
Better Time Constrained Search
via Randomization and Postprocessing

Fan Xie and Richard Valenzano and Martin Müller
Computing Science, University of Alberta

Edmonton, Canada
{fxie2, valenzan, mmueller}@ualberta.ca

Abstract

Most of the satisficing planners which are based on heuristic
search iteratively improve their solution quality through an
anytime approach. Typically, the lowest-cost solution found
so far is used to constrain the search. This avoids areas of the
state space which cannot directly lead to lower cost solutions.
However, in this paper we show that when used in conjunc-
tion with a post-processing plan improvement system such
as ARAS, this bounding approach can harm a planner’s per-
formance since the bound may prevent the search from ever
finding additional plans for the post-processor to improve.
The new anytime search framework of Diverse Any-Time
Search addresses this issue through the use of restarts, ran-
domization, and by not bounding as strictly as is done by pre-
vious approaches. Below, we will show that by using these
techniques, the framework is able to generate a more diverse
set of “raw" input plans for the post-processor to work on. We
then show that when adding both Diverse Any-Time Search
and the ARAS post-processor to LAMA-2011, the winner of
the most recent IPC planning competition, the performance
according to the IPC scoring metric improves from 511 points
to over 570 points when tested on the 550 problems from IPC
2008 and IPC 2011. Performance gains are also seen when
these techniques are added to Anytime Explicit Estimation
Algorithm (AEES), as the performance improves from 440
points to over 513 points on the same problem set.

Introduction
Since IPC-2008, the satisficing planning community has
been using the IPC scoring function to evaluate planners.
This function emphasizes both plan quality and coverage
simultaneously. Many satisficing planners such as LAMA
(Richter and Westphal 2010) and Fast Downward (Helmert
2006) use an anytime approach: they attempt to quickly find
an initial plan of possibly low quality, then use the remain-
ing time to improve upon this plan. Post-processing, as im-
plemented in the ARAS system (Nakhost and Müller 2010),
is another recent plan quality improvement technique. This
approach takes an existing valid plan as input and tries to
improve it by removing unnecessary actions and by finding
shortcuts with a local search. Another post-processing tech-
nique, discussed in (Chrpa, McCluskey, and Osborne 2012),

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

analyzes action dependencies and independencies in order
to identify redundant actions or non-optimal sub-plans.

Originally, the ARAS post-processor was applied as the
final step of the planning process, after the planner had com-
pleted or was considered unlikely to find a better plan. How-
ever, since post-processing systems decouple plan improve-
ment from plan discovery, post-processors like ARAS can
also be used in an anytime fashion: by running them with a
relatively tight time or memory limit on every plan produced
by an anytime planner. This approach has been used by sev-
eral recent planners (Nakhost et al. 2011; Valenzano et al.
2012; Xie, Nakhost, and Müller 2012).

Tests with these planners, described below, show that
there is large variance in the amount of improvement
achieved with post-processing. As such, a lower quality in-
put plan can often yield a higher quality final plan through
post-processing than an initially better quality input plan.
This behaviour can be exploited by planning systems which
use post-processing. Currently, most anytime satisficing
planners use the cost of the best incumbent solution to bound
their future search. This avoids wasting effort in areas of
the state space that cannot directly lead to a better solution.
However, such bounding greatly decreases the number and
variety of plans that an anytime system finds and we will
show that because of it, bounding can have a negative impact
on performance, particularly when using post-processing.

The main contributions of this paper are as follows:
• We introduce the concept of unproductive time, which

measures the amount of time after the best solution is
found, to help explain the impact of bounding.

• We present evidence that bounding in an anytime sys-
tem is detrimental when used in conjunction with a post-
processing system.

• We develop the meta-algorithm Diverse Any-time Search
(DAS), which uses restarting to generate a more diverse
set of plans.

• We implement DAS in Fast Downward (Helmert 2006)
and show that it leads to significant plan quality improve-
ments for two recent planning algorithms: the state-of-
the-art planner LAMA-2011 (Richter and Westphal 2010)
and AEES (Thayer, Benton, and Helmert 2012).

• We show that the improvements from DAS and from
post-processing are independent, and can even be syn-

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

269

ergetic: with LAMA, the improvement from using both
techniques together is slightly larger than the sum of the
improvements when applied individually.

The remainder of this paper is organized as follows: after
introducing the concept of unproductive time and measur-
ing it in LAMA for recent IPC planning problems, the new
meta-algorithm DAS is introduced. DAS is tested both with
and without the ARAS post-processor on LAMA-2011 and
AEES. The experimental results show strong improvements
in plan quality on IPC-2008 and IPC-2011 domains.

Unproductive Time in Any-time Satisficing
Planning

As mentioned above, most state-of-the-art planners use an
anytime strategy to improve solution quality over time.
However, there has been little investigation into how much
time is actually being used to find the final solution. Let un-
productive time be defined as the amount of time remaining,
out of the total time given, when the planner’s best solution
is found. For example, if an anytime planner A finds its best
solution on a planning instance B at 13 minutes given a 30
minute time limit, and A does not improve upon this plan
in the remaining 17 minutes, then the unproductive time for
planner A on problem B is 17 minutes. The amount of un-
productive time can be used to evaluate how efficiently an
anytime planner is using the given search time, since that un-
productive time could be spent doing something more use-
ful, such as plan post-processing. Below, we will show that
one of the consequences of using bounding in an anytime
system such as LAMA-2011 is that it often leads to large
amounts of unproductive time.

