
Constricting Insertion Heuristic for
Traveling Salesman Problem with Neighborhoods

Sergey Alatartsev and Marcus Augustine and Frank Ortmeier
Computer Systems in Engineering, Otto-von-Guericke University

D-39106 Magdeburg, Germany
{sergey.alatartsev, marcus.augustine, frank.ortmeier }@ovgu.de

Abstract

Sequence optimization is an important problem in many
production automation scenarios involving industrial
robots. Mostly, this is done by reducing it to Traveling
Salesman Problem (TSP). However, in many industrial
scenarios optimization potential is not only hidden in
optimizing a sequence of operations but also in optimiz-
ing the individual operations themselves. From a formal
point of view, this leads to the Traveling Salesman Prob-
lem with Neighborhoods (TSPN). TSPN is a general-
ization of TSP where areas should be visited instead of
points. In this paper we propose a new method for solv-
ing TSPN efficiently. We compare the new method to
the related approaches using existing test benchmarks
from the literature. According to the evaluation on in-
stances with known optimal values, our method is able
to obtain a solution close to the optimum.

Introduction
Nowadays, industrial robots are programmed by a human
with very precise monosemantic instructions that can be in-
terpreted and performed only in a predefined way. Conven-
tional programming requires exact positions of the robot
end-effector to be specified (Pan et al. 2010). With modern
tool-supported offline programming approaches, it is state-
of-the-art to automatically generate trajectories from CAD
data. In the example in Figure 1 one can see the robotic man-
ufacturing of a toboggan1. All necessary cuttings can be au-
tomatically derived from the CAD model (right hand side of
the figure) and translated into the corresponding movements
in robot axis space. It is obvious that for efficient produc-
tion an “optimal” sequence of all subtasks (i.e., cuttings that
have to be done) is necessary. Assuming that each cut is de-
fined by a starting/ending point, this problem can be trans-
lated to the Traveling Salesman Problem (TSP) (Applegate
et al. 2007). The objective of TSP is to obtain a minimal-
cost circle tour that visits all points once. A feasible solution
could be the sequence of cuttings shown in the right part of
Figure 1. There already exist multiple adaptations of TSP

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This is a real-world example taken from KUKA Roboter
(http://www.kuka-robotics.com/en/solutions/solutions search
/L R131 Deburring of plastic toboggans.htm).

Figure 1: Cutting and deburring use case with a possible
tour. The starting point is denoted with the star.

for robotics (e.g., (Baizid et al. 2010)). However, in real-
ity many tasks do not require strong determinism and often
allow a certain degree of freedom. In the example, it is not
important where individual cuttings should start-end. Even a
very short glance at Figure 1 shows that much shorter tours
are possible if the starting-ending points of each single cut-
ting may be moved along their contours. A formalization
of this scenario may lead to a Traveling Salesman Problem
with Neighborhoods (TSPN). TSPN is a generalization of
TSP where points are substituted with areas and the objec-
tive is to find a minimal-cost tour through the set of regions
that visits each of them once.

In this paper we propose a new method – Constricting In-
sertion Heuristic (CIH) – for solving TSPN problems even
on large instances efficiently. Although the proposed plan-
ning approach is illustrated by its robotic application, it is
not directly connected to robotics as none of the domain-
specific knowledge is involved (i.e., kinematics, metrics in
axis space, etc.). The main goal is to provide a general
straightforward approach to solve TSPN. Therefore, CIH
could be applied to any domain that can be modeled as
TSPN.

In the remaining part of the paper, we will first discuss
related approaches and then give a formal description of the
problem as well as some important standard algorithms. Af-
terwards, we will explain CIH in detail. Then, an evalua-
tion of the method and comparison with state-of-the-art al-

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

2

gorithms are presented. Finally, we conclude the paper and
give an outlook to the future work.

Related Work
The TSPN was introduced by Arkin and Hassin (1995).
Later, it received significant attention in the domain of ap-
proximation algorithms (Mitchell 2010; Arora 2003). Fur-
thermore, it has already been applied to the robotics do-
main. For example, Gentilini et al. (2011) applied this idea
to a real-world use case where a robot with a hand-mounted
camera had to take pictures of an object from different po-
sitions. They formulated this problem as TSPN and imple-
mented a heuristic to speed up a Mixed-Integer Non-Linear
Programming solver. This method shows good, close to op-
timum results. It was tested only for up to 16 regions, though
in reality 50 or even more tasks are common in some indus-
trial domains2. Our method is compared with this approach
in the evaluation section.

TSP got much larger attention from researchers than
TSPN. As a result, a large number of effective algorithms
exists. A naive idea would be to try to use algorithms from
TSP domain for TSPN. This could be done in several ways.
One approach is to convert a TSPN problem to a Gener-
alized TSP (GTSP)3 by replacing the areas with a sets of
points. GTSP is an extension of TSP when instead of plan-
ning between single points, the planning is done among sets
of points. The objective is to find a minimum-cost path that
passes through one point of each set. Oberlin et al.(2010)
showed that it is possible to convert GTSP into a TSP.
Though this process is possible in theory, it immensely in-
creases the search space and becomes practically infeasi-
ble (Shi et al. 2007). Another drawback is that representing
TSPN as GTSP will bring errors due to the discretization
process of the areas.

