
Abstractions for Oversubscription Planning

Vitaly Mirkis and Carmel Domshlak
Technion - Israel Institute of Technology

Haifa, Israel
{dcarmel,mirkis}@tx.technion.ac.il

Abstract
In deterministic OSP, the objective is to achieve an as valu-
able as possible subset of goals within a fixed allowance of
the total action cost. Although numerous applications in var-
ious fields share this objective, no substantial algorithmic ad-
vances have been made beyond the very special settings of
net-benefit optimization. Tracing the key sources of progress
in classical planning, we identify a severe lack of domain-
independent approximations for OSP, and start with inves-
tigating the prospects of abstraction approximations for this
problem. In particular, we define the notion of additive ab-
stractions for OSP, study the complexity of deriving effective
abstractions from a rich space of hypotheses, and reveal some
substantial, empirically relevant islands of tractability.

Introduction
In deterministic planning, the basic structure of acting with
underconstrained or overconstrained resources is respec-
tively captured by classical planning and oversubscription
planning. In classical planning, all goals must be achieved
at as low a total cost of the actions as possible. In oversub-
scription planning (OSP), an as valuable as possible subset
of goals should be achieved within a fixed allowance of the
total action cost. While both theory and practice of classical
planning have been rapidly advancing, progress in OSP has
been mostly in the direction of net-benefit planning. In net-
benefit planning, no explicit restriction is put on the plan
cost, and the action costs and goal utilities are assumed to
be comparable, with the objective being maximizing the dif-
ference between the cumulative value of the achieved goals
and the cost invested in achieving them. Although there are
numerous interesting algorithms for net-benefit planning, it
was recently shown to be polynomial-time reducible to clas-
sical planning (Keyder and Geffner 2009). As such, it con-
stitutes an extremely special variant of oversubscription.

A closer look shows that the recent progress in clas-
sical planning stems, to a large extent, from advances in
domain-independent approximations, or heuristics, of the
cost needed to achieve all the goals from a given state. It is
thus possible that having a similarly rich palette of effective
heuristic functions for OSP would advance the state-of-the-
art in that problem. In principle, the reduction of Keyder

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Geffner (2009) from net-benefit to classical planning
can be used to reduce OSP to classical planning with nu-
meric state variables (Fox and Long 2003; Helmert 2002).
So far, however, progress in classical planning with numeric
state variables has mostly been achieved along delete re-
laxation heuristics (Hoffmann 2003; Edelkamp 2003), and
these heuristics do not preserve information on consum-
able resources: the “negative” action effects that decrease
the values of numeric variables are ignored, possibly up to
some special handling of so-called “cyclic resource trans-
fer” (Coles et al. 2008).

In this work we make first steps towards effective heuris-
tics for OSP, and in particular, towards admissible abstrac-
tion heuristics for this problem. In classical planning,
state-space abstractions are among the most prominent tech-
niques for devising admissible heuristics (Edelkamp 2002;
Haslum et al. 2007; Helmert, Haslum, and Hoffmann 2007;
Katz and Domshlak 2010a). Departing from the most basic
question of what state-space abstractions for OSP actually
are (and what they are not), we show that the very notion
of abstraction substantially differs in classical and in OSP.
We define additive abstractions and abstraction heuristics for
OSP, and investigate computational complexity of deriving
effective abstraction heuristics in the scope of homomorphic
abstraction skeletons, paired with cost, value, and budget
partitions. Along with revealing some significant islands
of tractability, we expose an interesting interplay between
knapsack-style problems, convex optimization, and princi-
ples borrowed from explicit abstractions for classical plan-
ning. We believe that this interplay opens the road to much
further research.

Formalism and Background
In line with the SAS+ formalism for deterministic plan-
ning (Bäckström and Klein 1991; Bäckström and Nebel
1995), a planning task structure is given by a pair 〈V,A〉,
where V is a set of n finite-domain state variables, and A
is a finite set of actions. Each complete assignment to V is
called a state, and S = dom(v1) × · · · × dom(vn) is the
state space of the structure 〈V,A〉. Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
ditions and effects, respectively. Denoting by V(p) ⊆ V
the subset of variables instantiated by a partial assignment
p, action a is applicable in a state s iff s[v] = pre(a)[v] for

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

153

all v ∈ V(pre(a)). Applying a changes the value of each
v ∈ V(eff(a)) to eff(a)[v]. The resulting state is denoted
by sJaK; by sJ〈a1, . . . , ak〉K we denote the state obtained
from sequential application of the (applicable in turn) ac-
tions a1, . . . , ak starting at state s.

In classical planning, a planning task Π = 〈V,A; s0, G, c〉
extends its structure with an initial state s0 ∈ S, a goal
specification G, typically modeled as a partial assignment
to V , and an action cost function c : A → R0+. An ac-
tion sequence ρ is called an s-plan if it is applicable in s,
and G ⊆ sJρK. An s-plan is optimal if the sum of its action
costs is minimal among all s-plans. The objective in classi-
cal planning is to find an s0-plan of as low cost as possible,
with optimal classical planning being devoted to searching
for optimal s0-plans only.

In contrast, a oversubscription planning (OSP) task Π =
〈V,A; s0, c, u, b〉 extends its structure with four components:
an initial state s0 ∈ S and an action cost function c : A →
R0+ as above, plus a succinctly represented and efficiently
computable state value function u : S → R0+, and a cost
budget b ∈ R0+. An action sequence ρ is called an s-plan if
it is applicable in s, and

∑
a∈ρ c(a) ≤ b; by û(ρ) we refer

to the value of the end-state of ρ, that is, û(ρ) = u(sJρK).
While empty action sequence is an s-plan for any state s,
the objective in oversubscription planning is to find an s0-
plan that achieves as valuable a state as possible, and opti-
mal oversubscription planning is devoted to searching for
optimal s0-plans only: An s-plan ρ is optimal if û(ρ) is
maximal among all the s-plans, and if ρ is optimal, then
h∗(s)

def
= û(ρ).

Each planning task Π induces a state-transition model, or
transition graph. Following Katz and Domshlak (2010b), we
distinguish between the actual node/edge-weighted transi-
tion graphs, and their weights-omitted, qualitative skeletons,
referred to as transition graph structures. Informally, the lat-
ter capture the dynamics of the planning tasks, while the
former associate these dynamics with “performance mea-
sures” (Russell and Norvig 2009). A transition graph struc-
ture (or tg-structure) is a triplet T = 〈S,L, Tr〉 where S
is the finite set of states, L is the finite set of labels, and
Tr ⊆ S × L× S is a set of labeled state transitions. Each
tg-structure T = 〈S,L, Tr〉 implicitly defines a space of
performance measures that can be associated with it. In the
context of OSP, this space constitutes C × U × B where
C is the set of all functions from labels L to R0+, U is the
set of all functions from states S to R0+, and B = R0+.
A transition graph (or t-graph) Φ = 〈T , c, u, b〉 asso-
ciates a tg-structure T with a specific performance measure
(c, u, b) ∈ C ×U ×B. A path from state s along the transi-
tions of T is an s-plan for Φ if

∑
(s,l,s′)∈π c(l) ≤ b.