LAMA-2011 is a state-of-the-art planner that has been
shown to achieve both high coverage and strong solution
quality. It won the sequential satisficing track of the Interna-
tional Planning Competition in 2011 (IPC 2011) after, in its
previous incarnation as LAMA-2008, it won the same track
at IPC 2008. LAMA’s high coverage is achieved through the
use of multiple heuristics (Richter, Helmert, and Westphal
2008), preferred operators (Richter and Helmert 2009), and
greedy best-first search (Bonet and Geffner 2001). LAMA-
2011 starts its search with two runs of greedy best-first
search: first with a distance-to-go heuristic and then with
a cost-to-go heuristic. Next, LAMA improves the quality
of its solutions through the anytime procedure of Restart-
ing Weighted A∗ (RWA∗) (Richter, Thayer, and Ruml 2010).
This procedure starts a new WA∗ search with a lower weight
w whenever a new best solution is found. Only cost-to-go
heuristics are used in this phase.

Whenever a new best solution with cost C is found, this
cost is used to bound the rest of the search. This means that
only nodes with g-cost (cost of best known path to the node)
less than C are added to the open list. This prunes states that
cannot lead directly to a better solution than before. Figure
1 shows that this approach also leads to a very large fraction
of unproductive time on IPC benchmarks. Among the total
of 244 problems solved in IPC-2011 with an 1800 second
(30 minute) time limit, in more than 45% (111) of the prob-
lems, LAMA-2011 is unproductive for more than 1700 sec-

onds. Table 1 shows the amount of unproductive time sep-
arately for each IPC-2011 domain. In the four domains of
2011-barman, 2011-elevators, 2011-parcprinter and 2011-
woodworking, unproductive time exceeds 90%. In these do-
mains, the planner is able to quickly find an initial solution,
but fails to improve upon it.

As a typical example, Table 2 shows the number of solu-
tions and the amount of unproductive time for the 20 in-
stances of 2011-elevators. With the exception of instance
04, LAMA-2011 finds only a single solution to each prob-
lem. This does not at all imply that the first solution found
by LAMA-2011 is optimal. Subsequent postprocessing with
ARAS yields improved solutions for these problems. In these
cases, it is much more difficult to find a second solution
when using cost-to-go heuristics and the bound from the first
solution, than to generate the initial solution using distance-
to-go heuristics with no bound.

7	

5	

3	

6	

3	

3	

5	

2	

6	

3	

7	

11	

4	

5	

8	

11	

21	

111	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	

(0,100]	

(100,200]	

(200,300]	

(300,400]	

(400,500]	

(500,600]	

(600,700]	

(700,800]	

(800,900]	

(900,1000]	

(1000,1100]	

(1100,1200]	

(1200,1300]	

(1300,1400]	

(1400,1500]	

(1500,1600]	

(1600,1700]	

(1700,1800]	

number	
 of	
 problem	

un
pr
od

uc
.v

e	

.m

e	

in
	
 se

co
nd

	

LAMA-­‐2011	

Figure 1: Unproductive Time of LAMA-2011 on IPC-2011

Domain solved total time UT percentage

parcprinter 20 36000 35997 99.99%
barman 20 36000 35901 99.73%
woodworking 20 36000 35357 98.21%
elevators 20 36000 33890 94.14%
visitall 20 36000 31280 86.89%
pegsol 20 36000 31107 86.41%
scanalyzer 20 36000 29844 82.90%
nomystery 10 18000 14682 81.57%
transport 15 27000 20554 76.13%
openstacks 20 36000 24902 69.17%
floortile 6 10800 7032 65.11%
tidybot 16 28800 18099 62.84%
sokoban 19 34200 20377 59.58%
parking 18 32400 13948 43.05%

Table 1: Unproductive Time (UT) of LAMA-2011 on differ-
ent IPC-2011 domains.

Post-Processing with ARAS
Since even a state-of-the-art planner such as LAMA-2011
spends the large majority of its execution time being unpro-
ductive, a natural question becomes: How to use this time
more effectively?

270

Instance #s UT Instance #s UT

01 1 1799 11 1 1760
02 1 1798 12 1 1704
03 1 1797 13 1 1679
04 3 1794 14 1 1725
05 1 1799 15 1 1659
06 1 1796 16 1 1649
07 1 1798 17 1 1576
08 1 1791 18 1 1510
09 1 1789 19 1 1152
10 1 1783 20 1 1531

Table 2: Number of solutions (#s) and Unproductive Time
(UT) of LAMA-2011 in the 20 instances of 2011-elevators.