Another way to apply algorithms from TSP domain to
TSPN is to represent every area with one point. It transforms
TSPN into two subproblems: TSP and Touring-a-sequence-
of-Polygons Problem (TPP). TPP is a NP-hard problem
where the goal is to find the shortest path that passes through
a given sequence of areas (Dror et al. 2003).

Mennell (2009) proposed an approach for solving Close-
Enough Traveling Salesman Problem (CETSP) which is a
special case of TSPN. A minimal-cost tour should be found
with the condition that the salesman may visit points within
a certain distance (i.e., areas are disks for 2D space). A
generic three-stage approach was proposed: (1) find inter-
sections between disks, (2) represent every intersection area
with a point and calculate TSP tour, (3) optimize the previ-
ously found point sequence with TPP. Multiple variations
and combinations of different algorithms for these stages
were investigated.

Elbassioni et al. (2009) proposed a method for GTSP
(they refer to this problem as a Discrete TSPN) where ar-
eas are sorted by their diameter. Then, sequentially starting

2(Pan et al. 2012) showed an example with 500 goals in welding
applications for two robots to perform (i.e., 250 goals for each).

3Often also referred to as One-of-a-Set TSP, Group TSP, Mul-
tiple Choice TSP or Covering Salesman Problem.

from the area with the smallest diameter an inner area point
is picked up. The algorithm selects a new point as close as
possible to already chosen points. After all areas are repre-
sented with inner points, a TSP tour is calculated. In this
approach a certain optimization on point allocation is done
first and then the TSP tour is calculated. It was assumed
that the proposed method can be also applied for continu-
ous TSPN (we refer to this problem simply as TSPN) under
the weak assumption that the new closest point can be effi-
ciently found in the infinite set of points.

In this paper, we develop a new idea to solve TSPN, which
– in contrast to other approaches – simultaneously solves the
sequencing (TSP) and allocation of points inside the areas
(TPP).

Formal Foundations
This section gives a brief introduction to the formalization of
the relevant problems. It also explains general ideas of exist-
ing algorithms that are used as a foundation for our method.

Definition of the Problems
In the following, we restrict ourselves to 2D space (i.e., R2)
and use the Euclidean distance function d(p, q) to denote the
cost of moving between two points p, q ∈ R2. Of course,
higher dimensional spaces as well as other distance func-
tions are possible.

TSP: The well-known Traveling Salesman Problem
(TSP) is formalized as follows:

Given a weighted undirected graph G = (V,E),
where V is a set of n vertices and E is a set of edges.
The objective is to find a minimal-cost cyclic tour
T = (v1, ..., vn+1) that visits all vertices only once and
v1 = vn+1.

TPP: Another related problem is the Touring-a-sequence-
of-Polygons Problem (TPP). There are two types of TPP:
floating and fixed. In the fixed TPP start and end points have
to be defined and their positions are fixed. In the floating TPP
start and end points are no longer required. The floating TPP
is relevant to this paper and simply referred to as TPP. It is
defined as follows:

Given a sequence of n polygons A = (A1, ..., An),
find a minimal-cost cyclic tour T = (p1, ..., pn+1),
such that it visits Ai in the point pi and p1 = pn+1.

Note that for TPP an ordering of the polygons is required
as an input data. This order is not changed during tour cal-
culation.

TSPN: The Traveling Salesman Problem with Neighbor-
hoods is formalized as follows:

Given a set of n polygons A = {A1, ..., An}, find a
minimal-cost cyclic tour T = (p1, ..., pn+1), such that
it visits Ai in the point pi and p1 = pn+1.

In contrast to TPP, TSPN requires a set of polygons in-
stead of their sequence as input data.

A comparison of input and output parameters between all
three problems is provided in Table 1.

3

Problem Input Optimize Output
set of sequence sequence

TSP points of points
sequence location sequence

TPP of areas of points of points
set of location and sequence

TSPN areas sequence of points

Table 1: The differences between TSP, TPP and TSPN.

Involved Sub-Algorithms
Before presenting our algorithm for TSPN, we will ex-
plain the TSP and TPP heuristics which are involved in
the method. Johnson et al. (1997) classified TSP heuristics
by splitting them into tour-construction heuristics and tour-
improvement heuristics. Tour-construction heuristics con-
struct a feasible solution by following certain rules. Tour-
improvement heuristics start with a feasible tour and try
to reduce its cost by manipulating tour edges. The process
stops when a stopping condition is met, e.g., no more im-
provement is possible or a maximum number of iteration is
reached.

One of the most well-known algorithms for tour-
construction is Insertion Heuristic (IH) (Hassin and Keinan
2008). The general structure is represented in Algorithm 1.

Algorithm 1: General Insertion Heuristic algorithm
Input: Weighted graph G = {V,E}
Output: Tour T = (v1, ..., vn)

Initialize sub-tour T with strategy S1;
while T is a partial tour do

Choose vertex v /∈ T with strategy S2;
Add v to the tour T with strategy S3;

end
return T;

S1 denotes a strategy to construct an initial tour. Often an
initial tour is either a triangle tour (i.e., a tour consisting of
three points) or a tour that follows the points that form the
convex hull border of V .
S2 is a strategy to choose a point v that is not yet in the

tour T . S3 is a way how to choose a position in T where
point v should be inserted. The strategies S2 and S3 are re-
peated while T is a partial tour, i.e., not all the points of V
are in the tour.

