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Abstract

In the context of modeling and reasoning about agent actions,
contingent and classical planning can often be respectively
seen as adopting “extreme pessimism” and “extreme opti-
mism” about the action outcomes. For many everyday sce-
narios of human reasoning (and thus for many types of au-
tonomous systems), both these approaches are just too ex-
treme. Following Jensen, Veloso, and Bryant (2004), we ex-
amine a planning model that interpolates between classical
and contingent planning via tolerance to arbitrary  faults
occurring during plan execution. We show that an impor-
tant fragment of this fault tolerant planning (FT-planning)
exhibits both an appealing solution structure, as well as ap-
pealing worst-case time-complexity properties. We also show
that such FT-planning tasks can be efficiently compiled into
classical planning as long as the number of possible faults
per operator is bounded by a constant, and we show that this
compilation can be attractive in practice.

Introduction

To date, contingent and classical planning appear to be
the two major approaches to non-probabilistic planning un-
der full observability. In contingent planning, at least
some aspects of system dynamics are modeled by opera-
tors with non-deterministic effects, and a plan should guar-
antee reaching a goal state under any realization of the ac-
tions it prescribed. In classical planning, the operators are
all set to be deterministic, modeling only the singular in-
tended effects of each action. While contingent plans pro-
vide much stronger guarantees on reaching the goal with re-
spect to the true physics of the modeled system, they are also
much harder to generate (both worst-case and empirically),
and quite often they may simply not exist.

In the physical world, no actions are really guaranteed to
succeed. However, non-determinism in real-world domains
is often caused by infrequent errors that make otherwise de-
terministic operators fail. Hence, many unsolvable contin-
gent planning tasks become solvable if we assume that no
more than some k exceptional/faulty action effects will oc-
cur along the purported plan to the goal. In the past, this
observation brought numerous researchers to consider ex-
plicit representation and reasoning about faults of agents’
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actions (Georgeff and Lansky 1986; Williams et al. 2003;
Giunchiglia, Spalazzi, and Traverso 1994). In particu-
lar, Jensen, Veloso, and Bryant (2004) suggested a model
of fault tolerant planning (FT-planning), and developed first
algorithms for generating plans that are robust for a single
fault occurring during plan execution. This model is of our
focus here.

Departing from contingent planning and generalizing the
FT-planning model of Jensen, Veloso, and Bryant (2004),
we show that, while FT-planning remains in general as com-
putationally hard as contingent planning, one of its practi-
cably most valuable fragments, namely the one considered
by Jensen, Veloso, and Bryant (2004), (1) is in PSPACE, (2)
falls into NP when restricted to plans with only polynomial-
length executions, and (3) is guaranteed to admit stationary
solutions for solvable problems, solutions that sometimes in-
duce (possibly cyclic) strong contingent plans. Furthermore,
we show that these FT-planning tasks can be efficiently com-
piled into equivalent classical planning tasks in a way that is
sound, complete, and practicable.

Our results join a growing body of work on planning un-
der uncertainty and/or partial observability via compilation
to classical planning (Palacios and Geffner 2009; Albore,
Palacios, and Geffner 2009; Bonet and Geffner 2011; Braf-
man and Shani 2012a; Taig and Brafman 2013). At a high
level, FT-planning is an instance of “assumption-based plan-
ning,” and the latter term has already been used for a broad
range of ideas and techniques (Albore and Bertoli 2004;
2006; Albore and Geffner 2009; Bonet and Geffner 2011;
Gobelbecker, Gretton, and Dearden 2011; Davis-Mendelow,
Baier, and Mcllraith 2012). Closest in spirit to our work
here—though in two different ways—are probably the works
of Albore and Bertoli (2006) and Davis-Mendelow, Baier,
and Mcllraith (2012). Albore and Bertoli suggested an in-
teresting planning approach in which assumptions about op-
erator effects are provided a priori as a linear temporal logic
formula, and the planner takes these assumptions as ax-
ioms. In the worst-case, however, this approach remains as
hard as contingent planning. Davis-Mendelow et al. exploit
assumption-based assertions about the initial state to sug-
gest a middle-ground between classical planning and confor-
mant, or zero observability, planning. The latter, however, is
very different from contingent planning, both conceptually
and complexity-wise (Bonet 2010).



Planning Formalisms and Solution Concepts

Non-deterministic planning tasks with full observability
correspond to succinctly represented, goal-oriented non-
deterministic Markov decision processes (Puterman 1994).
Several languages for succinctly representing such tasks
are in use (Hoffmann and Brafman 2005; Bonet 2010;
Davis-Mendelow, Baier, and Mcllraith 2012). To simplify
presentation, here we adopt a minimalistic extension of
STRIPS (Fikes and Nilsson 1971) to non-deterministic op-
erator effects.

A planning task is given by a quadruple II =
(P,0,s0,G). P is a set of n propositions, with world
states S being represented by complete valuations of P,
and usually discussed as sets of propositions that hold true
in them. sy € S is an initial state', and G is a subset
of P: a state s is a goal state iff G C s, and the set of
all goal states is denoted by Si. O is a set of operators
o = {(pre(o0), eff(0)) where the precondition pre is a subset
of propositions P, and eff = {e1,..., e, } is a set of pos-
sible effects of o. Each possible effect e € eff is given by
a pair (add(e), del(e)) of subsets of P, corresponding to its
add and delete lists, respectively. An operator o is applicable
in state s iff pre(o) C s, and the set of all such operators is
denoted by O(s). If o € O(s) is applied in s, it changes the
world to one of the states Res[s; 0] = ,eefr(o) { ReS[s; €]},

where Res[s; e] = (s\ del(e)) Uadd(e) is the state resulting
from the effect e occurring in s. A (contingent) plan for a
task IT is an action strategy that guarantees reaching a goal
state s € S from sg, under any realization of the operators
applied along the way; the process of search for contingent
plans is called contingent planning.