One possibility is to feed the solutions found by a plan-
ner into a post-processing plan improvement system such as
ARAS (Nakhost and Müller 2010). ARAS consists of two
components. The first, Action Elimination (AE), examines
the plan for unnecessary actions. This involves scanning the
plan from front to back, removing each action and its de-
pendent actions in turn, and testing if the resulting plan is
still valid and reaches a goal. If so, the unnecessary ac-
tions are discarded and the scan continues on the resulting
shorter plan. The second and main component of ARAS is
Plan Neighbourhood Graph Search (PNGS). This technique
builds a neighbourhood graph in the state space around the
trajectory of the input plan by performing a breadth-first
search to some depth d. Once this plan neighbourhood is
constructed, a lowest-cost plan from the start to a goal state
is extracted from this graph. Intuitively, the algorithm iden-
tifies local shortcuts along the path.

Typically, ARAS is run with a time and memory limit. Un-
til the first of these limits is reached, AE and PNGS are al-
ternated (starting with AE). PNGS is run iteratively, with an
increasing depth bound. The best plan found within the lim-
its is returned.

When ARAS was first introduced, it was used in a process-
once fashion. This involved splitting the available planning
time into two phases: plan finding and plan post-processing.
In the first phase, a planner is used to find some plan (or
a series of plans). When the plan finding phase is up, the
best plan found so far is handed to the post-processor which
is then allotted all of the remaining time. Several IPC-2011
planners (Nakhost et al. 2011; Valenzano et al. 2012) used
ARAS in an anytime fashion. This involves interleaving the
plan finding and post-processing phase by using the post-
processor in between iterations of an anytime planner. Each
new plan found is immediately post-processed by ARAS.
When ARAS hits one of its limits, it returns the best solu-
tion it has found and allows the anytime planner to continue
looking for more plans.

There are two motivations for using ARAS in this way.
First, for most anytime satisficing planners, it is difficult
to determine if any new plans will be found during the re-
maining time or if the planner will be unproductive. Sec-
ond, even if the anytime planner can find a better plan with
more search, there is no guarantee that post-processing the

best plan found by an anytime planner will have a lower
cost than the post-processed version of a weaker plan found
earlier. The following experiment illustrates this. There are
151 problems from IPC-2011 for which LAMA-2011 gener-
ates more than one plan (without any assistance from a post-
processor). If ARAS is run with a 2 GB memory limit on all
these plans, then on 44 (29%) of these problems, the lowest
cost solution is generated by post-processing an earlier plan,
not by post-processing the final and best input plan found
by LAMA-2011. The instance 2011-transport07 is typical:
LAMA-2011 generates two plans of cost 8396 and 7222.
Post-processing with ARAS improves the weaker input plan
to 6379, and the stronger one to 6402. The weaker initial
plan leads to the better final result.

This suggests that generating a greater diversity of input
plans can be important for post-processing. If the anytime
planner is only able to generate a small number of similar
plans, then ARAS can only search within a very restricted
set of neighbourhoods. This likely means that all its output
plans will be similar, and of similar quality. When ARAS is
handed a larger and more diverse set of input plans, it has
a greater chance of finding significant improvements for at
least one of them.

The Diverse Any-time Search Meta-Algorithm
The Diverse Any-time Search (DAS) meta-algorithm, shown
in Algorithm 1, uses restarts with no bounds and post-
processing in order to improve a given anytime planner.
DAS divides the given total planning time into N equal time
segments, where N is a user-supplied constant. In the first
segment, the anytime planner P is run normally, except that
ARAS is used to post-process each plan generated by P . At
any time during this first segment, P can use its best plan
found so far, excluding post-processing, to bound its search.

When time runs out on the first time segment, the best plan
found so far, including post-processing, is saved. The any-
time planner is restarted without any knowledge of previous
solutions, and with a planner-specific randomization which
will vary the planner’s search. At the end of each search seg-
ment, the best overall plan is updated, and P restarts from
scratch with a new random seed.

As the early, greedier iterations of P typically find
plans much more quickly and frequently, by restarting from
scratch (and thus performing these greedy iterations again),
DAS increases the number of plans available to the post-
processor. This increases the number of opportunities for
finding a strong improvement. In our experiments, if P can-
not find any solution by the end of the first time segment,
then it is does not restart. This ensures that the coverage
of the planners using DAS is the same as those that do
not use it, and so we can directly focus on the impact that
DAS and other anytime approaches have on plan quality.
These details are included in Algorithm 2. The algorithm
uses two time limits: a soft time limit t for each segment,
used for restarting if at least one solution was found, and a
hard time limit T for the whole search. If in the first seg-
ment, P cannot find a solution within the soft time limit t,
then restarts are disabled. In Algorithm 2, in the assignment
〈p1, t1〉 ← P .search(conf , bound , rand , time), conf is the

271

current search configuration (such as the weight for RWA*),
bound is the plan quality bound, and rand is the random
seed. If the search finds a solution within time limit time, it
returns the plan p1 and time used t1. Otherwise, the search
terminates with p1 = NULL and t1 = time.

The expression 〈p2, t2〉 ← PP .process(p1 , time) indi-
cates a call to the post-processor PP with p1 as the input
plan. The post-processor PP returns when it either reaches
the time limit or a pre-set memory limit. When PP termi-
nates because of the time limit, it returns the best plan found
and t2 = time. When it terminates because of memory, it
returns the best plan found and the time used. In each case,
the best plan returned could still be the input plan p1 if no
improvements are found.