After a tour is obtained, it is possible to apply tour-
improvement heuristics, e.g., 2-Opt or 3-Opt (Helsgaun
2000). These are local search algorithms that are certain
cases of the k-Opt algorithm. Basic idea is to delete k edges
from the tour and reconnect it in all possible ways. The goal
is to find the relocations that might decrease the tour cost.

As a TPP solver, so called Rubber-band algorithm (RBA)
proposed by Pan et al. (2010), is applied. The general struc-
ture of RBA is presented in Algorithm 2. The basic idea
of RBA is to construct a feasible tour T = (p1, ..., pn) by
allocating points inside the areas pi ∈ Ai and then itera-
tively improve it. The improvement is obtained sequentially

for every area Ai, where a new point new pi ∈ ∂Ai in the
border of the area is computed in a way that the distance
to its neighbors in the tour pi−1 and pi+1 is minimized. It
is expressed in the line 4 in Algorithm 2. One iteration of
the improvement cycle is finished when this procedure is
performed for all areas. The RBA stops when a maximum
number of iterations has been performed or a desired accu-
racy ε is reached, i.e., the difference between tour lengths on
iteration j and j + 1 is less than ε.

Algorithm 2: General Rubber-band algorithm structure
Input: Sequence of areas A = (A1, ..., An), accuracy ε
Output: Tour T = (p1, ..., pn)

1 Construct a sequence T = (p1, ..., pn) so that pi ∈ Ai;
2 while Desired accuracy ε is not reached do
3 foreach pi ∈ T do
4 Find new pi ∈ ∂Ai, such that

d(pi−1, new pi) + d(new pi, pi+1) =
min(d(pi−1, pi) + d(pi, pi+1)), pi ∈ ∂Ai;

5 pi ← new pi;
6 end
7 end
8 return T;

Following the TPP definition, solution of the problem is a
tour consisting of n+1 points. Note that Algorithm 2 returns
a tour that consists of n points. It does not contradict the
definition, as it is easy to modify the tour by extending it
with a point pn+1 that is equal to p1. Therefore, both tours
are assumed to be correct.

Constricting Insertion Heuristic
This section presents our algorithm for solving TSPN: Con-
stricting Insertion Heuristic (CIH). CIH considers TSPN as
two sub-problems: TSP and TPP. In contrast to the existing
approaches, CIH solves TSP and TPP simultaneously. In this
context, constricting means that during the search for the
optimal sequence with Insertion Heuristic, points are con-
stricted to each other with RBA to optimize their location in
the areas with respect to obtained sequence.

Modification of RBA As previously described, RBA
takes two parameters as an input: a sequence of areas A and
an accuracy value ε. In the algorithm an optimal sequence
of points T = (p1, ..., pn) is calculated by optimizing allo-
cation of the points in the areas. We introduce mRBA which
is a small modification of RBA where a sequence of points
T is included as additional parameter in input, i.e., line 1 in
Algorithm 2 is omitted.

Searching for new pi is a geometrical task and could be
performed with any optimization technique. In this paper we
use the one-dimensional Golden Section Search optimiza-
tion method (Press et al. 2007). It searches in the interval
from 0 to 360 degrees, and for every angle to check, the
point on the border of the figure is calculated. Optimization
is done until accuracy µ is reached. Therefore, mRBA re-
quires four input parameters: A, P , ε and µ.

4

Modification of Insertion Heuristic Constricting Inser-
tion Heuristic is obtained from Insertion Heuristic by mod-
ifying the strategies in Algorithm 1. Specialized implemen-
tation of the insertion strategies makes CIH capable to solve
TSPN efficiently. CIH is shown in detail in Algorithm 3.

Algorithm 3: Constricting Insertion Heuristic
Input: Set of areas A = {A1, ..., An}, desired

accuracies ε, µ
Output: Tour T = (p1, ..., pn)

1 Construct a set P = {p1, ..., pn} so that pi ∈ Ai;
2 T ← ConvexHullBorderTour(P) ;
3 R← (P − ConvexHullBorderTour(P)) ;
4 if R = ∅ then
5 T ← mRBA(A, T, ε, µ);
6 return T;
7 end
8 while R 6= ∅ do
9 ptemp ← argmin

pq

(d(pq, tj)), where pq ∈ R, tj ∈ T ,

q ∈ [1, Count(R)], j ∈ [1, Count(T)];
10 L←∞;
11 Ttemp ← T ;
12 for i=1 to Count(T) do
13 Insert(Ttemp, ptemp, i);
14 Ttemp ← mRBA(A, Ttemp, ε, µ);
15 if Length(Ttemp) < L then
16 L← Length(Ttemp);
17 insert index← i;
18 end
19 Remove(Ttemp, ptemp);
20 end
21 Insert(T, ptemp, insert index);
22 Remove(R, ptemp);
23 T ← mRBA(A, T, ε, µ);
24 end
25 return T;

Several functions are involved during calculation. Here,
ConvexHullBorderTour(P) is a function that returns a
tour consisting of points that form the border of the con-
vex hull of the set P . One example of such output is il-
lustrated on part 2 in Figure 2. Function Length(T) takes
a sequence of points T and returns the tour length. Func-
tion Count(R) returns the number of elements in the set R.
Function Insert(T, p, i) inserts point p to the tour T at posi-
tion after the element with index i. Function Remove(T, p)
removes point p from the tour T .