While nondeterministic operators must be dealt with in
one form or another in many planning applications, two
problems particular to contingent planning must be taken
into account. First, deciding whether a contingent plan ex-
ists is EXPTIME-complete (Rintanen 2004).% Second, many
tasks admit no contingent plans, and this is true even for sim-
ple tasks that humans feel comfortable dealing with (Cimatti
et al. 2003; Pistore and Vardi 2007). In that respect, a prag-
matic alternative to contingent planning is classical plan-
ning, operators are deterministic. By adopting classical
planning as an abstraction of contingent planning, we as-
sume that we know precisely what will happen when an op-
erator o is applied in state s. This assumption is then “en-
coded” at the level of individual operators by what is called
determinization, reducing the set of possible effects of each
operator to exactly one effect.

While being much more restricted, classical planning
resolves to a large extent the two aforementioned short-
comings of contingent planning. First, restricting each
state/action pair to a sole possible successor often renders
unsolvable problems solvable. Second, classical planning
is in PSPACE (Bylander 1994), and more importantly, it is

"We assume here that there is no uncertainty about the initial
state, and later discuss the impact of this assumption.

2EXPTIME-completeness still holds even for testing the exis-
tence of plans that reach the goal with probability exceeding p for
probabilistic problems with full observability (Littman 1997).

65

in NP if restricted to polynomial-length plans. Last but not
least, classical plans are structurally simple, constituting lin-
ear sequences of operators. Together with NP-membership,
this structural simplicity allows for exploiting various OR-
graph search techniques for developing empirically efficient
solvers for classical planning (Hoffmann and Nebel 2001;
Helmert 2006; Rintanen, Heljanko, and Niemeld 2006; Kiss-
mann and Edelkamp 2012). As a result, combining classical
planning with online re-planning in unexpected situations is
a popular and effective approach to closed-loop control of
autonomous systems (Yoon et al. 2008; Talamadupula et
al. 2010; Domshlak et al. 2011; Bonet and Geftner 2011;
Brafman and Shani 2012b).

Fault Tolerant (Contingent) Planning

Given the relative pros and cons of contingent and classical
planning, the first question one might ask is: If these are
the two extremes, how can we interpolate between them in a
simple and useful manner? This question brought us to con-
sider fault tolerant planning: planning under the assumption
that no more than some « unintended effects of the operators
will occur along the purported plan to the goal, but at the
same time, under a requirement for the plans to be provably
robust for up to k such operator faults during plan execution.
Fault tolerant planning was originally introduced by Jensen,
Veloso, and Bryant (2004) in order to bring some key infor-
mation from probabilistic uncertainty models to qualitative
non-deterministic planning. The basic idea is to associate
the contingent planning task at hand with an explicit dis-
tinction between the primary and exceptional effects of its
operators. The model we adopt for that purpose is simply
a function F that maps each possible effect of each opera-
tor to the “number of exceptions,” or unintended artifacts,
associated with this effect. The operator effects e for which
F(e) = 0 correspond to the primary effects of the respective
operators in s.

Definition 1 Let IT = (P, O, so, G) be a contingent plan-
ning task. An exception model for II is a function F :
U,co eff(0) = N, computable in time polynomial in ||I1||.
If, for each operator o € O, |{e | e € eff(0), F(e) = 0}] <
o, then F is called a-primary. Likewise, if, for each oper-
ator o € O, |{e | e € eff(o), F(e) = 0} > 0, then F is
called normative.

In simple terms, an exception model is a-primary if at
most « effects of each operator are considered to be its pri-
mary effects, and it is normative if each operator is associ-
ated with at least one primary effect. In these terms, the
work of Jensen, Veloso, and Bryant (2004) has been de-
voted to fault tolerant planning under 1-primary normative
exception models, which seem to cover well operator non-
determinism that stems from physical complications of ex-
ecuting agent actions in the real world.> Associating non-
deterministic operators with exception models allows for a

31f, however, some operators model knowledge acquisition, i.e.,
sensing, then (part of the) operator non-determinism will be due to
primary operator effects, and thus planning with a-primary models
for o > 1 is not of theoretical interest only.



simple relaxation of contingent planning to planning under
fault tolerance requirements as above. Let II be a contin-
gent planning task, F be an exception model for II, and 7
be an action policy for II. Overloading the notation, for
an execution p = (sg,e€p,- .-, Si, €, ...) of m, we define

A 0o
Flp) =220 Fled)
— An execution p of 7 is called x-admissible if F(p) < k.

— Action policy 7 is a x-plan for II if each of its k-
admissible executions is finite and reaches the goal.

In what follows, we refer to triplets (II, F, k) as above as
fault tolerant (FT) planning tasks, and solutions for such
tasks are precisely x-plans for IT under F.