The tg-structure T (Π) induced by a planning task Π =
〈V,A; s0, c, u, b〉 is induced by the structure 〈V,A〉 of the
latter: the states and labels of T (Π) are states S = dom(V)
and actions A of Π, respectively, and (s, a, sJaK) ∈ Tr
iff action a is applicable in state s. The t-graph induced
by a planning task Π = 〈V,A; s0, c, u, b〉 is Φ(Π) =
〈T (Π), c, u, b〉. Since there is an obvious correspondence
between the s-plans for Π and the s-plans for Φ(Π), search-

ing in Φ(Π) corresponds to planning for Π via state-space
search, and heuristic-search such procedures employ heuris-
tic functions to estimate the relative attractiveness of various
parts of the t-graph Φ(Π). A useful heuristic function must
be both efficiently computable from the planning task, as
well as relatively accurate in its estimates. Improving the ac-
curacy of a heuristic function without substantially worsen-
ing the time complexity of computing it translates into faster
search for plans.

In classical planning, numerous approximation tech-
niques, such as monotonic relaxation, critical trees, log-
ical landmarks, and abstractions, have been translated to
extremely useful heuristic functions, and different heuris-
tics for classical planning can also be combined into their
point-wise maximizing and/or additive ensembles.1 Unfor-
tunately, while some of these ideas have also been translated
to classical planning with numeric state variables, the result-
ing heuristics do not appear useful for OSP. Approaching the
need for effective heuristics for OSP, here we focus on ab-
stractions for OSP, from their very definition and properties,
to the prospects of deriving (admissible) abstraction heuris-
tics.

Abstractions for OSP
The term “abstraction" is usually associated with simplify-
ing the original system, factoring out details less crucial in
the given context. In classical planning, the abstract t-graphs
are required not to increase the distances between the (ab-
stracted) states (Katz and Domshlak 2010b), and such “dis-
tance conservation” is in particular guaranteed by homomor-
phic abstractions, obtained by systematically contracting
sets of states into single abstract states (Helmert, Haslum,
and Hoffmann 2007). In turn, an additive abstraction in clas-
sical planning is a set of abstractions, inter-constrained to
jointly not overestimate the state-to-state costs of the original
task. As we now show, the concept of (additive) abstractions
in OSP is very different, and, for better and for worse, has
many more degrees of freedom than the respective concept
in classical planning.

For k ∈ N+, by [k] we denote the set {1, 2, . . . , k}. Let
T = 〈S,L, Tr〉 be a tg-structure, and let Ti = 〈Si, Li, T ri〉,
i ∈ [k], be a set of some tg-structures, each related to T
via some state mapping αi : S → Si. Such a set of tg-
structure/state-mapping pairs AS = {(Ti, αi)}i∈[k] is what
is called an abstraction skeleton for T (Katz and Domshlak
2010b). Now, if Ci × Ui × Bi is the performance measure
space of Ti, then C ×U × B, with C = ×Ci, U = ×Ui,
and B = ×Bi, is the joint performance measure space of
AS. That is, any choice of (c,u,b) ∈ C×U×B induces
a set of t-graphs {〈Ti, c[i],u[i],b[i]〉}i∈[k]. In turn, once
T is associated with a performance measure (c, u, b), each
joint performance measure (c,u,b) of AS either does or
does not constitute an (additive) abstraction of the t-graph
Φ = 〈T , c, u, b〉. In Definition 1 we capture this relation at
even a more refined level—with respect to a specific state of

1For a comparative survey and pointers to the literature, we re-
fer the reader to Helmert and Domshlak (2009).

154

T (Π) s2
l3 // s4

l5��

T1 s13
l4��

T2 s22
l3 // s24

l5��
s1

l2

//

l1
::uuuuuu
s3

l4

// s5 s11 l1

//

l2
<<yyyyy
s15 s21 l2

//

l1
<<yyyyy

s25

(a) (b)

Figure 1: Illustration for our running example

interest in Φ—and we do that directly in terms of t-graphs
induced by OSP tasks.

Definition 1 (Additive Abstraction)
Let Π = 〈V,A; s, c, u, b〉 be an OSP task, AS =
{(Ti, αi)}i∈[k] be an abstraction skeleton for T (Π), and
(c,u,b) be a joint performance measure for AS. The set
of t-graphs A(c,u,b) = {〈Ti, c[i],u[i],b[i]〉}i∈[k] is an (ad-
ditive) abstraction for Π, denoted by A(c,u,b) As AS, if

h∗(s) ≤ hA(c,u,b)
(s)

def
=
∑
i∈[k]

h∗i (αi(s)),

i.e., when hA(c,u,b)
(s) is an admissible estimate of h∗(s).

In simple terms, a set of abstractions in OSP is constrained
to jointly not underestimate the value that can be obtained
from a concrete state of the original task within a given cost
budget. For example, let T =

〈
{si}i∈[5], {li}i∈[5], T r

〉
in

Figure 1a be a tg-structure of some OSP task Π with initial
state s1, and AS = {(T1, α1), (T2, α2)}, with tg-structures
T1, T2 as in Figure 1b and state mappings

α1(si) =

{
s15, i ∈ {2, 4}
s1i , otherwise

α2(si) =

{
s25, i = 3

s2i , otherwise.

Let t-graphs Φ(Π) = 〈T (Π), c, u, b〉, Φ1 = 〈T1, c1, u1, b1〉,
Φ2 = 〈T2, c2, u2, b2〉 be defined via label cost functions
c, c1, c2 that associate all labels with a cost of 1, budgets
b = b1 = b2 = 2, and state value functions u, u1, u2 that
evaluate to zero on all states except for s5, s15, s

2
5, on which

they respectively evaluate to one. Considering the state s1 of
Π, the optimal s1-plan for Π is π = 〈(s1, l2, s3), (s3, l4, s5)〉
with û(π) = 1. The optimal α1(s1)-plan for Φ1 is π1 =〈
(s11, l1, s

1
5)
〉

with û1(π1) = 1, and the optimal α2(s1)-plan
for Φ2 is π2 =

〈
(s21, l2, s

2
5)
〉
, with û2(π2) = 1. Since

û(π) ≤ û1(π1) + û2(π2), A = {Φ1,Φ2} is an additive
abstraction for Π.