The algorithm takes a set of areas A as an input. In the
line 1 of Algorithm 3, set P is constructed in a way that point
pi belongs to area Ai

4. In the lines 2 and 3 in Algorithm 3 a
set of points P is split into two subsets: T and R. T is a tour
that follows the points that form a convex hull border of P .
R consists of all the remaining points from P that are not in
the border of convex hull.

4In the following test instances, pi is a geometrical center of the
ellipses.

Figure 2: Workflow of CIH on test instance “tspn2DE12 2”

It could be the case that all points from P belong to the
border of convex hull. This check is performed in line 4 of
Algorithm 3. In that case T is already the desired sequence
of areas to visit and mRBA is applied to find the optimal
point allocation within the obtained sequence.

In case if not all points from P belong to the border of the
convex hull set, points from the remainder R are selected
one by one and inserted in the tour T . Line 9 in Algorithm
3 reflects the strategy S2 where the point ptemp is chosen so
that it is the closest point to one of the points from T .

Strategy S3 (lines 10-23) in Algorithm 3 is a sequential
insertion of ptemp to all possible positions within tour T
performing mRBA algorithm every time and measuring the
tour distance. After all combinations are checked, ptemp is
inserted to the position that gives a minimal increase of the
tour length and mRBA is performed. Afterwards, ptemp is
deleted from the remainder set R. The algorithm stops when
all points from R are inserted to T . The obtained tour T is
the desired tour.

Example of CIH Workflow In the following, a test in-
stance of TSPN with 12 ellipses is solved by CIH.

CIH is a tour construction heuristic and starts from any ar-
bitrary sub-tour. However, it is more efficient to take points
that form the border of convex hull as an initial tour. There-
fore, 6 points are added to the tour on part 2 of Figure 2. If
all points are inserted, their optimal sequence is found and
only their locations within the areas should be optimized by

5

mRBA. However, in this example 6 points are left. There-
fore, new points 7–12 are added one by one to the tour so
that a point which is the nearest to the tour is picked up. The
nearest distance is denoted with an arrow in Figure 2. For
example, on part 3 point 7 is picked up as it is the nearest
to the point 3 in the existing tour in part 2. Further, point
8 is added to the tour, because it is the nearest point to the
point 5, which is already in the tour. The parts 2–6 in Figure
2 show how the algorithm adds new points to the tour one
after the other.

Note that some iterations are combined at one part of Fig-
ure 2 (e.g, points 7 and 8 in part 3) as the picture was not
changed visually.

CIH stops when there is no point left outside of the tour.
In this example, an optimal solution was obtained as it is
illustrated on part 6 of Figure 2. An animated process of
CIH is presented online (Alatartsev, Augustine, and Ort-
meier 2012).

Solution Improvement Obviously, TSP tour-
improvement heuristics could improve TSPN solution
by changing the sequence. However, this improvement
may cause such a case that the location of the points in the
areas becomes not optimal in regard to the new obtained
sequence. Therefore, mRBA is applied afterwards.

Within this paper 2-Opt and 3-Opt algorithms are used as
tour-improvement methods for TSP and mRBA for TPP. We
denote a combination of 2-Opt and mRBA by 2-Impr. and a
combination of 3-Opt and mRBA by 3-Impr. respectively.

Evaluation
This section presents an evaluation of CIH on three sets of
instances. The first set of instances (with up to 16 areas) was
used to compare CIH with the optimal values. The second
test is an evaluation of the algorithm on “stretched” areas (up
to 70 areas). Finally, the results of CIH for CETSP instances
with a large number of disks (up to 595 areas) are shown.

Evaluation of CIH on Test Instances with Known Op-
timum For the evaluation of CIH on the test instances
with apriori known optimum values, instances developed by
(Gentilini, Margot, and Shimada 2011) are used. The tests
are available on-line5 with a precise description. The test
“tspn2DE7 N” is decoded as a 2D test with 7 ellipses.
N can be “1” or “2” that reflects the box size circumscrib-
ing the ellipse. Ellipses with the box size “1” are larger than
with box size “2”. The results of the evaluation are presented
in Table 2.

Using these instances, we compared CIH with the opti-
mal values (calculated by (Gentilini, Margot, and Shimada
2011)) and two different approaches. One algorithm was
proposed by Gentilini et al.(2011) that improves Mixed-
Integer NonLinear Program (MINLP) solver by introducing
a heuristic. In the following, we will refer to this approach
as Heuristic in Solver (HiS).

5STSPN Instances: http://wpweb2.tepper.cmu.edu/fmargot/
ampl.html

Another conception to compare with is the idea proposed
by Mennell et al. (2009) where, first of all, every area is rep-
resented with a point and then sequentially TSP and TPP are
solved. The original approach called LK-SOCP uses the Lin-
Kernighan (LK) heuristic for solving TSP and second-order
cone program (SOCP) for TPP. In the remaining part we re-
fer to this method as TSP→TPP. We are not aiming at repli-
cation of all nuances of the original approach but rather on a
comparison of the concept of applying methods for TSP and
TPP. In other words, we check whether TSP and TPP should
be solved sequentially one after the other or in parallel as in
our method. To make an unbiased comparison between CIH
and TSP→TPP, the same TPP solver as in the CIH is used.
As a TSP solver Nearest Neighbor (NN) search improved
with 3-Opt method is applied.