Algorithm 1 Diverse Any-time Search
Input Initial State I , goal condition G given search
time T , planner P , post-processor PP
Parameter N
Output A solution plan

t← T/N
〈planbest, costbest〉 ← 〈[],∞〉
for i from 1 to N do
rand← generate_random_seed()
isSolved← i == 1
plan← AnytimeSearchWithPostprocessing
(I,G, T, t, rand, P, PP, isSolved)
if cost(plan) < costbest then
〈planbest, costbest〉 ← 〈plan, cost(plan)〉

end if
end for
return planbest

Experiments
In this section, we describe five sets of experiments which
show the utility of DAS and help enhance our understanding
of this meta-algorithm. We begin with experiments which
show that bounding can be harmful when used in conjunc-
tion with a post-processor. This is followed by a look at the
performance of DAS without postprocessing in LAMA. We
then experiment with combining DAS in LAMA with the
ARAS system. The fourth set of experiments then looks at
the impact of parameterization on DAS. Finally, we show
that DAS is also effective when added to AEES.

All experiments in this section were run on an 8 core 2.8
GHz machine with a time limit of 30 minutes and mem-
ory limit of 4 GB per problem. Unless otherwise noted,
the test set is made of all 550 problems from IPC-2008
and IPC-2011. Results for planners which use randomiza-
tion are averaged over 5 runs (unless otherwise noted). All
planners are implemented on the same version of the Fast
Downward code base (Helmert 2006) and so the translation
from PDDL to SAS+ is not included against the time limit
since it is the same for all planners. For the first four exper-
iments, the scores shown use the IPC metric with LAMA-
2011 as the baseline. This means that if L is the plan found

Algorithm 2 Anytime Search with Post-processing
Input Initial State I , goal condition G, hard timelimit T ,
soft timelimit t, random seed rand, planner P ,
post-processor PP , first solution found flag solved
Parameter N
Output A solution plan

conf ← P .GetFirstConf ()
bound←∞
planbest ← []
isSolved← solved
totalT ime← 0
restart← true
while have time do

if not isSolved or not restart then
time← T − totalT ime
〈p1, t1〉 ← P .search(conf , bound , rand , time)
if not isSolved and t1 > t then

restart← false
end if

else
time← t− totalT ime
〈p1, t1〉 ← P .search(conf , bound , rand , time)

end if
if p1 == [] then

return []
end if
isSolved ← true
totalTime ← totalT ime+ t1
conf ← P .nextConf (conf)
bound← cost(p1)
if restart then
time← t− totalT ime

else
time← T − totalT ime

end if
〈p2, t2〉 ← PP.process(p1, time)
totalT ime← totalT ime+ t2
if cost(p2) < cost(planbest) then
planbest ← p2

end if
end while
return planbest

by LAMA-2011, then the score of a given plan P is given by
cost(L)/cost(P). For the post-processor, we use the ARAS
system with a 2 GB memory limit.

Experiment 1: Using Post-Processing and
Bounding in LAMA-2011
Table 3 compares three planners on IPC-2011 domains:

• LAMA-2011 is the IPC-2011 version of LAMA.

• LAMA-Aras is an implementation of Diverse Any-time
Search (DAS) with the input planner being LAMA-2011,
the input post-processor being ARAS, and N=1. This
means that there are no restarts, and that the improved

272

Domain LAMA-2011 LAMA-Aras LAMA-Aras-B
barman 20 23.99 23.99
elevators 20 26.01 25.87
floortile 6 6.77 6.77
nomystery 10 10.00 9.83
openstacks 20 19.98 19.89
parcprinter 20 20.10 19.78
parking 18 18.93 17.46
pegsol 20 20.00 20.00
scanalyzer 20 23.35 21.26
sokoban 19 20.23 19.05
tidybot 16 16.77 16.77
transport 15 17.70 16.38
visitall 20 20.45 20.37
woodworking 20 20.96 20.85
Total 244 265.24 258.27

Table 3: Plan Quality of LAMA-2011, LAMA-Aras and
LAMA-Aras-B on IPC-2011.

plans found by ARAS are not used for bounding, but
LAMA-2011 still does its own bounding internally.

• LAMA-Aras-B is like LAMA-Aras except all plans, in-
cluding the improved plans found by Any-time ARAS, are
used to bound the subsequent iterations of WA∗.

Table 3 shows that combining bounding with post-
processor can be harmful, since LAMA-Aras dominates
LAMA-Aras-B in almost all domains. Among the three
planners, LAMA-Aras almost always gets the best score, ex-
cept by a small margin in openstacks and tidybot. ARAS is
known to be ineffective on openstacks problems (Nakhost
and Müller 2010), and the time wasted running it causes a
slight decrease in plan quality in that domain.

Experiment 2: DAS without Postprocessing
This section examines the impact of using Diverse Any-time
Search in terms of unproductive time and the number of
solutions it generates when used with LAMA-2011. These
tests do not use any post-processing. They show that the
new meta-algorithm increases the number of plans found
and even improves solution quality in a number of domains.