In general, x-plan 7 can be either a stationary (possibly
partial) policy 7 : S — O, or a non-stationary policy
m : S x N — O that depends on the current state and
the number of “failures so far”” As noted by Jensen et
al. (2004), the latter can be captured as a stationary policy
for a certain contingent planning task II>%) that we refer
to as (F,k)-reformulation of II: Given a FI-planning
task (Il = (P,0,s0,G),F,r), IV is a contingent
planning task over states S = S x {0,...,x}, op-

erators O, initial state s(()}—’ﬁ) = (s0,0), and goal states

Sg"'{) = U_y{(s,3) | s € Sg}. Foreach s € S,

0o € O(s),and 0 < i < K, o is applicable in (s, 1), and if
applied, it changes the world to one of the states

U {Resl(s.i);el},
eceff(o0),
rk—(1+F(e))>0

where Res[(s,1);e] = (Res]s;e],i + F(e)).

It is not hard to verify that there is a bijective corre-
spondence between plans for IIZ>%) and non-stationary k-
plans for (I, 7, ), but the relation to stationary k-plans for
(I, F, k) is less immediate. Theorem 1 clarifies this mat-
ter. Let 7 be a (not necessarily a plan) policy for I1(7-%).
The execution tree Ty (s,i) is the tree of possible execu-
tions of 7 starting at (s,4), with nodes corresponding to
states of TI7%) edges corresponding to operator effects,
and ST(rf’“) c S denoting the set of internal nodes of
T.. (Henceforth, T (so, 0) is referred to for short as T;.)

Res|(s,1);0] = (D

Theorem 1 Let (II, F, k) be a solvable FT-planning task.
If F is normative, then there exists a stationary k-plan w
Sor (I, F, k). In contrast, there exist solvable FT-planning
tasks (with nonnormative exception models) for which there
are no stationary k-plans.

The proof of the second sub-claim is by example: Let II
be a contingent planning task over states S = {sq, ..., Ss},
operators O = {og, ..., 05} as in Figure la, initial state s,
and S¢ = {sg¢}. Assume an exception model F for IT as in
the last column of Figure 1a. Figure 1b depicts the only con-
tingent plan for the reformulation TI/>1), and the respective
1-plan for (II, F, 1) is not stationary: different actions, oy
and o, are taken at state s; with 0 and 1 “exceptions so far,”
respectively, and such a history-dependent choice of opera-
tor at s is unavoidable.
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Figure 1: Illustrations for the examples around Theorem 1.

Note that F in the above example is not normative be-
cause neither of the effects of operator o; is primary. With
normative exception models, the situation is indeed differ-
ent. Let (II, F, k) be a solvable FT-planning task with a
normative model F, and 7 be a contingent plan for II(/>*).
If w(s,i) = m(s,j) for all pairs of reformulation states

(s,1),(s,7) € SY%) then we are done because the r-plan
for (IT, F, k) corresponding to 7 is stationary. Otherwise, let

(s,1),(s,4) € SR G < J be a pair of reformulation states
for which 7 (s, i) # m(s,j). The proof is accomplished by
showing that 7', obtained from 7 by replacing 7 (s, j) with
m(s,1), is also a plan for IIF%) and thus we can always
iteratively reduce a non-stationary « to a stationary one.

Note that, by the construction used in the proof of The-
orem 1, if 7 is a non-stationary x-plan for a FT-planning
task (I, F, x) with a normative model F, then 7 can be ef-
ficiently translated into a stationary x-plan 7’ for (IT, F, k).
Likewise, for some of such pairs 7 and 7/, 7’ may turn out to
be a strong cyclic contingent plan for II. For instance, let I1
be a contingent planning task over states S = {sg, ..., 54},
operators O = {oo, ..., 03}, initial state sg, and G = s4.
The operators are defined as in the table in Figure lc, and
the exception model F associated with II is given in the last
column of that table. Figure 1d depicts a contingent plan 7
for the reformulation II¢#+*) and the respective 1-plan for
(IT, F, 1) is not stationary: different actions, oy and o3, are
taken at state sop with 0 and 1 “exceptions so far,” respec-
tively. However, if we modify 7 as in the proof of Theo-
rem 1, the resulting plan 7’ for II(*>*) will induce a strong
cyclic contingent plan 7*(s;) = o; for IL.

Complexity and Compilation

Two decision problems are of interest in the context of FT-
planning: Let II be a contingent planning task, and F be an
a-primary model for II.

FT-PLAN-a-k: Does II have a x-plan?



POLY-FT-PLAN-a-k: Does II have a x-plan such that all its
r-admissible executions reach the goal after a polynomial
number of steps?

At first view, the effective difference between FT-PLAN-
a-k and contingent planning is not clear. In general, for suf-
ficiently large values of « (e.g., « = |S]), contingent plan-
ning can trivially be reduced to FT-PLAN-a-k for any k, and
hence the latter decision problem is EXPTIME-hard. In fact,
FT-PLAN-a-k can be polynomially reduced to FT-PLAN-2-
x by simulating each operator with « primary effects by a
“ladder” of log v operators, each with at most two primary
effects. Hence, even FT-PLAN-2-x is EXPTIME-hard. How-
ever, while the definition of exception models is rather gen-
eral, the specific settings that brought us to this investigation
correspond to the normative 1-primary exception models
considered by Jensen, Veloso, and Bryant (2004). In what
comes next, we focus on that fragment of FT-planning.*