Within these tests, accuracy µ for point retrieval at the
border of an area and accuracy ε for RBA are set to 0.01. It
is possible to tune these parameters in order to significantly
speed up the calculations. For example, a solution with the
cost value 393.054 for the test “tspn2DE16 1” was found
by CIH with ε = 0.01 and µ = 0.01 within 44.67 ms. How-
ever, ε = 0.1 and µ = 0.1 lead to a result with the cost value
393.058 within 30.82 ms.

As both CIH and TSP→TPP could be understood as tour
construction heuristics, for both of them tour-improvement
heuristic 3-Impr. is applied during these test runs. However,
on these test instances, improvement algorithm has no effect
for TSP→TPP. Therefore, we do not include this column
into the results table.

For the evaluation we used an Intel Core 2 Quad CPU,
2.83 Ghz with 8 Gb RAM, running Windows Vista. The
computational time of HiS was calculated by Gentilini et al.
(2011) with different hardware and software – Intel Xeon,
3.33 GHz CPU with 12 GB of RAM, running Fedora. Re-
gardless of hardware and software differences, CIH is faster
than HiS at average in 37 times6. Though this number should
not be understood as unbiased comparison, it shows that
significant improvement in computational time has been
achieved.

We found out that errors produced by TSP→TPP are not
caused by the TPP solver (except “tspn2DE9 2”) but rather
by a bad representation of the areas, since the tours produced
by TSP solver are optimal. TSP→TPP solved 13 instances
out of 24 to optimality. HIS solved 15 tests out of 24 to op-
timality with an average error of 0.15%. Though the under-
laying principal of CIH is greediness, in practice this method
provides good results. CIH turns out to be optimal in 20 tests
out of 24. Applying 3-Impr. allowed us to decrease the av-
erage error from 0.33% to 0.20%.

Evaluation of CIH on Test Instances with “Stretched”
Ellipses As previous test instances were limited to 16 ar-
eas, we developed a set of instances up to 60 areas. Tests
are available on-line (Alatartsev, Augustine, and Ortmeier
2012). In this test we show the efficiency of the CIH for the
ellipses that have different ratio between their axis radii, i.e.,
stretched along one of the axis.

6The average time for all instances in this test for HIS is 650.42
ms and the time for CIH is 17.26 ms.

6

Optimal HiS TSP→TPP CIH CIH (3-Impr.)
Instance value error(%) t(ms) error(%) t(ms) error(%) t(ms) error(%) t(ms)

tspn2DE5 1 191.255 0.00 140 0.00 0.24 0.00 1.39 0.00 1.73
tspn2DE5 2 219.307 0.00 130 0.00 0.23 0.00 0.93 0.00 1.09
tspn2DE6 1 202.995 0.00 240 0.00 0.41 0.00 1.49 0.00 1.82
tspn2DE6 2 248.860 0.00 180 0.00 0.38 0.00 1.45 0.00 1.7
tspn2DE7 1 201.492 0.00 300 0.00 0.63 0.00 6.46 0.00 6.05
tspn2DE7 2 239.788 0.00 250 0.98 0.61 0.00 2.86 0.00 2.89
tspn2DE8 1 190.243 0.00 370 0.07 0.57 0.28 0.46 0.07 0.79
tspn2DE8 2 229.150 0.01 400 0.00 0.87 0.00 5.34 0.00 5.71
tspn2DE9 1 259.290 0.00 400 4.23 1.34 0.00 8.59 0.00 9.14
tspn2DE9 2 262.815 0.00 410 2.05 1.16 0.00 7.04 0.00 9.05
tspn2DE10 1 225.126 0.00 410 0.15 1.30 0.00 8.5 0.00 11.12
tspn2DE10 2 273.192 0.21 350 0.21 1.55 0.00 8.82 0.00 8.61
tspn2DE11 1 247.886 0.75 630 0.69 2.19 0.00 12.21 0.00 16.07
tspn2DE11 2 258.003 0.00 390 0.00 2.20 0.00 12.36 0.00 12.28
tspn2DE12 1 265.858 0.00 550 0.00 2.38 0.00 14.9 0.00 19.61
tspn2DE12 2 312.493 0.50 860 2.62 2.21 0.00 19.16 0.00 18.99
tspn2DE13 1 278.876 0.00 1150 0.00 4.70 0.00 24 0.00 26.19
tspn2DE13 2 324.271 0.20 490 0.20 4.67 0.00 22.78 0.00 24.62
tspn2DE14 1 310.794 0.00 950 0.00 12.45 0.00 37.66 0.00 44.47
tspn2DE14 2 270.638 0.56 690 0.26 12.38 0.04 26.93 0.04 29.3
tspn2DE15 1 289.716 0.22 1080 0.00 4.69 0.00 45.2 0.00 48.69
tspn2DE15 2 293.357 0.01 1200 0.02 7.80 1.36 47.31 1.36 49.66
tspn2DE16 1 369.945 1.09 2840 0.00 26.90 6.24 44.67 3.38 48.8
tspn2DE16 2 295.130 0.00 1200 0.00 10.73 0.00 53.75 0.00 58.34
Average: 0.15 650.42 0.48 4.27 0.33 17.26 0.20 19.03