Theorem 1 For any OSP task Π = 〈V,A; s, c, u, b〉, any
abstraction skeleton AS of T (Π), and any A As AS, if
the t-graphs of A are given explicitly, then hA(s) can be
computed in time polynomial in ||Π|| and ||A||.

The proof is straightforward: Let A = {Φi}i∈[k], with
Φi = 〈Ti, ci, ui, bi〉, be an additive abstraction for Π. For
i ∈ [k], let S′i = {s′ ∈ Si |ci(αi(s), s′) ≤ bi}. Since A
is given explicitly, computing shortest paths from αi(s) to
all states in Ti, and thus computing S′i, can be done in time
polynomial in ||A|| for all i ∈ [k]. If πi is an optimal αi(s)-
plan for Φi, then by Definition 1, ûi(πi) = maxs′∈S′i ui(s

′),

(−,−,−)

kkkk
kk SSSS

SS

(−,u,−)

SSSS
SS

(c,−,−)

kkkk
kk SSSS

SS
(−,−,b)

kkkk
kk

(c,u,−) (−,u,b) (c,−,b)

(c,u,b)

SSSSSS
kkkkkk

Figure 2: Fragments of restricted optimization over A(s).

and thus computing hA(s) =
∑
i∈[k] ûi(πi) is polynomial

time in ||A||.
While Theorem 1 is positive, it establishes only a nec-

essary condition for the relevance of OSP abstractions to
practice. Given an OSP task Π, and having fixed an ab-
straction skeleton T with a joint performance measure space
C × U × B, for each state of interest s, we should be
able to automatically identify an abstraction that provides
us with as accurate (aka as low) an estimate as possible.
Let A(s) ⊆ C × U × B be the subset of joint perfor-
mance measures that constitute abstractions for Π. Note
that A(s) is not a combinatorial rectangle in C × U × B.
For instance, consider t-graph Φ(Π), state s1 of Φ(Π), and
abstraction skeleton AS from our running example. Let
c ∈ C be a cost function vector with both c[1] and c[2]
being constant, unit-cost functions, and two performance
measures (c,u,b), (c,u′,b′) ∈ C × U × B being de-
fined via budget vectors b = {b[1] = 2,b[2] = 0} and
b′ = {b′[1] = 0,b′[2] = 2}, and value function vec-
tors u and u′, with u[1],u[2],u′[1], and u′[2] evaluating
to zero on all states except for u[1](s15) = u′[2](s25) = 1.
It is easy to verify that (c,u,b), (c,u′,b′) ∈ A(s1), yet
(c,u′,b), (c,u,b′) 6∈ A(s1).

We now proceed with considering a specific family of ad-
ditive abstractions, reveal some of its interesting properties,
and show that it contains substantial islands of tractability.
We break down and approach the overall agenda of com-
plexity analysis of abstraction-based heuristic functions un-
der fixation of some of the three dimensions of A(s): If,
for instance, we are given a vector of value functions u that
is known to belong to the projection of A(s) on U, then we
can search for a quality abstraction from the abstraction sub-
set H(−,u,−)(s) ⊂ A(s), corresponding to the projection of
A(s) on {u}. As we show below, even some constrained
estimate optimizations of this kind can be challenging. The
lattice in Figure 2 depicts the range of options for such con-
strained optimization; at the extreme settings, H(−,−,−)(s)
is simply a renaming of A(s), and h(c,u,b)(s) corresponds
to a single abstraction (c,u,b) ∈ A(s).

Partitions and Homomorphic Abstractions
With Definition 1 allowing for very general abstraction
skeletons, in this work we focus on homomorphic abstrac-
tion skeletons2: Given a tg-structure T = 〈S,L, Tr〉, an

2All the results also hold verbatim for the more general “la-
beled paths preserving” abstraction skeletons studied by Katz and
Domshlak (2010b) in the context of optimal classical planning.

155

T1 s13

l4��

T2 s22
l3 // s24

l5��
s11 l1

//

l2
=={{{{{{
s15 l3,l5ff s21 l2

//

l1
=={{{{{{

s25 l4ff

Figure 3: Homomorphic abstraction skeleton for T (Π) in
Figure 1.

abstraction skeleton AS = {Ti, αi}i∈[k] of T is homomor-
phic if, for i ∈ [k], Li = L, and (s, l, s′) ∈ Tr only if
(αi(s), l, αi(s

′)) ∈ Tri. In our running example, the ab-
straction skeleton depicted in Figure 1b is not homomorphic,
but its slight extension as in Figure 3, ceteris paribus, is ho-
momorphic. Furthermore, we focus on a fragment of addi-
tive abstractions

Ap(s) = A(s) ∩ [Cp ×Up ×Bp] ,

where Cp ⊆ C, Up ⊆ U, and Bp ⊆ B correspond to
cost, value, and budget partitions, respectively. In what fol-
lows, by Hp

x we refer to Hx ∩ Ap(s); e.g., Hp
(−,u,−) =

H(−,u,−)(s) ∩ Ap(s). Given a t-graph Φ = 〈T , c, u, b〉,
a homomorphic abstraction skeleton AS = {Ti, αi}i∈[k]
of T , and c ∈ C, we have c ∈ Cp iff, for each la-
bel l in T ,

∑
i∈[k] c[i](l) ≤ c(l). Similarly, b ∈ Bp

iff
∑
i∈[k] b[i] ≤ b, and (note the change in the direc-

tion of the inequality) u ∈ Up iff, for each state s in T ,∑
i∈[k] u[i](αi(s)) ≥ u(s).
Theorem 2 below establishes a “completeness” relation-

ship between the sets Cp and Bp, as well as an even stronger
“completeness” of Cp and Bp. In particular, it implies that,
for all states s, the projections of Ap(s) on Cp, Up, and Bp

are the entire sets Cp, Up, and Bp, respectively.

Theorem 2 Given an OSP task Π = 〈V,A; s, c, u, b〉 and
a homomorphic abstraction skeleton AS = {Ti, αi}i∈[k] of
T (Π),
(1) for each action cost partition c ∈ Cp, there exists a

budget partition b ∈ Bp such that A(c,u,b) As AS for
all u ∈ Up.

(2) for each budget partition b ∈ Bp, there exists an action
cost partition c ∈ Cp such that A(c,u,b) As AS for all
u ∈ Up.