When DAS is added to LAMA-2011, RWA∗ is being used
within each time segment (as is bounding). When a time seg-
ment ends, RWA∗ starts again from scratch with a greedy
best-first search iteration, though it does not bound using
information from previous time segments. The source of di-
versity is random operator ordering (Valenzano et al. 2012).
This involves randomly shuffling the order of the generated
set of successors of an expanded node before they are added
to the open list. Random operator ordering affects the search
by changing how ties are broken. However, to ensure that
competing algorithms have the same coverage, we use the
default operator ordering during the first time segment.

We refer to the new planner as Diverse-LAMA(N). N is
the parameter which affects the length of the time segments.
Table 4 compares this planner, setting N = 4, with LAMA-
2011 on the 2011-elevators domain. The new planner ex-

hibits much less unproductive time1. In particular:

• The average number of plans increases from 1.1 to 4.3.
On 17 of the problems, we see an increase from 1
plan with standard LAMA-2011 to 4 plans with Diverse-
LAMA(4), since Diverse-LAMA(4) finds one plan per
segment. In the cases of elev02 and elev03, Diverse-
LAMA(4) sometimes finds more than 1 plan per segment,
depending on the random seed, whereas there is a segment
in which no plan is found on elev05.

• The amount of unproductive time decreases in all but one
instance (elev11), often drastically. The problem elev11
is the only exception as Diverse-LAMA(4) is unable to
improve the plan it finds during the first segment when
it finds the same plan as LAMA-2011. However, in all
other problems there was at least one plan found in a later
segment that was better than the first plan found.

Due to LAMA-2011’s high amount of unproductive time
in this domain, Diverse-LAMA(4) is also often able to find
better solutions. This is because LAMA-2011 rarely finds
a new solution after the first 1800/4 = 450 seconds. In
contrast, Diverse-LAMA(4) continues to find solutions by
restarting and returning to a greedier search, some of which
are better than the solutions found in the first 450 seconds.

Table 5 compares the plan quality of LAMA-2011 and
Diverse-LAMA(4) on IPC-2011 domains and shows that
this behaviour is also not limited to the elevators domain.
In total, Diverse-LAMA(4) improves by a score of 6.1
though this improvement is not uniform over all domains.
Instead, Diverse-LAMA(4) improves its solution quality
over LAMA-2011 in 8 domains, while it is worse in 5 do-
mains. These improvements are mainly made in domains in
which LAMA-2011 has a high percentage of unproductive
time for the same reasons as was the case in the elevators
domain. However, in those domains in which LAMA-2011
is more productive later in the search, the restarts prevent
Diverse-LAMA(4) from following through on one search
long enough to find the best solutions. This is more apparent
in Table 6, which shows the number of problems on which
each of LAMA-2011 and Diverse-LAMA(4) found the best
plan. In those domains in which LAMA-2011 is mostly un-
productive, Diverse-LAMA(4) rarely generates worse final
solutions, while for those domains in which LAMA-2011
is more productive later on — such as Floortile, Tidybot,
Sokoban and Parking — Diverse-LAMA(4) will occasion-
ally find weaker plans.

Experiment 3: Combining DAS with ARAS

This section tests the DAS when used with LAMA
and ARAS. The system is denoted as Diverse-LAMA-
Aras(N). The four planners LAMA-2011, LAMA-2011-
Aras, Diverse-LAMA(4), and Diverse-LAMA-Aras(4) are
tested on all 550 problems from IPC-2008 and IPC-2011.

Table 7 shows a comparison of the plan quality of these
planners in each of the domains tested. Diverse-LAMA-
Aras(4) is the best (or tied for best) in 18 of the 23 domains

1Here, we show only one run instead of the average over 5 runs.

273

Instance #s1 UT1 #s2 UT2 Instance #s1 UT1 #s2 UT2
elev01 1 1799 4 1350 elev11 1 1760 4 1762
elev02 1 1798 6 330 elev12 1 1704 4 863
elev03 1 1797 4 1349 elev13 1 1679 4 354
elev04 3 1794 9 835 elev14 1 1725 4 793
elev05 1 1799 3 900 elev15 1 1659 4 713
elev06 1 1796 4 446 elev16 1 1649 4 795
elev07 1 1798 4 448 elev17 1 1576 4 1262
elev08 1 1791 4 895 elev18 1 1510 4 294
elev09 1 1789 4 1342 elev19 1 1152 4 1009
elev10 1 1783 4 440 elev20 1 1531 4 296

Table 4: Number of solutions and Unproductive Time of
LAMA-2011 (#s1 and UT1) and Diverse-LAMA(4) (#s2
and UT2) in the 20 instances of 2011-elevators.

domain UT LAMA-2011 Diverse-LAMA(4)

2011-parcprinter 99.99% 20 20.08
2011-barman 99.73% 20 21.76
2011-woodworking 98.21% 20 20.48
2011-elevators 94.14% 20 25.20
2011-visitall 86.89% 20 20.10
2011-pegsol 86.41% 20 19.79
2011-scanalyzer 82.90% 20 20.75
2011-nomystery 81.57% 10 10
2011-transport 76.13% 15 15.69
2011-openstacks 69.17% 20 20.22
2011-floortile 65.11% 6 5.05
2011-tidybot 62.84% 16 15.30
2011-sokoban 59.58% 19 18.59
2011-parking 43.05% 18 17.21
total 244 250.10

Table 5: Plan Quality of LAMA-2011, Diverse-LAMA(4)
on IPC-2011. Domains are sorted by decreasing fraction of
Unproductive time (UT) shown in Table 1.

and achieves the highest overall score, improving over the
baseline planner LAMA-2011 by 59 units.