Table 2: Evaluation of CIH on TSPN instances from 5 to 16 ellipses

The test instances are calculated according to the follow-
ing principle. At first, centers of ellipses (xi, yi) are cal-
culated as a random integer number laying in the interval
[0, 100]. The coefficient of elongation CE is calculated as
uniformly distributed float number in the interval of [A,B],
where A and B are real positive numbers. For the gen-
eration of tests for this section, intervals [1,1], [1,5] and
[1,10] were used. The radius along X-axis is calculated as
Rx = 100/N × 2 × Rand, where N is a desired number
of areas in the test and Rand is a random real number that
lies in [0.1, 1]. The radius along the Y -axis is calculated as
Ry = Rx×CE. With a probability of 0.5,Rx andRy are ex-
changed. This method allows to generate test instances with
ellipses of different elongation along one of the axis. The
name of the instance “60 1 5” should be understood as test
with 60 ellipses with one of the axis radius stretched from 1
to 5 times in comparison to another axis radius.

On these test instances we compare CIH and its im-
provement CIH (3-Impr.) with TSP→TPP and its improved
version TSP→TPP (3-Impr.). The best obtained value is
the minimal value among results of the four analyzed ap-
proaches. In these tests, accuracies were set as follows:
ε = 0.01 and µ = 0.01. The results of the evaluation are
presented in Table 3.

In the following instances, CIH (3-Impr.) obtained 13
best values out of 18 instances. The average error to best ob-
tained value is 0.45%. TSP→TPP (3-Impr.) reached 6 best
values. The average error is increased with ellipses getting
stretched along one of the axes. For all tests with parameter
“1 1” the average error is 0.44%, for “1 5” it is 2.10% and

for “1 10” it is 6.26%. This clearly reflects the intuitive idea
that simple area representation experiences difficulties with
“more complicated” areas.

Although both CIH (3-Impr.) and TSP→TPP call 3-Opt
once, at a certain area size (after 40, 30, 50 areas for “1 1”,
“1 5”, “1 10” respectively) CIH (3-Impr.) unexpectedly
finishes computation faster. This can be explained by the
fact that in TSP→TPP the major time is spent on 3-Opt cal-
culation as the initial tour is far from being optimal. On the
contrary, in CIH (3-Impr.) the initial tour obtained by CIH
is close to optimum. Therefore, 3-Opt makes less exchanges
and requires less time.

A sequential application of the method for solving TSP
and then TPP (TSP→TPP) gives worse results than solv-
ing both at a time (CIH). The reason is that during the TSP
calculation the areas are represented as points (e.g., ellipse
geometrical centers in the test instances) and information
about the overall shape is ignored. The obtained tour could
be optimal, but only with regard to the chosen points. Apply-
ing TPP afterwards will improve the solution by allocating
points inside the areas. But at no point in time does the algo-
rithm consider the effects of the area shapes on the sequence
in which the areas are visited. Application of both methods
at a time (CIH) on the other hand means that during the cal-
culation of the TSP we also coherently optimize the point
locations inside those areas. Therefore, it allows for the con-
sideration of certain information about the area shapes into
the process of TSP planning. Thus, the final sequence for
CIH is better than for TSP→TPP, even if the same algo-
rithms for TSP and TPP are applied in both strategies.

7

Best obtained TSP→TPP TSP→TPP (3-Impr.) CIH CIH (3-Impr.)
Instance value error(%) t(ms) error(%) t(ms) error(%) t(ms) error(%) t(ms)

1 20 1 1 320.720 0.00 17 0.00 28 1.81 89 1.81 102
2 20 1 5 313.497 0.00 20 0.00 32 3.11 101 3.11 106
3 20 1 10 276.793 7.50 56 5.03 72 0.00 182 0.00 193
4 30 1 1 383.578 0.06 283 0.06 385 1.46 363 0.00 408
5 30 1 5 316.922 10.69 545 8.46 764 0.00 443 0.00 500
6 30 1 10 321.188 6.50 493 3.63 592 0.00 654 0.00 709
7 40 1 1 421.339 0.83 1868 0.83 2036 2.41 625 0.00 1001
8 40 1 5 368.802 3.97 1571 0.00 1956 0.00 1140 0.00 1303
9 40 1 10 312.353 15.30 1112 15.22 1482 0.75 1211 0.00 1393

10 50 1 1 438.182 0.24 1948 0.00 2389 4.27 1595 0.15 2872
11 50 1 5 457.114 0.88 2839 0.00 3848 2.12 1904 2.12 2337
12 50 1 10 397.472 12.49 4004 8.38 4763 3.34 2182 0.00 3559
13 60 1 1 563.603 0.00 9653 0.00 12424 7.99 2355 0.86 6854
14 60 1 5 563.438 4.15 10966 3.43 14018 0.38 2320 0.00 3750
15 60 1 10 499.973 7.61 10231 5.16 12077 3.60 2621 0.00 6132
16 70 1 1 622.098 1.76 26472 1.76 29201 3.39 3326 0.00 16915
17 70 1 5 587.004 0.74 30646 0.74 37051 3.43 3921 0.00 17393
18 70 1 10 509.905 1.85 24631 0.11 29740 0.02 4713 0.00 6333

Average: 4.14 7075 2.93 8492 2.12 1652 0.45 3992

Table 3: Evaluation of CIH on TSPN instances from 20 to 70 ellipses

Evaluation of CIH on Test Instances for CETSP
CETSP is a special case of TSPN where arbitrary areas are
substituted with disks. This simplification allows building
several specific efficient algorithms that are able to solve
CETSP fast. Nevertheless, we provide an evaluation of CIH
on test instances developed by Mennell et al.(2009) for
CETSP and available online 7. The results are presented in
Table 4.