Proof: Let π = 〈(s, a1, s1), (s1, a2, s2), . . . , (sn−1, an, sn)〉
be an optimal s-plan in Φ(Π). Given that AS is
homomorphic, let π1, . . . , πk be the projections of
π on T1, . . . , Tk, respectively, that is, for i ∈ [k],
πi = 〈(αi(s), a1, αi(s1)), . . . , (αi(sn−1), an, αi(sn))〉 .

(1) Let budget profile b∗ ∈ B be defined as b∗[i] =∑
j∈[n] c[i](aj), for i ∈ [k]. First, note that b∗ ∈ Bp since

∑
i∈[k]

b∗[i] =
∑
i∈[k]

∑
j∈[n]

c[i](aj)
(∗)
≤
∑
j∈[n]

c(aj)
(∗∗)
≤ b,

where (∗) is by c being an action cost partition, and (∗∗) is
by π being an s-plan for Φ(Π). Second, for any u ∈ U,
by the construction of b∗, πi is an αi(s)-plan for the t-
graph 〈Ti, c[i],u[i],b∗[i]〉. Now, let u ∈ Up, and for

i ∈ [k], let π∗i be an optimal αi(s)-plan for that t-graph
〈Ti, c[i],u[i],b∗[i]〉. We have

û[i](π∗i)
(∗)
≥ û[i](πi)

(∗∗)
≥ û(π), (1)

where (∗) is by optimality of π∗i , and (∗∗) is by πi being the
projection of π and u ∈ Up. Therefore, (c,u,b∗) induces
an additive abstraction for Π, that is, A(c,u,b∗) As AS.

(2) Let cost function profile c∗ ∈ C be defined as
c∗[i](a) = c(a) · b[i]

b , for all actions a ∈ A, and all
i ∈ [k]. First, we have c∗ ∈ Cp since b ∈ Bp im-
plies 1/b

∑
i∈[k] b[i] ∈ [0, 1]. Second, for any u ∈ U, by

our construction of c∗, πi is an αi(s)-plan for the t-graph
〈Ti, c∗[i],u[i],b[i]〉. Following now exactly the same line
of reasoning as the one around Eq. 1 above accomplishes
the proof that A(c∗,u,b) As AS for any u ∈ Up. �

Again, an important corollary of Theorem 2 is that, for
all states s, the projections of Ap(s) on Cp, Up, and Bp

are the entire sets Cp, Up, and Bp, respectively. A pri-
ori, this property should simplify the task of abstraction op-
timization, and later we show that this is indeed the case.
However, complexity analysis of abstraction optimization in
most general terms is still problematic because OSP formal-
ism is parametric in the representation of value functions.
Hence, as a first step, we restrict our attention to a fragment
of Ap(s) in which all abstract value functions are what we
call 0-binary: A real-valued function f is a 0-binary if it has
image img(f) = {0, vf} for some vf ∈ R. A set of 0-binary
functions F is called strong if vf = vf ′ for all f, f ′ ∈ F .
On the one hand, 0-binary functions constitute rather a basic
family of value functions. Hence, if abstraction optimization
is hard for them, it is likely to be hard for any non-trivial
family of abstract value functions. On the other hand, 0-
binary abstract value functions seem to fit well abstractions
of planning tasks in which value functions are linear com-
binations of indicators, each representing achievement of a
“goal value” for some state variable.

Ap(s) and 0-Binary Value Partitions
Important roles in what follows are played by a well-known
Knapsack problem, as well as some tools from convex opti-
mization. In a Knapsack problem

〈
{wi, σi}i∈[n],W

〉
, W is

a weight allowance, [n] is a set of objects, and each i ∈ [n]
has a weight wi and a value σi. The objective is to find
a subset X ⊆ [n] that maximizes

∑
i∈X σi over all sub-

sets X ′ ⊆ [n] with
∑
i∈X′ wi ≤ W. By strict Knapsack

we refer to a variant of Knapsack in which that inequality
constraint is strict. Knapsack is NP-hard, but there exist
pseudo-polynomial algorithms for it that run in time poly-
nomial in the description of the problem and in the unary
representation of W (Garey and Johnson 1978). The latter
property makes solving Knapsack practical in many applica-
tions where the ratio W

mini wi
is reasonably low. Likewise, if

σi = σj for all i, j ∈ [n], then a greedy algorithm solves the
problem in linear time by iteratively expanding X by one of
the weight-wise lightest objects in [n] \ X , until X cannot
be expanded any further within W .

156

Let s be a state of an OSP task Π, AS be an (explicitly
given) homomorphic abstraction skeleton of T (Π), and sup-
pose that we fix a value partition u ∈ Up. By Theorem 2,
Hp

(−,u,−)(s) is not empty, and thus we can try computing
min(c,u,b)∈Hp

(−,u,−)
(s) h(c,u,b)

(s).As of yet, however, we do
not know whether this task is polynomial-time solvable for
any non-trivial class of value partitions. In fact, despite that
Hp

(−,u,−)(s) is known to be non-empty, and so, too, are all
of its subsets Hp

(−,u,b)(s) and Hp
(c,u,−)(s), finding an ab-

straction (c,u,b) ∈ Hp
(−,u,−)(s) is not necessarily easy.

In that respect, our first tractability results are for ab-
straction discovery within Hp

(−,u,−)(s) where u is a strong
0-binary value partition. The first (and the simpler) result
in Theorem 3 further assumes a fixed action cost partition,
while the next result, in Theorem 4, is on simultaneous se-
lection of admissible pairs of cost and budget partitions.
We also show how these results can be extended to pseudo-
polynomial algorithms for general 0-binary value partitions.

Theorem 3 (Hp
(c,u,−)(s) & strong 0-binary u)

Let Π = 〈V,A; s, c, u, b〉 be an OSP task, AS be an explicit
homomorphic abstraction skeleton of T (Π), and u ∈ Up be
a strong 0-binary value partition. Given a cost partition c ∈
Cp, computing h(c,u,b)(s) for some abstraction (c,u,b) ∈
Hp

(c,u,−)(s) is polynomial-time in ||Π||, ||AS||, and ||u||.