Figure 2 shows the normalized score curve over 30 min-
utes of the 4 tested planners over all test domains. The
three vertical lines indicate the restart points for Diverse-
LAMA(4) and Diverse-LAMA-Aras(4) of 450, 900 and
1350 seconds. Notice that the time axis is in log scale. Be-
fore the first restart, DAS and non-DAS versions of the same
planner are nearly the same2. Immediately after the first
restart, the DAS planners show a quick jump in solution
quality. This is because for many problems, restarting allows
the planner to find new, sometimes better solutions. A simi-
lar but less pronounced jump is also visible after the second
restart.

By producing more plans, Diverse-LAMA-Aras(4) also
provides more input plans for ARAS. Compared to Diverse-

2To fully utilize our computational resources, we run several
processes simultaneously on a multi-core machine. While all ver-
sions use the same memory limit, the restarts cause DAS to use less
memory. The resulting decrease in memory contention accounts for
the small differences in planner performance.

domain UP better worse total

2011-parcprinter 99.99% 2 0 20
2011-barman 99.73% 19 0 20
2011-woodworking 98.21% 8 0 20
2011-elevators 94.14% 19 0 20
2011-visitall 86.89% 6 3 20
2011-pegsol 86.41% 0 1 20
2011-scanalyzer 82.90% 6 2 20
2011-nomystery 81.57% 0 0 10
2011-transport 76.13% 6 0 15
2011-openstacks 69.17% 4 4 20
2011-floortile 65.11% 0 2 6
2011-tidybot 62.84% 2 7 16
2011-sokoban 59.58% 1 4 19
2011-parking 43.05% 7 4 18

Table 6: Plan Comparison between Diverse-LAMA(4) and
LAMA-2011 on different domains. The columns better in-
dicates in how many problems Diverse-LAMA(4) gener-
ates better plans than LAMA-2011 (worse means how many
worse). Domains are ordered according to the percentages of
Unproductive time (UP) shown in Table 1.

LAMA-Aras(4), the improvement from the first restart
is more pronounced in Diverse-LAMA(4). Using ARAS
smoothes out some of the variance in solution quality be-
tween different runs.

As shown by the previous two experiments, using either
ARAS or DAS improves plan quality. In Table 8, we show
that the performance improvements from these techniques
are independent, and sometimes even synergetic. The score
for each planning system is split into two components: the
raw scores of the best plans produced by the planning sys-
tem ignoring the impact of ARAS (ie. ARAS is being run, but
the plans it outputs are not counted towards the score of the
planner), and the independent contribution of ARAS when it
is used in the planning system. For comparison, the scores of
the baseline planners (ie. those that do not run ARAS at all)
are also shown. The raw scores are slightly worse than the
baseline scores, since the planner producing the raw scores
uses less time for the main search because of using ARAS
(though it is not counted in the score). The improvement
of Aras over Diverse-LAMA(4) is slightly larger than the
improvement of Aras over LAMA-2011. This demonstrates
that the improvements from Diverse-LAMA(4) finding sub-
stantially different overall plans seems to be largely inde-
pendent from the local plan improvements found by Aras.
The following two examples help to explain this behaviour:

• In 2011-floortile 05, the best raw plan generated by
Diverse-LAMA(4) has cost 132, while LAMA-2011 can
find a cost 63 plan. ARAS can improve the cost 132 plan
to a cost of 63 as well. This suggests that ARAS can help
DAS in cases where restarting prevents the search from
running long enough to find good plans.

• In 2011-woodworking 01, plans of cost 1600, 1630 and
1620 are produced in time segments 1, 3 and 4, while
LAMA-2011 only finds one solution of cost 1600. ARAS
improves the three solutions as follows: 1600 → 1460,

274

1630→ 1290 and 1620→ 1380. The worst input plan is
easiest to improve, while the best input plan becomes the
worst after post-processing. Out of the 244 problem in-
stances solved by LAMA-2011, in 44 cases the best final
plan produced from Anytime Aras does not come from
LAMA’s best plan. In Diverse-LAMA-Aras(4), this ratio
increases dramatically, to 86/244 problems. This demon-
strates how increased plan diversity from DAS can im-
prove overall performance.

