, M.; and Witteveen, C. 2002.
Plan coordination by revision in collective agent based sys-
tems. Artificial Intelligence 142(2):121-145.

54

Yang, Q.; Nau, D.; and Hendler, J. 1992. Merging separately
generated plans with restricted interactions. Computational
Intelligence 8(4):648-676.