Proof: The proof is by reduction to the polynomial fragment
of the Knapsack problem corresponding to all items having
identical value. Let AS = {Ti, αi}i∈[k], and, given that u
is a strong set of valued partitions, let img(u[i]) = {0, σ}.
For i ∈ [k], let wi be the cost of the cheapest path in Ti from
αi(s) to (one of the) states s′ ∈ Si with u[i](s′) = σ. Since
AS is an explicit abstraction skeleton, the set {wi}i∈[k] can
be computed in time polynomial in ||AS|| using one of
the algorithms for the single-source shortest paths problem.
Consider now a Knapsack

〈
{wi, σ}i∈[k], b

〉
, with weightswi

being as above and value σ being identical for all objects.
Let X ⊆ [k] be a solution to that (optimization) Knapsack
problem; recall that it is computable in polynomial time.
Given that, we define budget profile b∗ ∈ B as follows:
for i ∈ [k], b∗[i] = wi if xi ∈ X , and b∗[i] = 0, otherwise.

What remains to be shown is that (c,u,b∗) actually in-
duces an additive abstraction for Π, that is, A(c,u,b∗) =
{〈Ti, c[i],u[i],b∗[i]〉}i∈[k] As AS. Assume to the contrary
that A(c,u,b∗) 6As AS, and let π be an optimal s-plan for Π.
By the construction of our Knapsack problem and of b∗, for
each i ∈ X , there is a αi(s)-plan πi in 〈Ti, c[i],u[i],b∗[i]〉
with ûi(πi) = σ. According to Definition 1, our assumption
implies that û(π) >

∑
i∈X ûi(πi) = σ · |X∗|. On the other

hand, from Theorem 2, there exists a budget partition b ∈
Bp such thatA(c,u,b) As AS. This budget partition induces
a feasible solution X ′ = {i | wi ≤ b[i]} for our Knapsack
problem for which û(π) ≤

∑
i∈X′ ûi(πi) = σ · |X ′|. This,

however, implies |X| < |X ′|, contradicting our assumption,
and thus accomplishing the proof of A(c,u,b∗) As AS. �

The construction in the proof of Theorem 3 may ap-

task 60% 80% 100%
blind basic hA blind basic hA blind basic hA

blocks-4-0 23 23 23 47 37 36 19 19 19
blocks-4-1 10 10 10 30 26 24 13 13 13
blocks-4-2 13 13 13 25 22 19 11 11 11
blocks-5-0 53 27 13 191 104 47 20 20 20
blocks-5-1 86 55 35 281 174 54 75 61 46
blocks-5-2 58 37 37 316 231 163 176 161 138
blocks-6-0 124 116 77 440 380 225 34 34 34
blocks-6-1 658 300 79 2415 1401 125 489 358 134
blocks-6-2 394 213 59 3501 2463 266 3135 2800 1549
blocks-7-0 390 331 225 7387 4220 1411 8370 6382 3865
blocks-7-1 6604 3265 480 42168 28862 602 12012 9582 2069
blocks-7-2 3171 2632 1709 28632 20533 8179 15914 12922 8010
blocks-8-0 12691 6116 323 165980 100970 1869 130780 96403 4892
blocks-8-1 46723 27582 16670 347914 252303 — 36504 31174 21358
blocks-8-2 9535 3931 145 89450 46822 154 1035 846 367
blocks-9-1 8651 8099 5069 907991 598110 — 734526 519569 —
blocks-9-2 21488 8754 820 925192 518385 913 1128285 813209 9390
driverlog-1 47 47 27 80 80 48 36 36 36
driverlog-2 18500 18500 6035 93238 93238 40489 4307 4307 2126
driverlog-3 1039 1039 377 5649 5649 905 231 231 231
driverlog-4 31741 31741 1786 272699 272699 22308 292 292 292
driverlog-5 71224 71224 8255 1373724 — — 1635025 — —
driverlog-6 8477 8477 419 62817 62817 2015 8279 8279 3034
driverlog-7 31293 31293 1421 619572 — 14709 107312 107312 —
logistics-4-0 15532 15532 12487 70845 70845 42452 65601 65601 52339
logistics-4-1 10255 10255 8109 50217 50217 29402 29187 29187 22727
logistics-4-2 3766 3766 2260 14198 14198 8947 2808 2808 2808
logistics-5-0 69013 69013 40087 311846 311846 — 291620 291620 —
logistics-5-1 6410 6410 2473 23175 23175 10941 2082 2082 2082
logistics-5-2 154 154 119 653 653 262 57 57 57
logistics-6-0 47896 47896 21915 231351 231351 — 81987 81987 58819
logistics-6-1 2246 2246 711 9661 9661 3668 474 474 474
logistics-6-2 47032 47032 21400 228617 228617 — 89914 89914 64010
logistics-6-9 31536 31536 15521 162325 162325 66593 11574 11574 10026
depots-1 137 137 137 265 261 261 233 233 233
depots-2 1460 1404 1210 5887 4986 3269 1518 1518 1518

Table 1: Expanded node statistics for optimal OSP with
BFBB search on a set of IPC tasks, cast as OSP.

pear somewhat counterintuitive: while we are interested in
minimizing the heuristic estimate of h∗(s), the abstraction
A(c,u,b∗) is selected via the value-maximizing Knapsack
problem. However, a correct view of the situation would be
that the selected triplet (c,u,b∗) provides us with the lowest
estimate of h∗(s) among all abstractions complying with u
and c, whose A(s) membership, aka admissibility, we know
how to prove in polynomial time. Finally, while strong 0-
binary value partitions are rather restrictive, finding an el-
ement of Hp

(c,u,−)(s) for general 0-binary u is no longer
polynomial—a reduction from Knapsack is straightforward.
However, Knapsack is solvable in pseudo-polynomial time,
and plugging that Knapsack algorithm into the proof of The-
orem 3 results in a search algorithm for Hp

(c,u,−)(s) with
general 0-binary u, running in time polynomial (also) in the
unary representation of the budget b.

For a first test of the value that additive abstractions can
bring to heuristic-search OSP, we have prototyped a sim-
ple planning system on the basis of Pyperplan, a lightweight
planner written in Python3. Within that prototype, we have
provided support for some basic pattern-database abstrac-
tion skeletons, action cost partitions, and abstraction selec-
tion in Hp

(c,u,−)(s) for strong 0-binary value partitions as in
the proof of Theorem 3. As best-first forward search algo-
rithms such as A∗ are not suitable for optimal OSP, we have
implemented a best-first branch-and-bound (BFBB) search.
This BFBB expands the nodes in the decreasing order of

3https://bitbucket.org/malte/pyperplan

157

their state values, with the ties being broken towards higher
h-values, and then higher remaining budgets. As our heuris-
tic estimates always upper-bound the true values achievable
from states, if the h-value of a generated state is lower than
the best state value encountered so far, then that generated
state is pruned. The search terminates when the search fron-
tier becomes empty, and the optimal plan is then extracted
from the search node associated with the best-value state en-
countered so far.