domain LAMA DL(4) LAMA-Aras DL-Aras(4)
08-cybersec 30 30.00 30.00 30.00
08-elevators 30 35.82 38.50 43.34
08-openstacks 30 30.25 29.97 30.35
08-parcprinter 30 30.00 30.09 30.10
08-pegsol 30 29.78 30.00 30.00
08-scanalyzer 30 31.35 34.00 34.18
08-sokoban 28 27.15 27.66 27.48
08-transport 29 31.51 35.14 36.73
08-woodworking 30 30.92 33.10 34.28
11-barman 20 21.76 23.99 24.20
11-elevators 20 25.20 26.01 31.16
11-floortile 6 5.01 6.77 6.77
11-nomystery 10 10.00 10.00 9.89
11-openstacks 20 20.22 19.98 20.11
11-parcprinter 20 20.08 20.10 20.05
11-parking 18 17.21 18.93 19.54
11-pegsol 20 19.79 20.00 20.01
11-scanalyzer 20 20.75 23.35 23.46
11-sokoban 19 18.59 20.23 20.54
11-tidybot 16 15.21 16.77 16.17
11-transport 15 15.69 17.70 19.68
11-visitall 20 20.10 20.45 20.53
11-woodworking 20 20.48 20.96 21.78
total 511 526.89 553.69 570.35

Table 7: Plan Quality of LAMA-2011 (LAMA), LAMA-
2011-Aras (LAMA-Aras), Diverse-LAMA(4) (DL(4)) and
Diverse-LAMA-Aras(4) (DL-Aras(4)) on all 550 prob-
lems from IPC-2008 and IPC-2011. Extra experiments
data can be found: www.cs.ualberta.ca/research/theses-
publications/technical-reports/2013/TR13-02.

Experiment 4: Testing DAS with Different
Numbers of Segments
Recall that DAS is parameterized by the number of seg-
ments, N , for which it runs, with N = 1 corresponding
to LAMA-ARAS, and N = 4 to the algorithm used in the
previous experiments. Figure 3 shows how the behaviour of
this meta-algorithm changes when varying N in the range
from 1 to 120 on IPC 2011 domains. Overall, the score dif-
ferences are small, with the best results for N from 3 to 6.
For N ≤ 3, plan quality increases with N , taking advantage
of the diversity and number of plans generated. For N > 6,
the solution quality slowly decreases as the runtime for both
LAMA and ARAS becomes ever shorter.3 The trade-off is

3The time of each time segment is given by T/N , where T is
the total time (30 minutes in our experiments).

Figure 2: Normalized Score Curve of the 4 tested planners.

that a too large N does not leave the planner enough time to
find high quality input plans, while small N hurt diversity.

Figure 3: Plan Quality of Diverse-LAMA-Aras(N) with dif-
ferent N values.

Experiment 5: Combining DAS with Anytime
Explicit Estimation Search
Anytime explicit estimation search (AEES) is an any-
time search algorithm introduced by Thayer, Benton, and
Helmert (2012). AEES uses explicit estimation search (EES)
(Thayer and Ruml 2011) as its main search component. EES
is a sub-optimal search algorithm which is able to use both
inadmissible and admissible heuristics while still satisfying
a given solution cost bound. It does so by focusing its search
on nodes that the inadmissible heuristic estimates will lead
to solutions that are within the bound. It has been shown
to be particularly effective in domains with non-unit action
costs due to its ability to use both distance-to-go and cost-
to-go heuristics (Thayer and Ruml 2011). AEES is the any-
time version of EES, which lowers the sub-optimality bound
whenever a new best solution is found, by using the latest
solution as the new bound. The AEES algorithm’s goal is

275

domain LAMA DL(4) LAMA-Aras DL-ARAS(4)
rawLA ∆ARAS Final rawDL ∆ARAS Final

barman 20.00 21.76 20.00 3.99 23.99 21.70 2.51 24.20
elevators 20.00 25.20 20.21 5.80 26.01 24.82 6.35 31.16
floortile 6.00 5.01 5.21 1.55 6.77 4.67 2.10 6.77
nomystery 10.00 10.00 10.00 0.00 10.00 9.86 0.03 9.89
openstacks 20.00 20.22 19.98 0.00 19.98 19.94 0.17 20.11
parcprinter 20.00 20.08 20.00 0.10 20.10 20.00 0.05 20.05
parking 18.00 17.21 16.84 2.09 18.93 16.33 3.21 19.54
pegsol 20.00 19.79 19.57 0.43 20.00 17.65 2.36 20.01
scanalyzer 20.00 20.75 18.89 4.46 23.35 20.39 3.07 23.46
sokoban 19.00 18.59 16.58 3.65 20.23 16.10 4.44 20.54
tidybot 16.00 15.21 15.15 1.62 16.77 14.75 1.42 16.17
transport 15.00 15.69 14.00 3.70 17.70 16.32 3.37 19.68
visitall 20.00 20.10 20.00 0.45 20.45 20.06 0.47 20.53
woodwork 20.00 20.48 20.00 0.96 20.96 20.48 1.30 21.78
Total 244.0 250.1 236.44 28.80 265.24 243.06 30.84 273.90

Table 8: Combined effect of DAS and post-processing in IPC-2011 domains.