FT-planning with 1-primary models

Unlike FT-PLAN-2-k, FT-PLAN-1-x nicely generalizes clas-
sical planning, which simply corresponds to first associat-
ing the contingent planning task with a normative 1-primary
model, and then adopting the extreme optimism that no
failures will occur along the purported plan to the goal.
In other words, the decision version of classical planning
is precisely the FT-planning class FT-PLAN-1-0. At the
same time, FT-PLAN-1-1 already goes way beyond classi-
cal planning. While plans for FT-PLAN-1-1 are restricted
to at most one operator failure per possible plan execu-
tion, these failures are bounded neither to specific opera-
tors nor to specific stages of the purported plan. Hence,
while plans for FT-PLAN-1-0 are linear sequences of ac-
tions, plans for FT-PLAN-1-x with x > 0 are tree-structured,
and may actually exhibit substantial branching: unlike in
(EXPSPACE-complete) planning under the k-branching as-
sumption (Bonet 2010), plans for FT-PLAN-1-x may have
to always interleave between acting and branching, even for
k=1

For example, suppose that a robot should move from
x1 to x5 on the map depicted in Figure 2(a). Movements
on the segments (z1,23) and (z1, xz3) are considered safe
and thus are modeled by deterministic operators. Move-
ments move(x;, ;) on the other three segments are mod-
eled by non-deterministic operators with three possible ef-
fects: move(z;, ;) typically brings the robot to z;, with
no side effects, but it may also bring the robot to x; with a
flat tire, or keep it at x; for the same reason. Initially the
robot has no flats, but also no spare tires. A single spare
tire can be picked up at each of the two intermediate loca-
tions o and x3. Figures 2(b-d) depict stationary O-plan, 1-
plan, and 2-plan for the respective FT-planning tasks, under

“While the motivation for the FT-PLAN-1-x fragment comes
from its excellent applicability in practice, it is obviously not the
only fragment of FT planning to be so motivated. For instance,
if some operators model knowledge acquisition, i.e., sensing, then
(part of the) operator non-determinism will be due to primary op-
erator effects, and thus planning with a-primary models for o« > 1
is not of a theoretical interest only.

67

= 9] Oom
L PON
;-@
e or
[]
(@)

om

o, 2]

(d)

Figure 2: x-plans for an inline example

a normative 1-primary exception model that maps the pri-
mary effects of all actions to 0, and the exceptional effects
of the non-deterministic move actions to 1. In the triplet
denotation [z, y, z] of the states, = is the robot’s location,
y € {ok,F} is the status of the tire, and z is the number
of spare tires in the robot’s possession. State representation
in this problem also addresses the availability of the spare
tires at xo and x3, but we omit this information in the fig-
ure for brevity. The dashed arrows depict possible effects
of the actions that the agent ignores at planning. The 0-plan
is a classical plan, and it is as simple as the example itself.
The 1-plan is already more involved: to guarantee reaching
x5 under a possibility of a single fault, the robot picks up a
spare tire at 3. In turn, the 2-plan in Figure 2d prescribes
that the robot first collect both spare tires at x5 and x3, and
only then start moving towards x5, replacing flat tires on the
way, if needed.

Still, despite the structural complexity of x-plans, the
EXPTIME-hardness proof for FT-PLAN-2-x does not carry
over to FT-PLAN-1-x, and for a good reason: Theorem 2 be-
low shows that FT-PLAN-1-x is in PSPACE, that is, worst-
case not harder than classical planning. Moreover, Theo-
rem 3 then shows even closer resemblance between these
two formalisms, namely that POLY-FT-PLAN-1-x is in NP.

Theorem 2 FT-PLAN-1-x is in PSPACE.

A non-deterministic algorithm (that can also be compiled
to a Turing machine) for deciding whether there is a x-plan



Algorithm BO-PLAN-1-x(I1, F)

main
PLAN-FT(so, k)
accept

procedure Plan-FT (s, k)

steps < 0

while steps < 2"
if s = G then return
choose operator o s.t. s |= pre(o)
for e € eff(0)

if F(e) > k
then continue ./ under assumed ., e cannot happen here

do else if 7(e) > 0
do then Plan-FT (Res[s; €], k — F(e))
// proceed with the primal effect of (pre, eff) at s
steps < steps + 1

s < Res][s; €]

else

reject

Figure 3: PSPACE algorithm for deciding FT-PLAN-1-k.

for an FT-planning task (II, 7, x) with 1-primary F and
|P| = n is depicted in Figure 3. The respective Turing
machine is in PSPACE because, at any point, there are at
most « open calls to the Plan-FT procedure, each storing a
single state in n bits and a single counter steps in n bits. Fi-
nally, since it is in PSPACE, FT-PLAN-1-£ is also PSPACE-
complete by the PSPACE-hardness of classical planning un-
der the description language we use, and equivalence of the
latter to FT-PLAN-1-0.

Theorem 3 POLY-FT-PLAN-1-x is in NP.

The proof is by showing that, if (I, F, k) has a k-plan
7' such that all its x-admissible executions reach the goal
after O(n®) steps, then there is a k-plan 7 with the same
property such that [|7|| = OB TDn+2)) where b =
max,eco |eff(0)|. Since b = O(||TI||) and both ¢ and « are
O(1), the rest stems from the standard guess-and-verify ar-
gument of NP-membership.