Table 1 compares BFBB node expansions with three
heuristic functions, tagged blind, basic, and hA , on set of
IPC tasks that we cast as OSP by associating a separate
value with each goal. With all three heuristics, the h-value
of a node σ is set to 0 if the cost budget at σ is over-
consumed. Otherwise, blind BFBB constitutes a trivial base-
line in which h(σ) is simply set to the total value of all goals.
In basic BFBB, each goal is associated with its atomic (that
is, single variable) projection abstraction, and h(σ) is set
to the total value of goals, each of which can be individ-
ually achieved within the respective projection abstraction
(see Theorem 1), given the entire remaining budget. Finally,
hA is an additive abstraction heuristic that is selected from
H(c,u,−) as in the proof of Theorem 3, with c being an ad
hoc cost partition over atomic projections of the planning
task onto goal variables, and u being a value partition that
associates the value of each goal (only) with the respective
atomic projection.

Each task was approached under three different budgets,
which were 60%, 80%, and 100% of the minimal cost
needed to achieve all the goals in the task. Despite the sim-
plicity of the abstraction skeletons, the number of nodes ex-
panded by BFBB with hA is typically substantially lower
than the number of nodes expanded by basic BFBB, with the
difference sometimes reaching three orders of magnitude.4
While this evaluation is still very preliminary, it testifies to
the practical prospects of additive abstractions for OSP.

Returning now to the algorithmic analysis in the context
of strong 0-binary value partitions, we now proceed with re-
laxing the constraint of sticking to a fixed action cost parti-
tion c, thus buying more flexibility in selecting abstractions
from Hp

(−,u,−)(s) (and improving the accuracy of our esti-
mates), while still remaining computationally tractable.

Definition 2 Let Π = 〈V,A; s, c, u, b〉 be an OSP task, AS
be a homomorphic abstraction skeleton of T (Π), and u ∈
Up. By κs(u) we refer to the largest value v ∈ R0+ such
that, for each action cost partition c ∈ Cp, there exists a
budget partition b ∈ Bp with (c,u,b) ∈ Hp

(−,u,−)(s) and
h(c,u,b)(s) ≥ v.

Note that κs(u) can be as low as 0 (and for us,
“low" is good), even when, for any 0 ≤ v ≤
maxs∈S

∑
i∈[k] u[i](s), there exists some (c,u,b) ∈

4The runtime inefficiency of Python turned out to be an unfortu-
nate obstacle: within the allowance of 30 minutes, some instances
were solved by blind BFBB and were not solved even by basic
BFBB, and this despite an extremely simple computation of basic
h-values.

Hp
(−,u,−)(s) with h(c,u,b)(s) ≥ v. In particular, note

that h(s) = κs(u) is at least as accurate as the estimate
h

(c,u,−)
(s) from Theorem 3 for any fixed cost partition c.

Theorem 4 (Hp
(−,u,−)(s) & strong 0-binary u)

Given an OSP task Π = 〈V,A; s, c, u, b〉, a homomorphic
explicit abstraction skeleton AS of T (Π), and a strong
0-binary value partition u ∈ Up, determining κs(u) is
polynomial-time in ||Π|| and ||AS||.

Let AS = {Ti, αi}i∈[k], and, given that u is a strong 0-
binary value partition, let img(u[i]) = {0, σ}. Note that, for
each (c,u,b) ∈ Hp

(−,u,−)(s), we have h(c,u,b)(s) = mσ

for some m ∈ {0} ∪ [k]. Our algorithm for determining
κs(u) is depicted in Figure 4, and its high-level flow is as
simple as it gets: The for-loop of the algorithm decreas-
ingly iterates over all the different estimates of h∗(s) that
can possibly come from the abstractions in Hp

(−,u,−)(s),
testing whether κs(u) equals currently examined candi-
date estimate mσ. If the test (provided by the sub-routine
always-achievable) is positive, then we are done. Otherwise,
if the test fails for all m ∈ [k], then κs(u) = 0, which in
particular implies that no state with value greater than 0 can
be reached from s in Π with budget b.

The test of always-achievable for κs(u) = mσ is based
on a certain linear program L1(m), the semantics of which
is captured by Lemma 1 below.5 Informally, if L1(m) is
infeasible, then no cost partition over AS can provide us
with the additive estimate of mσ, and this independently of
the budget allowance; this can happen only if all σ-valued
abstract states are simply unreachable from the respective
abstractions of s in at least k −m + 1 tg-structures of AS.
Otherwise, if L1(m) is solvable, then its solution establishes
an action cost partition overAS that induces the most costly
achievement of the additive estimate of mσ using AS, with
the respective total cost being captured in the solution by a
specific LP variable ξ.

Lemma 1 Given a planning task Π = 〈V,A; s, c, u, b〉, let
Π/b′ = 〈V,A; s, c, u, b′〉. For all m ∈ [k], if x is a solution
of L1(m), then

x[ξ] = max
c∈Cp

min

[
b′ ∈ B

∣∣∣∣ (c,u,b) ∈ Hp
(−,u,−)(s) w.r.t. Π/b′,

h(c,u,b) ≥ mσ

]
.

Otherwise, if L1(m) is infeasible, then for no Π/b′ there
exists (c,u,b) ∈ Hp

(−,u,−)(s) with respect to Π/b′ such
that h(c,u,b) ≥ mσ.

The correctness of the algorithm with respect to Theo-
rem 4 stems from Lemma 1: Suppose that the algorithm ter-
minates within the loop, and returns mσ for some m > 0.
By the construction of the algorithm, L1(m) is feasible and
if x is a solution of L1(m), then x[ξ] ≤ b. Lemma 1 then
implies that, for each action cost partition c ∈ Cp, there
exists a budget partition b ∈ Bp such that (c,u,b) is an
additive abstraction for Π and h(c,u,b)(s) ≥ mσ. If m = k,

5The proof of Lemma 1 is omitted for lack of space.