In these scenarios accuracy µ is 0.01. As these tests have
large instances with up to 595 areas, some speed up tech-
niques were involved: (1) ptemp is taken randomly in line 9
in Algorithm 3, (2) accuracy ε in line 14 in Algorithm 3 is
0.5 (it is 0.01 in all other mRBA calls).

During these tests 2-Impr. is applied as a tour-
improvement heuristic. Here, the TSP improvement heuris-
tic 3-Opt was substituted with the more simple 2-Opt, as
it requires less computational time. For example, for the
instance “bubbles5” with 251 areas CIH found a solution
within 19.72% from best known value for 167.5s. 2-Impr.
provided 18.82% from the best known value in 179.25s. 3-
Impr. achieved 16.78% but required significantly more time
– 2975.2 s.

Using the same test set, (Mennell 2009) evaluated 11
heuristics for CETSP. Extending this list with CIH (2-
Impr.) and sort ascending by the average error we obtain
the place of our heuristic. Although these heuristics were
developed especially for CETSP, they take into account that
areas are represented only as disks. This information allows
to construct very effective methods. In contrast, CIH was
developed for TSPN and capable to solve arbitrary shapes.
Note, that the comparison will not be unbiased, as methods
oriented on different problems are compared. Even so for
“Bubbles1-3”, CIH (2-Impr.) took the 3rd place out of 12.

7http://www.minlp.org/library/problem/index.php?i=65
&lib=MINLP

It turns out that CIH (2-Impr.) efficiency decreases when
number of areas is more than 100, e.g., in the overall test
“Bubbles1-9”, CIH (2-Impr.) took the11th position. For the
“concentricCircle” test, CIH (2-Impr.) took the 7th place
out of 12 and for the “team” test, CIH (2-Impr.) took the
8th place out of 12.

Although CIH is a heuristic for TSPN, it is still capable
to solve CETSP instances even better than some specialized
CETSP heuristics.

Evaluation of Precision Parameters Influence CIH effi-
ciency depends on the two parameters ε and µ. Obviously,
with decreasing of ε and µ the time to solve the instance
increases. Results are presented in Figure 3. The evalua-
tion was held on the benchmarks from Table 2. Surprisingly,
this caused a very insignificant error increase8. Dependence
of the average error is shown in Figure 4. The error grows
slowly from 0.33% for ε=0.01 and µ=0.01 up to 0.4% when
ε=30 and µ=30. This reflects that the algorithm is very sta-
ble on small instances even if the precision values are very
inaccurate. Precision parameters have weak influence to the
maximum error on small instances. It was kept unchanged
(6.24% for “tspn2DE16 1”) for all combinations of ε and
µ (except the case: ε=30 and µ=30).

Conclusion
The Traveling Salesman Problem with Neighborhoods was
covered in this paper. Its importance was shown on a real
world use case. We proposed a new method – Constrict-
ing Insertion Heuristic – that splits TSPN into the two sub-
problems TSP and TPP and solves them in parallel.

CIH was evaluated on three different test instances. The
results of the test with a small number of areas showed that

8We applied the mRBA algorithm after CIH to eliminate the
error accumulation of the point location on the borders, which ap-
pears with large precision values.

8

Best obtained CIH CIH (2-Impr.)
Instance N of areas value error(%) t(s) error(%) t(s)

concentricCircles1 17 53.158 0.00 0.01 0.00 0.02
concentricCircles2 37 153.132 5.32 0.38 5.32 0.40
concentricCircles3 61 271.076 4.15 1.88 4.15 1.92
concentricCircles4 105 454.457 4.71 9.23 3.13 9.56
concentricCircles5 149 645.381 6.26 28.02 5.35 29.13

Average 4.09 7.90 3.59 8.21

bubbles1 37 349.135 0.05 0.56 0.05 0.57
bubbles2 77 428.279 0.85 5.20 0.84 5.34
bubbles3 127 530.733 0.33 22.41 0.33 23.50
bubbles4 185 829.888 10.87 67.50 10.51 188.40
bubbles5 251 1062.335 19.72 167.45 18.82 179.25
bubbles6 325 1383.139 13.87 355.69 10.46 409.91
bubbles7 408 1720.214 19.52 693.41 15.64 819.52
bubbles8 497 2101.373 20.47 1263.88 17.74 1826.49
bubbles9 595 2426.274 27.18 2147.98 23.04 2803.94
Average 12.54 524.90 10.83 695.21

team1 100 100 307.337 2.61 10.62 2.61 10.71
team2 200 200 246.683 1.22 93.39 1.22 86.39
team3 300 300 466.241 12.20 258.50 12.20 836.56
team4 400 400 680.211 8.02 606.50 7.77 635.70
team5 499 499 702.823 11.50 1068.40 10.60 1418.90
team6 500 500 225.216 0.19 1168.12 0.17 1230.18

Average 5.96 534.25 5.76 703.07

Table 4: Evaluation of CIH on CETSP instances (up to 595 disks)

Figure 3: Dependence of the time (s) on precision parame-
ters ε and µ

CIH is able to solve these instances close to the optimum.
The evaluation on the test instances with “stretched” ellipses
showed that CIH produces better solutions than TSP→TPP,
when the ratio between radii of ellipses along the axis be-
comes larger, i.e., ellipses become more “stretched”. Even
though there exist multiple specialized heuristics for CETSP,
which might outperform CIH, our method is still able
to solve these instances well. CIH highest efficiency was
achieved in the tests with a maximum of around 100 areas.