First, since x-plans guarantee goal reachability only along
executions with x or fewer exceptions, let 7 follow 7’ on
states reachable by the x-admissible executions of 7/, and
make a random operator choice everywhere else. Thus,
only the x-admissible executions of 7 should be represented.
Second, as we upper-bound the description size of , for
simplicity we assume (i) extensive, tree-structured represen-
tation of 7, and (b) that the range of F is {0,1}. For 0 <
i < K, let f(m,1) be the number of i-admissible executions
of  that are not (¢ — 1)-admissible. Clearly, .7, f(,1)
is the overall number of k-admissible executions, and thus
||| = O (n¢Y 5, f(m,i)). Since F is 1-primary, there is
at most one 0-admissible execution of 7 per possible initial
state, and thus f(m,0) = 1. Recursively, due to the same
argument of F being 1-primary, each of the O(n) opera-
tor instances along that single O-admissible execution may
branch into b 1-admissible executions of w. However, these
are the only possible sources of 1-admissible executions.
Thus, f(7,1) = O(f(m,0)-bn°) = O(bn°), and in general,
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f(m,i) = O((bn®)?). Hence, ||7|| = O (n¢- (bn<)"*1) =
O(b(n+1)nc(n+2)).

Note that, while K = O(1) should suffice for most in-
terests in practice, the PSPACE-membership result of Theo-
rem 2 holds for £ = O(poly(||II||)). This is not so, however,
with the NP-membership result of Theorem 3, which relies
upon k = O(1).

Compilation to Classical Planning

Theorems 2 and 3 put FT-planning under 1-primary excep-
tion models rather close to classical planning. On the one
hand, that suggests that classical planning machinery can
possibly be adapted to solve such FT-planning tasks. On
the other hand, the non-linearity of x-plans under 1-primary
models seems to complicate applying classical planning al-
gorithms to FT-planning.

We now show that FT-planning under 1-primary mod-
els can be efficiently compiled into classical planning, at
least as long as the number of non-deterministic effects
per operator is bounded by a constant. The compilation
is to STRIPS with negative preconditions and conditional
effects. In this formalism, a planning task is given by
a quadruple IT = (P, 0, sg,G), with P, sg, and G be-
ing as in our formalism for contingent planning. Opera-
tors o € O are pairs (pre(o), eff(0)) where the precondi-
tion pre(o) is a subset of literals over P, and eff(o) is a
set of conditional effects. A conditional effect e is a triplet
(con(e), add(e), del(e)) of condition, add, and delete lists,
respectively, where con(e) is a subset of literals over P,
while add(e) and del(e) are subsets of propositions. Op-
erator o is applicable in state s iff s = pre(o). If o € O(s) is
applied in s, it deterministically changes the world to state
res[s; 0] = Ueeefr(o),smcon(e) (5 \ del(€)) U add(e).

We start with a compilation of a simple fragment of
FT-PLAN-1-x, corresponding to FT-planning tasks (I =
(P,0, s9,G), F,r) such that (i) each operator of II has
at most two effects, and (ii) F is a normative 1-primary
exception model for II such that, for each 0 € O(s), if
eff(0) = {ep}, then F(eg) = 0, and if eff(0) = {eo,e1},
then F(egp) = 0 and F(e;) = 1. We begin with an example
that illustrates the basic idea behind this compilation. Let
k = 2, and let Figure 4a depict an irreducible contingent
plan 7 for II#>#): the arcs correspond to the operator ef-
fects and are labeled with the respective values of F, and
double-frame states are the goal states.

Note that, in Figure 4a, the states and operator instances in
7 are numbered consistently with a DFS traversal of the exe-
cution tree T7.. Therefore, the operator sequence oy, ..., 07
induces a sequence of policies 7, . .., 77 for IIZ>%) such
that 7y is an empty policy, 77 = 7, and each 7; extends
m;—1 with mapping a single leaf of T';, | to operator o0;. An
important property of this sequence of policies 7, . .., 77 is
that, for 0 < 5 < 2, each 7; induces at most one execution
p with F(p) = j that does not achieve the goal within Tr,.
The latter is emphasized by the tabular representation of this
sequence of policies in Figure 4b. The columns in the table
capture certain subsets o, . ..,o7 of leavesof Ty, ..., T5,,
that is, of the end-states of m,..., 77, respectively. For



1 5

ﬁ
O
]

)
N
O s7,0
(D 02 ‘\' 0,06
0
\
P =
32 i
(a)

gg — 01 —> 02 —> 03 — 04 — 05 —» 06 — 07

o [=] [=] =] =] =] [] [ [

T B B B B B e [

OOEFEFEE=F
(b)

Figure 4: A plan 7 for II/>%), and the end-state set repre-
sentation of the induced sequence of 7’s sub-policies.

0 < j < 2, each o; contains at most one state with “j fail-
ures so far,” denoted o;(j), with o;(j) = L denoting that o;
does not contain a state for j. For ¢ = 0, o¢(0) = (s, 0),
and 09(1) = 0¢(2) = L. Fori > 0, if Ty, has a (unique)
leaf (s, j) such that s & Sg, then 0;(j) = (s, j), and other-
wise, 0;(j) = 0;-1(j). Asterisks in the table are by the goal
states, and note that the last set o7 is the first in the sequence
to contain only goal states.

It turns out that any irreducible k-plan for any FT-
planning task from the fragment in question induces such
a DFS-ordered sequence of sub-policies with “at most one
non-goal leaf with j failures so far.” It is precisely this
property that provides a basis for our compilation of (II =
(P,0,sy,G),F, k) to an equivalent classical planning task
I = (P',0',0(,G’). For now, we postpone the formal
statement and proof of this property, and formulate the ac-
tual compilation. After that, in Lemma 5, we formally
state the task properties underlying the compilation, and use
this lemma to specify compilation for a wider class of FT-
planning tasks.