158

input: Π = 〈V,A; s, c, u, b〉, AS = {Ti, αi}i∈[k],
strong 0-binary value partition u ∈ Up

output: κs(u)

for m = k downto 1 do
if always-achievable(m) then return mσ

return 0

always-achievable(m):
solve(L1(m)) 7→ infeasible / solution x ∈ dom(X)
if infeasible or x[ξ] > b then return false

else return true

solve(L1(m)):
set (5’) to an arbitrary subset of constraints (5)
loop

set L′1(m) to L1(m), with constraints (5’) instead of (5)
ellipsoid-method(L′1(m)) 7→ infeasible / solution x ∈ dom(X)
if infeasible return infeasible
let τ be a permutation of [k] such that

x[b[τ(1)]] ≤ x[b[τ(2)]] ≤ · · · ≤ x[b[τ(k)]]
if x[ξ] ≤

∑
i∈[m] x[b[τ(i)]] then return x

extend (5’) with constraint ξ ≤
∑

i∈[m] b[τ(i)]

Figure 4: An algorithm for computing κs(u) for strong 0-
binary value partitions u ∈ Up (Theorem 4).

then trivially κs(u) = mσ. Otherwise, if m < k, we know
that the algorithm did not terminate at the previous iteration
corresponding to m+ 1. Again, Lemma 1 implies that there
exists an action cost partition c ∈ Cp for which no bud-
get partition b of b will induce an additive abstraction for Π
with h(c,u,b)(s) ≥ (m + 1)σ (or, in case of infeasibility of
L1(m+ 1), such a budget partition exists for no action cost
partition at all.). Hence, by Definition 2, κs(u) < (m+1)σ,
and in turn, by the structure of u, that implies κs(u) = mσ.
Finally, if the algorithm terminates after the loop and returns
0, then precisely the same argument on the basis of Lemma 1
implies κs(u) = 0.

It remains now to specify our linear programs L1(m) in
detail, and analyze the complexity of solving them. Each
such linear program is defined over variables

X = {ξ} ∪
⋃
i∈[k]

[
{d(s′)}s′∈Ti ∪ {b[i]} ∪

⋃
a∈A

{c[i](a)}

]
, (2)

constraints as in Eqs. 3-5, and the objective of maximizing
the value of ξ. The roles of the variables in L1(m) are as fol-
lows. Variable c[i](a) captures the cost to be associated with
label a in the tg-structure Ti. For state s′ in Ti, variable d(s′)
captures the cost of the cheapest path in Ti from αi(s) to s′,
given that the transitions (aka edges) are weighted consis-
tently with the values of the variables c[i](·). Variable b[i]
captures the minimal budget needed for reaching in Ti a state
with value σ from state αi(s), given that, again, the transi-
tions are weighted consistently with the variable vector c[i].
Finally, ξ captures the minimal total cost of reaching states
with value σ in precisely m t-graphs induced by AS under
the joint performance measure (c,u,b).

The constraints of L1(m) are as follows. The first two

sets of constraints in (3) come from a simple LP formu-
lation of the single source shortest paths problem with the
source node αi(s): optimizing

∑
i∈[k]

∑
s′∈Ti d(s′) under a

fixed transition pricing c leads to computing precisely that.
The third set of constraints in (3) establishes the costs of the
cheapest paths in {Ti} from states αi(s) to states valued σ,
enforcing the semantics of variables b[i]. Constraints (4)
are the cost partition constraints, enforcing c ∈ Cp. Finally,
constraints (5) enforce the aforementioned semantics of the
singleton variable ξ.

L1(m) :

max ξ subject to
∀i ∈ [k] :

d(s′) = 0, s′ = αi(s)

d(s′) ≤ d(s′′) + c[i](a), ∀(s′′, a, s′) ∈ Ti
b[i] ≤ d(s′), ∀s′ ∈ Ti,u[i](s′) = σ

, (3)

∀a ∈ A :
∑
i∈[k]

c[i](a) ≤ c(a), (4)

∀X ⊆ [k], |X| = m : ξ ≤
∑
i∈X

b[i]. (5)

Note that, while the number of variables, as well as the
number of constraints in (3) and (4), are polynomial in ||Π||
and ||AS||, the number of constraints in (5) is

(
k
m

)
. Thus,

solving L1(m) using standard methods for linear program-
ming is not practical. However, using the ellipsoid algo-
rithm for linear inequalities (Grotschel, Lovasz, and Schri-
jver 1981), an LP with an exponential number of constraints
can be solved in polynomial time provided that an associ-
ated separation problem can be solved in polynomial time.
In our case, the separation problem is, given an assignment
to the variables of L1(m), test whether it satisfied (3), (4),
and (5), and if not, produce an inequality among (3), (4),
and (5) violated by that assignment. We now show how our
separation problem for L1(m) can be solved in polynomial
time (see solve(L1(m)) in Figure 4) using what is called m-
sum minimization LPs (Punnen 1992). As the number of
constraints in (3) and (4) is polynomial, their satisfaction
by an assignment x ∈ dom(X) can be tested directly by
substitution. For constraints (5), let τ be a permutation of
[k] such that x[b[τ(1)]] ≤ x[b[τ(2)]] ≤ · · · ≤ x[b[τ(k)]].
If x[ξ] ≤

∑
i∈[m] x[b[τ(i)]], then it is easy to see that x

satisfies all the constraints in (5). Otherwise, we have our
violated inequality ξ ≤

∑
i∈[m] b[τ(i)].

From Strong to General 0-Binary Value Partitions
Recall that the polynomial result of Theorem 3 easily ex-
tends to a pseudo-polynomial algorithm for general 0-binary
value partitions. It turns out that a pseudo-polynomial exten-
sion of Theorem 4 is possible as well, though it is technically
more involved.

Theorem 5 (Hp
(−,u,−)(s) & 0-binary u)

Given an OSP task Π = 〈V,A; s, c, u, b〉, a homomorphic
explicit abstraction skeleton AS of T (Π), and a 0-binary

159

input: Π = 〈V,A; s, c, u, b〉, AS = {Ti, αi}i∈[k],
0-binary value partition u ∈ Up

output: κs(u)

let 0 < ε < mini∈[k] σi, α = 0, β =
∑

i∈[k] σi

while β − α > ε do
v = α+ (β − α)/2
solve(L2(v)) 7→ infeasible / solution x ∈ dom(X)
if infeasible or x[ξ] > b then β = v

else α = v
if α = 0 then return 0; else return β

solve(L2(v)):
set (6′) to an arbitrary subset of constraints (6)
loop

set L′2(v) to L2(v), with constraints (6′) instead of (6)
ellipsoid-method(L′2(v)) 7→ infeasible / solution x ∈ dom(X)
if infeasible return infeasible
strict-Knapsack({x[b[i]], σi}i∈[k],x[ξ]) 7→ solution X ⊆ [k]
if
∑

i∈X σi < v then return x
extend (6′) with constraint ξ ≤

∑
i∈X b[i]

Figure 5: An algorithm for computing κs(u) for 0-binary
value partitions u ∈ Up (Theorem 5).

value partition u ∈ Up, determining κs(u) within n-digit
precision6 is polynomial-time in ||Π||, ||AS||, log(n), and a
unary representation of the budget b of Π.

