
Incremental ARA*: An Incremental Anytime
Search Algorithm for Moving-Target Search∗

Xiaoxun Sun Tansel Uras Sven Koenig
Computer Science Department

University of Southern California
941 W 37th Street, Los Angeles, CA 90089, USA

{xiaoxuns,turas,skoenig}@usc.edu

William Yeoh
Living Analytics Research Center
Singapore Management University

80 Stamford Road, Singapore 178902
williamyeoh@smu.edu.sg

Abstract

Moving-target search, where a hunter has to catch a mov-
ing target, is an important problem for video game develop-
ers. In our case, the hunter repeatedly moves towards the tar-
get and thus has to solve similar search problems repeatedly.
We develop Incremental ARA* (I-ARA*) for this purpose,
the first incremental anytime search algorithm for moving-
target search in known terrain. We provide an error bound on
the lengths of the paths found by I-ARA* and show exper-
imentally in known four-neighbor gridworlds that I-ARA*
can be used with smaller time limits between moves of the
hunter than competing state-of-the-art moving-target search
algorithms, namely repeated A*, G-FRA*, FRA*, and some-
times repeated ARA*. The hunter tends to make more moves
with I-ARA* than repeated A*, G-FRA* or FRA*, which find
shortest paths for the hunter, but fewer moves with I-ARA*
than repeated ARA*, which finds suboptimal paths for the
hunter like I-ARA*. Also, the error bounds on the lengths of
the paths of the hunter tend to be smaller with I-ARA* than
repeated ARA*.

Introduction

Moving-target search (Ishida and Korf 1991), where a hunter
has to catch a moving target in known terrain, is an impor-
tant problem for video game developers because video game
characters often need to chase hostile characters or catch up
with friendly characters. In our case, the hunter finds a path
from its current location to the current location of the tar-
get and moves along it. If the target moves off the path, then
the hunter repeats the process (Koenig, Likhachev, and Sun
2007). Thus, the hunter has to solve similar search problems
repeatedly and has to do so fast to move smoothly. The video

∗This material is based upon research supported by NSF (while
Sven Koenig was serving at NSF), ARL/ARO under contract/grant
number W911NF-08-1-0468, and ONR under contract/grant num-
ber N00014-09-1-1031. William Yeoh is supported by the Sin-
gapore National Research Foundation under its International Re-
search Centre @ Singapore Funding Initiative and administered by
the IDM Programme Office.The views and conclusions contained
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or
implied, of the sponsoring organizations, agencies or the U.S. gov-
ernment.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

game company Bioware, for example, imposes a time limit
of 1-3 ms per search (Bulitko et al. 2007a), which is not
surprising for video games since their searches can use up
to 70 percent of the available CPU time (Loh and Prakash
2009). Repeated A* with consistent h-values tends to run
too slowly to stay within such stringent time limits between
moves of the hunter but can be sped up in two different
ways.1

• First, incremental search algorithms (Koenig et al. 2004)
modify A* to reduce the runtime per search over repeated
A* by re-using information from previous searches to
speed up the current search. G-FRA* (Sun, Yeoh, and
Koenig 2010), for example, is the currently fastest incre-
mental moving-target search algorithm on known graphs,
and FRA* optimizes it for known gridworlds (Sun, Yeoh,
and Koenig 2009). G-FRA*, FRA* and repeated A* with
consistent h-values find shortest paths but the runtime of
FRA* tends to be smaller than the one of G-FRA* and
the runtime of G-FRA* tends to be smaller than the one
of repeated A*.

• Second, weighted A* (Pohl 1970) performs an A* search
with h-values obtained by multiplying consistent h-values
with a constant user-provided weight ε > 1. It trades off
solution quality and efficiency: Weighted A* with weight
ε finds an ε-suboptimal path (a path that is at most a
factor of ε longer than the shortest path) with a runtime
that tends to be the smaller the larger the weight is. For
weights larger than one, the runtime of weighted A* tends
to be smaller than the one of A* with consistent h-values.
However, it is difficult to identify the smallest weight that
makes weighted A* run within a user-provided time limit.
Anytime Repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2003) avoids this problem by using incremental
search to perform a series of weighted A* searches (each
one called a repair iteration) with decreasing weights to
find paths from the current location of the hunter to the
current location of the target with smaller and smaller er-
ror bounds on their lengths until it finds a shortest path or
the user-provided time limit has been reached.
In this paper, we develop Incremental ARA* (I-ARA*),

the first incremental anytime search algorithm for moving-
1If a single-shot search algorithm X is used repeatedly for every

search of the hunter, we refer to it as repeated X.