Propositions. For clarity, we use letters s and o to de-
note states of IT and IT’, respectively. The subsets oy, . . ., o7
of S(*>#) in Figure 4b hint at the state space structure of
IT": Each reachable state o of IT' represents a partial pol-
icy 7, for II(Z+*) that corresponds to a concrete stage of a
certain DFS traversal of the purported tree-structured plan
for TIZ+%). To support that, P’ contains x + 1 replicas
Py, ..., P, of P, as well as a set of auxiliary propositions
{open,}f ;. The interpretation of open, € o is that “the
policy for II7>*) represented by o induces an i-admissible
execution that does not achieve the goal, and the end-state
of that execution is captured by the values of P; in ¢.” In
what follows, by o/ P; we denote the valuation provided by
o to propositions P;. Likewise, if ¢ is a set of literals either
over P or over one of the proposition sets Py, ..., P, of I/,
then, for 0 < i < &, [¢], is a set of literals over P;, obtained
from ¢ by replacing all the propositional symbols with their
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counterparts in P;. For example, |{p,~q}], = {pi, ¢},
and [{pi, ~a:}]; = {pj, ~¢;}-

Operators. O’ contains x + 1 sets of operators
Oy, ...,0,, with O; = {0; | 0 € O}. For each o0 € O, the
precondition of the operator o; is

Lpre(o)|; U {open,;} U U {—open,}.

j=it1

pre(o;) =

In other words, if state o of II’ represents a policy for I1(/+)
such that some admissible executions of that policy do not
reach the goal, then the planner is forced to extend the i-
admissible such execution with the highest index 3. If either
o is deterministic or ¢ = &, then eff(0;) = Res[o/P;; |eo],].
Otherwise, if eff (0) = {eg,e1} and i < &, then

eff(0;) = Res[o/Pi; |eo);] A | Res[o/ P;; Lelji]JHl Aopen, ;.

In the formalism of our choice, such operator effects are cap-
tured as follows. If eff(o) = {eg} or i = &, then eff(0;)
contains a single unconditional effect:

eff(o;) = { (0, |add(eo)],, [del(eo)];) }-
Otherwise, if eff (0) = {eg, e1} and i < &, then

;. add(eo)];, ldel(eo)]; ),
) {Openi+1}, 0 )

S

(
eff(0;) = ®; U { E

> Ladd(el)Ji+17 Ldel(el)ji_H )
where
o {pit,  Apit1}, 0 ),
s U {fh et Ly

peadd(eq )Udel(eq)

compactly encodes the situation calculus frame axioms
between the “current situation with ¢ failures so far” and
the “next situation with ¢ + 1 failures so far.” In addition,
O’ contains a set of auxiliary “goal-achieving” operators
{of}F_, with

pre(o;) = |G], U {open;} U U {—open,},

j=it1
efF(OZ) = { <®7 0, {Openi}> } .

Initial state and goal. The P,-part of the initial state o,
captures the sole initial state of II, and for ¢ > 0, the P;-
parts of the initial state are actually not important, and can
be set arbitrarily. The auxiliary variable open, is initially
set to true, the rest of the variables open; are initially set to
false, and the goal of II' is to negate open,. That is, o, =
Lso] o U {openy} and G' = {—open,}.

For an illustration, consider a small and simplified vari-
ant of our running example in which there are only two
locations, x and not(x), the robot and a single spare
tire are initially at z, and the goal is for the robot to
be at not(x). Movement of the robot either succeeds
(which is the primary effect of that operator), or fails,
with the robot staying at the original location with a flat
tire. This planning task II is encoded using propositions
P = {z,noflat, spare} by the operators as in the Ta-
ble la, initial state sy = {z, spare, noflat}, and goal G =



I o [pre [eff H F l
(a) |move {x, noflat} | eqg = (0, {x}) F(eo) =0
e1 = (0, {noflat}) Fler) =1
fix |{x, spare} | eq = ({noflat}, {spare}) || F(eo) =0
l o [pre [ eff l
(0, 0, {z0} )
o "0 ot
, , noflaty
moveo | { "1 (e}, {m}, 0 )
openy,
e (fwods 0w} )
o (Ispareg}, {spares}, 0 )
({—sparey}, @, {spare;})
move; | {1, noflaty, open, } {(0,0,{z1})}
fixo | {zo, spare,, {(0, {noflaty }, {spare, })}
open,,, —open, }
fixy |{w1, spare,, open, } {(0, {noflat, }, {spare, })}
oy |{—o, openy, ~open; } {(0,0, {openy})}
of |{—=z1,open, } {(9, 0, {open, })}

Table 1: Operators from the compilation example.

{—z}. The compilation II' = (P’,O’,{,,G') of the FT-
planning task (II, 7, 1) is defined over propositions P’ =
Uie{o,1) {2, noflat;, spare;, open;}, and operators as in Ta-
ble 1b. The initial state is o, = {0, spare,, noflaty, open, },
and the goal is G’ = {—open,}. It is not hard to verify that
m = (movey, fix;, movey, 0f, of) is (the only) plan for the
classical planning task IT’, and that the respective contingent
plan for IV can be decoded from 7 in linear time.

In the spirit of this example, we have generated a set of
tasks in which a robot should move from the bottom-left to
the top-right corner of a 4-connected grid, in which some
of the edges are “safe,” with moves along them being de-
terministic, while other edges are “unsafe,” with moves on
them either succeeding (which is the primary, expected ef-
fect of that operator) or resulting in the robot getting a flat
and staying where it was. A limited number of spare tires
are available on some nodes of the grid. The six sets of five
tasks each correspond to 5x 5 and 7x 7 grids, with each edge
of the grid being independently marked as safe with proba-
bility p € {0.1,0.2,0.5}, and 10 spare tires, independently
positioned on the grid nodes at random.