Due to the promising results, we are motivated to con-
tinue the work on CIH in several directions. Although,
CIH showed good results, it is still considered to be a
construction heuristic. The problem of adaptation of tour-
improvement heuristics in TSPN is of a great interest. CIH is

Figure 4: Dependence of the error (%) on precision parame-
ters ε and µ

a general approach and may be applied to multiple different
industrial use cases. One way is to make adaptations of CIH
for robotics, e.g., by substituting Euclidean space with robot
axis space. It will allow to obtain more optimal solutions, as
information about the robot structure will be involved in the
solution process. Another direction could be the adaptation
to the scenario with multiple salesmen, i.e., multiple robots
working on the same product at a time.

Acknowledgments
We would like to kindly thank Vera Mersheeva (Univer-
sity of Klagenfurt, Austria) and Kevin Nelson (Blue Technik
LLC, USA) for their detailed comments and discussions.

9

References
Alatartsev, S.; Augustine, M.; and Ortmeier, F. 2012.
http://euromover.cs.uni-magdeburg.de/cse/robotics/tspn/.
Applegate, D. L.; Bixby, R. E.; Chvatal, V.; and Cook, W. J.
2007. The traveling salesman problem: a computational
study. Princeton University Press.
Arkin, E. M., and Hassin, R. 1995. Approximation algo-
rithms for the geometric covering salesman problem. Dis-
crete Applied Mathematics 55:197–218.
Arora, S. 2003. Approximation schemes for np-hard geo-
metric optimization problems: A survey. Mathematical Pro-
gramming 97.
Baizid, K.; Chellali, R.; Yousnadj, A.; Meddahi, A.; and
Bentaleb., T. 2010. Genetic algorithms based method for
time optimization in robotized site. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
1359–1364.
Dror, M.; Efrat, A.; Lubiw, A.; and Mitchell, J. S. B. 2003.
Touring a sequence of polygons. In 35th annual ACM sym-
posium on Theory of Computing, 473–482. ACM Press.
Elbassioni, K. M.; Fishkin, A. V.; and Sitters, R. 2009. Ap-
proximation algorithms for the euclidean traveling salesman
problem with discrete and continuous neighborhoods. Inter-
national Journal of Computational Geometry and Applica-
tions 173–193.
Gentilini, I.; Margot, F.; and Shimada, K. 2011. The travel-
ling salesman problem with neighbourhoods: MINLP solu-
tion. Optimization Methods and Software 0:1–15.
Hassin, R., and Keinan, A. 2008. Greedy heuristics with
regret, with application to the cheapest insertion algorithm
for the TSP. Operations Research Letters 36(2):243–246.
Helsgaun, K. 2000. An effective implementation of the Lin–
Kernighan traveling salesman heuristic. European Journal
of Operational Research 126:106–130.
Johnson, D. S., and McGeoch, L. A. 1997. Local search in
combinatorial optimization. John Wiley and Sons, London.

Mennell, W. 2009. Heuristics for solving three routing
problems: close-enough traveling salesman problem, close-
enough vehicle routing problem, sequence-dependent team
orienteering problem. Ph.D. Dissertation, University of
Maryland.
Mitchell, J. S. 2010. A constant-factor approximation al-
gorithm for TSP with pairwise-disjoint connected neighbor-
hoods in the plane. In Proceedings of the 2010 annual sym-
posium on Computational geometry, SoCG ’10, 183–191.
New York, NY, USA: ACM.
Oberlin, P.; Rathinam, S.; and Darbha, S. 2010. Today’s
traveling salesman problem. IEEE Robotics & Automation
Magazine 17(4):70–77.
Pan, Z.; Polden, J.; Larkin, N.; Duin, S. V.; and Norrish, J.
2010. Recent progress on programming methods for in-
dustrial robots. In Proceedings for the joint conference of
ISR 2010 (41st Internationel Symposium on Robotics) and
ROBOTIK 2010 (6th German Conference on Robotics).
Pan, Z.; Polden, J.; Larkin, N.; Duin, S.; and Norrish, J.
2012. Automated offline programming for robotic welding
system with high degree of freedoms. In Wu, Y., ed., Ad-
vances in Computer, Communication, Control and Automa-
tion, volume 121 of Lecture Notes in Electrical Engineering.
Springer Berlin Heidelberg. 685–692.
Pan, X.; Li, F.; and Klette, R. 2010. Approximate short-
est path algorithms for sequences of pairwise disjoint simple
polygons. In CCCG, 175–178.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-
ling, W. T. 2007. Numerical recipes – the art of scientific
computing. Cambridge: Cambridge University Press, 3rd
edition.
Shi, X. H.; Liang, Y. C.; Lee, H. P.; Lu, C.; and Wang,
Q. X. 2007. Particle swarm optimization-based algorithms
for TSP and generalized TSP. Information Processing Let-
ters 103(5):169–176.

10