domain AEES DE(4) AEES-Aras DE-Aras(4)
08-cybersec 29 31.20 29.00 32.36
08-elevators 30 33.80 41.67 45.20
08-openstacks 30 31.35 30.00 31.15
08-parcprinter 25 25.16 25.70 25.82
08-pegsol 30 29.96 30.11 30.05
08-scanalyzer 30 30.53 34.35 34.16
08-sokoban 27 26.47 26.71 26.73
08-transport 28 31.09 38.43 40.86
08-woodworking 20 20.25 21.14 21.32
11-barman 20 20.88 22.74 22.85
11-elevators 19 23.03 25.03 28.06
11-floortile 6 5.50 6.00 6.00
11-nomystery 10 9.94 10.00 9.91
11-openstacks 20 20.92 20.00 21.00
11-parcprinter 11 11.14 11.88 11.92
11-parking 15 15.15 16.61 18.40
11-pegsol 20 19.92 20.11 20.04
11-scanalyzer 20 21.00 24.73 24.43
11-sokoban 17 16.73 16.60 16.96
11-tidybot 13 13.56 16.21 15.41
11-transport 13 14.60 18.22 19.51
11-visitall 3 3.32 7.30 7.39
11-woodworking 4 3.98 4.12 4.13
total 440 459.50 496.67 513.67

Table 9: Plan Quality of AEES, Diverse-AEES(4) (DE(4)),
AEES-Aras, and Diverse-AEES-Aras(4) (DE-Aras(4)) on
all 550 problems from IPC-2008 and IPC-2011.

to minimize the time between solutions, and generate more
solutions. This makes it a good test case for DAS.

We repeat the same set of IPC experiments, running DAS
with AEES configured as follows: it uses the two planning-
specific enhancements of deferred evaluation and preferred
operators, and the three heuristics Landmark-cut (admis-
sible cost-to-go heuristic) (Helmert and Domshlak 2009),
FF-cost (inadmissible cost-to-go heuristic) and FF-distance
(distance-to-go heuristic) (Hoffmann and Nebel 2001). The
scores shown use the IPC metric with AEES as a baseline. If

L is the plan computed by AEES, then the score of a given
plan P is calculated by cost(L)/cost(P). The experimental
results are shown in Table 9. Similar to the LAMA-2011 ex-
periments, Diverse-AEES-ARAS(4) gets the highest score,
improving the baseline planner AEES by 73.7 units from
440 to 513.7, and achieving the best score in 14 of 23 do-
mains.

Conclusions and Future Work
In this paper, we have shown that the search performance
of the current state-of-the-art planner LAMA-2011 suffers
from a large amount of unproductive time, time which can be
used in other ways such as post-processing. The new meta-
algorithm of Diverse Any-time Search tries to utilize this un-
productive time with randomized restarts so as to generate a
larger and more diverse set of plans for a post-processing
system such as ARAS to improve upon. Experimental re-
sults show that the new framework leads to significant im-
provements on IPC-2008 and IPC-2011 domains, for both
LAMA-2011 and the AEES algorithm.

The best parameter N for DAS depends on factors such
as the planning domain, randomizing method and search al-
gorithm. However, in the experiments the performance was
robust for small values of N between 3 and 6. One interest-
ing future work is to automatically tune N using information
on the search so far.

Acknowledgements
The authors wish to thank Dr. Jordan Tyler Thayer for pro-
viding the source code for AEES, and the anonymous ref-
erees for their valuable advice. This research was supported
by GRAND NCE, a Canadian federally funded Network of
Centres of Excellence, and by NSERC, the Natural Sciences
and Engineering Research Council of Canada.

References
Bonet, B., and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine 22(3):77–80.

276

Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds. 2010. Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2010,
Toronto, Ontario, Canada, May 12-16, 2010. AAAI.
Chrpa, L.; McCluskey, T.; and Osborne, H. 2012. Opti-
mizing plans through analysis of action dependencies and
independencies. In McCluskey et al. (2012), 338–342.
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds.
2009. Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009, Thessa-
loniki, Greece, September 19-23, 2009. AAAI.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini et al. (2009), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
McCluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B.,
eds. 2012. Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012. AAAI.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman et al. (2010), 121–128.
Nakhost, H.; Müller, M.; Valenzano, R.; and Xie, F. 2011.
Arvand: the art of random walks. In García-Olaya, A.;
Jiménez, S.; and Linares López, C., eds., The 2011 Inter-
national Planning Competition, 15–16. Universidad Carlos
III de Madrid.

Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini et al.
(2009), 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C. P., eds., AAAI,
975–982. AAAI Press.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In Brafman
et al. (2010), 137–144.
Thayer, J., and Ruml, W. 2011. Bounded suboptimal search:
A direct approach using inadmissible estimates. In Walsh,
T., ed., IJCAI, 674–679. IJCAI/AAAI.
Thayer, J.; Benton, J.; and Helmert, M. 2012. Better
parameter-free anytime search by minimizing time between
solutions. In Borrajo, D.; Felner, A.; Korf, R. E.; Likhachev,
M.; López, C. L.; Ruml, W.; and Sturtevant, N. R., eds.,
SOCS, 120–128. AAAI Press.
Valenzano, R.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. 2012. Arvandherd: Parallel planning with
a portfolio. In Raedt, L. D.; Bessière, C.; Dubois, D.; Do-
herty, P.; Frasconi, P.; Heintz, F.; and Lucas, P. J. F., eds.,
ECAI, volume 242 of Frontiers in Artificial Intelligence and
Applications, 786–791. IOS Press.
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning via ran-
dom walk-driven local search. In McCluskey et al. (2012),
315–322.

277