Let AS = {Ti, αi}i∈[k], and, for i ∈ [k], img(u[i]) =

{0, σi}. The algorithm for computing κs(u) for inputs as in
Theorem 5 is depicted in Figure 5. The flow of that algo-
rithm bears some similarity to the one in Figure 4, yet it is
different in many respects.

At the high-level, the algorithm performs a binary search
over the hypothesis interval [0,

∑
i∈[k] σi]. The parameter ε

serves as the “sufficient precision” criterion for termination;
while any ε > 0 can be used, adopting ε < mini∈[k] σi al-
lows us to provide precision-independent answers in cases
where κs(u) = 0. At iteration corresponding to an interval
[α, β], the algorithm attempts to solve a certain linear pro-
gram L2(v), testing the hypothesis κs(u) ≥ v, where v is
the mid-point of [α, β]. The test is positive if L2(v) is feasi-
ble and the value x[ξ] in the respective solution x for L2(v)
indicates that, for the cost partition c induced by x, there is
a budget partition b that allows us to achieve the total (addi-
tive) estimate of at least v in t-graphs induced by AS under
the performance profile (c,u,b). If so, then the next hy-
pothesis to test will be κs(u) ≥ v′, where v′ is the midpoint
of [v, β]. Otherwise, the next hypothesis corresponds to the
midpoint of [α, v]. To ensure admissibility of the estimate,

6The statement of Theorem 5 involves the precision of the esti-
mate because the σi values of the abstract value functions u[i] can
be arbitrary real numbers. In the case of integer-valued sets of func-
tions u, as well as in various special cases of real-valued functions,
κs(u) can be determined precisely using a simplification of the al-
gorithm we introduce to support the claim of Theorem 5. These
details, however, are more of a theoretical interest; for reasonably
small values of ε, in practice there will be no difference between
estimates h(s) and h(s) + ε.

upon termination of the loop, the estimate is set to β; the
only exception is the case of the last (unexamined) interval
being [0, ε], in which the estimate is safely set to 0. The cor-
rectness of the algorithm with respect to Theorem 5 stems
from a lemma on L2(v), which is identical to Lemma 1, mu-
tatis mutandis.

The LPs L2(v), v ∈ R0+, employed for testing hypothe-
ses κs(u) ≥ v, are also defined over variables X as in Eq. 2,
and are obtained from L1(m) by replacing constraints (5)
with constraints (6):

L2(v) : max ξ subject to constraints (3), (4), and

∀X ⊆ [k] s.t.
∑
i∈X

σi ≥ v : ξ ≤
∑
i∈X

b[i]. (6)

While the semantics of all variables but ξ remains as in
L1(m), ξ now captures the minimal total cost of reaching
some states {si}i∈[k] from states {αi(s)}i∈[k] in the re-
spective k t-graphs induced by AS under the performance
profile (c,u,b) such that

∑
i∈[k] u[i](si) ≥ v. The new

constraints (6) enforce this semantics of ξ (and thus the
required max-min semantics of L2(v)). The number of
constraints in (6) is Θ(2k), and thus procedure solve(L2(v))
also employs the ellipsoid method with a sub-routine for
the associated separation problem. We now show how that
separation problem for L2(v) can be solved in pseudo-
polynomial time using a pseudo-polynomial procedure
for the strict Knapsack problem. Given an assignment
x ∈ dom(X), its feasibility with respect to (3) and (4)
can be tested directly by substitution. For constraints (6),
let X ⊆ [k] be an optimal solution to the strict Knapsack〈
{x[b[i]], σi}i∈[k],x[ξ]

〉
.

• If the value
∑
i∈X σi of X is smaller than v, then x satis-

fies all the constraints in (6). Assume to the contrary that
x violates some constraint in (6), corresponding to a set
X ′ ⊆ [k]. By definition of (6),

∑
i∈X′ σi ≥ v, and by our

assumption, x[ξ] >
∑
i∈X′ x[b[i]]. That, however, im-

plies thatX ′ is a feasible solution for our strict Knapsack,
and of value higher than that of presumably optimal X .

• Otherwise, if
∑
i∈X σi ≥ v, then X itself provides us

with a constraint in (6) violated by x.

Summary
We defined and investigated fragments of additive abstrac-
tions for oversubscription planning. Along with revealing
some significant islands of tractability, we exposed an inter-
esting interplay between these abstractions and certain tools
of combinatorial and convex optimization. Our empirical
tests of the basic abstractions on a prototype system testified
to the promise of the developed approach,. Our next steps
will thus be to develop an efficient implementation of the
entire framework, and to engage in further formal investiga-
tion of what is hard and what is tractable in the context of
devising quality abstractions for oversubscription planning.

Acknowledgments. This work was partially supported by
the EOARD grant FA8655-12-1-2096, and the ISF grant
1045/12.

160

References
Bäckström, C., and Klein, I. 1991. Planning in polyno-
mial time: The SAS-PUBS class. Computational Intelli-
gence 7(3):181–197.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. A hy-
brid relaxed planning graph-LP heuristic for numeric plan-
ning domains. In Proceedings of the 18th International Con-
ference on Automated Planning and Scheduling (ICAPS).
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In Proceedings of the International Con-
ference on AI Planning and Scheduling (AIPS), 274–293.
Edelkamp, S. 2003. Taming numbers and durations in the
model checking integrated planning system. Journal of Ar-
tificial Intelligence Research 20:195–238.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning problems. Journal
of Artificial Intelligence Research 20:61–124.
Garey, M. R., and Johnson, D. S. 1978. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New-York: W.H. Freeman and Company.
Grotschel, M.; Lovasz, L.; and Schrijver, A. 1981. The ellip-
soid method and its consequences theorems in combinatorial
optimization. Combinatorica 1:169–197.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the 19th National Conference on Artificial Intelli-
gence (AAAI), 1007–1012.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: WhatÕs the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 200–207.
Helmert, M. 2002. Decidability and undecidability results
for planning with numerical state variables. In Proceedings
of the Sixth International Conference on Artificial Intelli-
gence Planning and Scheduling.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291–341.
Katz, M., and Domshlak, C. 2010a. Implicit abstraction
heuristics. Journal of Artificial Intelligence Research 39:51–
126.
Katz, M., and Domshlak, C. 2010b. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174:767–798.
Keyder, E., and Geffner, H. 2009. Soft goals can be
compiled away. Journal of Artificial Intelligence Research
36:547–556.

Punnen, A. P. 1992. K-sum linear programming. The Jour-
nal of the Operational Research Society 43(4):359–363.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Pearson, 3 edition.

161