The runtimes of different approaches on these tasks are
depicted in Table 2. The three approaches we examined
were (col. 2) contingent planning with Contingent-FF (Hoff-
mann and Brafman 2005); (col. 3-6) FT-planning with
Contingent-FF over (F, k)-reformulations, x € {0, 1,2,4},
and (col. 7-10) FT-planning with Fast Downward’s GBES
with FF heuristic over the classical planning reductions of
the (F, x)-reformulations. Each task/planner was given a 10
minute time limit; cases in which the planner neither solved
the task nor proved it unsolvable within the time bound are
marked with ‘-’. If a planner solved a task within the time
bound, then the respective entry in the table is shaded.

As Table 2 shows, all but one of these tasks were proven
by Contingent-FF to have no strong contingent plans (and
cyclic contingent plans are also of no help in this domain),
while all (effectively classical) FT-planning tasks with xk = 0
were easily solved by both Contingent-FF and Fast Down-
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crr]] crr(n) FD(I1')
sk O 1 [2[4]] 0] 1] 2 ] &
5X5 (0.1)[0.08][000] — [ — [ - [[0.00] 0.10 ] 0.02 [ 0.04
0.08[[0.00] — | = | - [[000[ 031 - [ 0.3
0.08[[0.00] — | = [ - [[000[ 010 — [ 0.13
0.08[[0.00] — | - [ - [[0:00] 0.00 | 001 | 0.03
0.08[[0.00[499] - | — [[0.00] 0.01 | 0.0l | 0.03
5X5 (0.2) |0.08 |[0.00[0.13| — | — [|0.00] 0.01 | 0.03 | 0.06
0.08[[0.00] — | — | - |[0:00] 0.19 | 0.02 | 0.04
0.08[[0.00] — | - [ - [[0:00] 0.01 | 001 | 0.03
0.08[[0.00] — | — | - [[0.00] 0.00 | 001 | 0.03
0.08|[0.00[ 128259 - [[0:00] 00 - | 021
5X5 (0.5 [0.08][0.00] — [ — | - [[0:00] 7.50 | 0.02 | 0.04
0.08 [[0.00[0.550:59] 0.79[ 0.00| 0.01 | 0.18 | 106.53
0.08 [[0.00[0.12 [ 5.04| 5.43 | [ 0.00] 0.01 | 0.02 | 0.04
0.08[[0.00] — | - | - [[0:00] 0.0 [31059] -
0.07[[0.00] — | — | - [[0:00] 0.01 | 0.02 | 0.04
7X7 (0.1) [0.12|[0.00] = | — | - [|0.00] 0.02 | 0.03 | 0.06
0.13[[0.00[ 210 - | - [[0.00] 167 | 004 | 0.07
0.13[[0.00] — [ — | - [[0:00] 02 [ 0.03 | 0.07
0.13[[000] = | - | — [[0.00] 002 | 0.03 | 0.06
0.3[[0.00] — | - | - [[0.00] 009 004 | 0.07
7X7 (0.2)[0.13][0.00] — | = | - [[0.00]27:32] 004 | 0.08
0.13[[0.00] — | — | - [[0:00] 0.0 | 0.03 | 0.06
0.13[[0.00] — | — | - |[0:00] 0.02 | 0.03 | 0.06
0.13[[0.00] — | — | - |[0:00] 0.0 | 0.03 | 0.06
0.13[[0.00] — | — | - |[0:00] 596 | 0.04 | 0.07
7X7 (0.5) [0.13][0.00] — | — | — [[0.00] 0.38 | 0.05 | 0.09
0.13|[0.00|332 [4.13| - |[0.00] 0.04 | 063 | 1156
0.13[[0.00] — [ - | — |[0:00] 0.31 | 3886 | -
0.13[[0.00 [ 0.14[0.15] 0.15][ 0.00] 0.01 | 0.03 | 0.06
0.13][000] - | - | - [[0.00] 089 | 1737 | 1.25

Table 2: Planner runtimes on different formulations of FT-
planning tasks in the spirit of our example.

ward. For us, of course, the interesting part was in between
these two extremes, and both Contingent-FF and Fast Down-
ward found non-trivial k-plans for numerous tasks here.
In terms of performance, compiling the contingent (F, k)-
reformulations to classical planning strictly dominated solv-
ing the former directly, in terms of the coverage of both solv-
able and unsolvable FT-planning tasks. In sum, the direction
of compiling FT-planning tasks to classical planning appears
promising, and clearly deserves further investigation.

In Lemma 5 below, we now formalize the properties of
FT-PLAN-1-x that are exploited by the compilation of its
fragment above. In particular, this lemma allows for extend-
ing this compilation scheme to arbitrary fixed bounds on the
number of non-deterministic effects per operator, as well as
to arbitrary normative 1-primary exception models.

Lemma4 Let (Il = (P, 0, so, G), F, k) be an FT-planning
task with a 1-primary model F, and max,co eff(0) = b. If
7 is an irreducible contingent plan for TI'7%) then there
exists a set of policies g, . . ., T, over S %) such that

(1) mo is an empty policy, T, = 7, and each m; extends
m;_1 by prescribing an action for a single additional
state of TI'7>") such that the execution tree Ty, | is a
proper sub-tree of T, and

(2) for0 < i <mand0 < j < K, m; induces at most b
executions p that do not achieve the goal within T ., and

have F(p) = j.

The proof is as follows. Let 7 be an irreducible contin-
gent plan for the (F,s)-reformulation of (II, F, k) as in
the claim, and let {(s1,%1),..., (Sm, km)} be a relabeling

of the nodes Sfrf’ﬁ) consistently with the order in which



they are expanded by a depth-first traversal of 7., with the
“depth” of a node (s, k) being given by k. Given that, let a

sequence of policies M = my, ..., 7, be defined as
(S35 kj)? ] <1
i(sj, k) = L.
mils5, ks) {undeﬁned, J>1

It is immediate that M satisfies condition (1) of the lemma,
and so what remains to be shown is condition (2). The
proof is by induction on ¢. For ¢ = 0, the condition is
trivially satisfied since my is empty. Assuming that the
condition is satisfied for ¢ — 1 > 0, the proof for ¢ is

as follows. By the DFS construction of M, we have
S = %) {(sy, ki) }. where (s;, k;) is a non-goal

leaf node in T, ,. Furthermore, for all other non-goal leaf
nodes (s;, k;) of T, ,, it holds that k; < k;, or otherwise
DFS would expand (s;, k;) prior to (s;,k;). Given that,
consider the extension of T, _, to Ty, by m(s;, k;).

By the definition of exception models, for each k < k;,
the number of executions p of 7; that do not achieve the
goal within T, and have F(p) = k is the same as for m;_1,
and this because the number of “exceptions so far” cannot
decrease with the progress of the execution. For k = k;,
since F is l-primary, 7; replaces a single execution p of
m;—1 that does not achieve the goal within T’;, , and has
F(p) = k;, with at most one such execution, namely the
one that extends p with the sole primary effect of 7(s;, k;).
Finally, for all £ > k;, there are no executions of m;_; that
do not achieve the goal within T, , and have F(p) = k,
and thus there are at most b such executions of ;.

Given an FT-planning task (Il = (P,0,sq,G),F,kK)
with a normative 1-primary model F and max,co eff(0) =
O(1), a polynomial-time, sound, and complete compi-
lation of (II, F,x) to a classical planning task II' =
(P',0',0(,G") is specified below. For ease of presentation,
for each operator o € O(s), if eff(0) = {eg,e1,...ep},
then F(ep) = 0. The set of propositions P’ contains
k(b—1)+1 replicas of propositions P, as well as k(b—1)+1
auxiliary propositions open, denoted as

U P; ;U {open; ;}.
1<i<k,
1<5<b-1

P' = Py U {openy} U

The set of operators O’ contains k(b — 1) + 1 sets of op-
erators OQ’O, 01)1, Ceey Ol,bfl, C ,Oml, ey On,b717 with
O, ; = {0i,j | 0 € O}. For each o € O, the precondition of

the operator o0; ; is -

pre(oi,;) = Lpre(o)ji’j U {Openi,j} U U {_‘Ope“i,w}

rz=j+1
K

U U O{—'openy’z}.

y=i+1lz=1

If eff (0) = {eo, e1,...ep }, then

effi; ={(0, [add(eo)]; ; , [del(eo)]; ;)} U

U { <87{Openi+]:(ez),z}7 @ >7}
dd ) del )
<oz, UAES (el)JZHE(ew),I»L e(el)JH»}"(el.),z>
i+F(ex)<K
U®; e
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where
i =

p&add(ey )Udel(ey)
Likewise, O’ contains a set of auxiliary operators

{ {pii}s APitF(en)a}D %}
<{_‘p7:vj}’®’ {pi+]-'(ew),1'}> '

{0(’5’0, O 15ee ey 0] qseeesOfqsenns of;b_l}, with
b—1
pre(o; ;) = I_GJ«;,]‘ U {Openi,j} U U {—open; .}
a=j+1
ko bl
U U U {—open, .},

y=it+1a=1
eff(o;) ={(0,0, {open, ;})}.

Finally, as in the basic case, the initial state and goal are
specified as o = [ 0] (U{open, o} and G’ = {—open, ,}.

Theorem 5 Let (Il =, F, k) be an FT-planning task with a
1-primary model F, and T be the compilation of TI. There
is a bijective, efficiently computable mapping between the
irreducible plans for I1'7%) and those for I1'.

Summary

We studied computational properties of fault tolerant plan-
ning, a simple and natural planning formalism that interpo-
lates between contingent and classical planning. We showed
that an important spot along this interpolation exhibits at-
tractive worst-case time complexity, and for most, can be
efficiently compiled to classical planning in a sound, com-
plete, and practicable manner.

The palette of possible (and impossible) extensions to FT-
planning that call for investigation is wide. For instance, it
is possibly more natural in some contexts to assume bounds
on the number of failures per operator, and not on the num-
ber of failures overall, as we do here. It is easy to show that
this type of assumption-based planning is also in PSPACE,
but our more practicable results here (NP-membership for
problems with polynomially-long executions and the spe-
cific compilation scheme to classical planning) do not ap-
ply there. Also, for simplicity, throughout the paper we as-
sumed a single (aka fully known a priori) initial state. It is
not hard to verify, however, that our PSPACE-membership,
NP-membership, and compilation results can be straightfor-
wardly extended to arbitrary, polynomial, and fixed numbers
of possible initial states, respectively, as long as listing these
possible initial states does not introduce further complex-
ity. Finally, we believe that FT-planning to classical plan-
ning compilation can be substantially stratified by exploiting
the structure of the FT-planning tasks, similarly to the way
the structure of the tasks is exploited in recent compilations
from conformant to classical planning (Palacios and Geffner
2009).
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