243

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

0

7 70 6 5 4 3

6 5 4 3 2

5 4 3 1

4 3 2 0

5 4 3 1

5 6 7

A

1 2 3 4

B

C

D

E

F

G

S

G

O

(a) Before Repair Iteration 1

0 0 1 8 9 10

7 70 6 61 5 58 4 49 3 40

1 1 2 7 7 8 8 9 9

6 61 5 52 4 47 3 38 2 29

2 2 3 3 4 6 10 10

5 52 4 43 3 34 1 20

3 3 4 4 5 5 11

4 43 3 34 2 25 0 11

4 5 5 6 6

5 54 4 45 3 36 1

C

D

E

F

G

A

1 2 3 4

B

5 6 7

S

G

C

C

C

C

C

C

C C

C

I

O

O O O O

C C C

C

O

O

(b) After Repair Iteration 1

0 0 1 8 9 10

7 6 7 5 13 4 13 3 13

1 1 2 7 7 8 8 9 9

6 5 7 4 3 2

2 2 3 3 4 6 10 10

5 4 3 7 1

3 3 4 4 5 5 11

4 3 2 0 11

4 5 5 6 6

5 9 4 3 1

D

E

F

G

2 7

A

B

C

3 4 5 61

S

G

O O O O

O

O

O

O

(c) Before Repair Iteration 2

0 0 1 4 5 6

7 6 7 5 9 4 9 3 9

1 1 2 2 3 3 4 4 5 5

6 5 7 4 7 3 7 2 7

2 2 3 3 4 4 6 6

5 4 3 7 1 7

3 3 4 4 5 5 7

4 3 2 0 7

4 5 5 6 6

5 9 4 3 1

B

C

D

E

F

G

7

A

1 2 3 4 5 6

S

G

O O O O

O

O

C C C C

C C

(d) After Repair Iteration 2

Figure 1: First ARA* Search

target search in known terrain. I-ARA* operates in the same
way as repeated ARA*, except that it also uses incremen-
tal search (as used in G-FRA*) to speed up the first (and
often the slowest) repair iteration of each search by re-
using information from the previous search. I-ARA* oper-
ates in the same way as G-FRA*, except that it performs
a series of (modified) weighted A* searches (that can re-
sult in a suboptimal path) instead of a single (modified) A*
search (that results in a shortest path). We provide an er-
ror bound on the lengths of the paths found by I-ARA* (by
showing that I-ARA* repair iterations with weight ε find ε-
suboptimal paths) and show experimentally in known four-
neighbor gridworlds that I-ARA* can be used with smaller
time limits than repeated A*, G-FRA*, FRA*, and some-
times repeated ARA*. The hunter tends to make more moves
with I-ARA* than repeated A*, G-FRA* or FRA*, which
find shortest paths for the hunter, but fewer moves with I-
ARA* than repeated ARA* with the same time limits and
the same schedule for decreasing the weights, which finds
suboptimal paths for the hunter like I-ARA*. Also, the er-
ror bounds on the lengths of the paths of the hunter tend
to be smaller with I-ARA* than repeated ARA* because I-
ARA* is often able to decrease the weights more than re-
peated ARA* within the time limits.

Notation
Although I-ARA* can operate on arbitrary graphs, we
describe its operation on four-neighbor gridworlds with
blocked and unblocked cells for ease of description. S is the
finite set of unblocked cells, sstart ∈ S is the current cell of
the hunter and the start cell of each search, and sgoal ∈ S is
the current cell of the target and the goal cell of each search.
Neighbor(s) ⊆ S is the set of unblocked neighbors of cell
s ∈ S. parent(s) ∈ Neighbor(s) is the parent of cell s ∈ S
in the search tree, where a search tree contains exactly sstart

and all cells with parents, that is, whose parents are differ-
ent from NULL. c(s, s′) is the length of a shortest path from
cell s ∈ S to cell s′ ∈ S (measured in the number of moves
needed to move along the path).

Existing Research: Repeated ARA*
The hunter always knows the gridworld and the current cells
of both itself and the target. The hunter and target alter-

nate moves (but do not need to move). The hunter can al-
ways move from sstart to any of its neighboring unblocked
cells. I-ARA* builds on Anytime Repairing A* (ARA*)
(Likhachev, Gordon, and Thrun 2003). I-ARA* and repeated
ARA* operate as follows until the hunter occupies the same
cell as the target: They perform a series of weighted A*
searches from sstart to sgoal with decreasing weights to find
paths with smaller and smaller error bounds on their lengths
until they find a shortest path or the user-provided time limit
has been reached. (If they find that no path from sstart to sgoal

exists, then they exit unsuccessfully since the hunter will
never be able to occupy the same cell as the target.) Then,
they move the hunter along the path. If the target moves off
the path, then they repeat the process.

We explain repeated ARA* first. Repeated ARA* main-
tains several values for each cell s ∈ S: (1) The g-value
g(s) is the length of the shortest path from sstart to s found
so far. Initially, it is infinity. (2) The v-value v(s) is the g-
value at the time of the last expansion of cell s. Initially, it
is infinity. We call a cell s locally consistent if v(s) = g(s)
and locally inconsistent otherwise. (3) The h-value h(s, s′)
is a user-provided approximation of the length of a shortest
path from s to s′. The h-values have to be consistent, that is,
obey the triangle inequality (Pearl 1985). We use the Man-
hattan distances as consistent h-values throughout the paper.
(4) The f -value f(s) = g(s) + ε× h(s, sgoal) is an approxi-
mation of the length of an ε-suboptimal path from sstart via s
to sgoal, where ε is the weight of the current repair iteration.

We call each weighted A* search a repair iteration, and
the series of weighted A* searches between two moves of
the hunter an ARA* search. Repeated ARA* proceeds as
follows, using the sets OPEN, CLOSED and INCONS:2 Re-
peated ARA* first sets g(sstart) to zero, OPEN to contain
only sstart, and CLOSED and INCONS to the empty set. Re-
peated ARA* then starts the first repair iteration by setting
the weight of the current repair iteration ε to a user-provided
initial weight εmax (to find a path from sstart to sgoal with a
large error bound on its length quickly) and then repeats the

2OPEN is the set of all locally inconsistent cells that have not
yet been expanded in the current repair iteration, CLOSED is the set
of all locally consistent cells that have been expanded in the current
repair iteration, and INCONS is the set of all locally inconsistent
cells that have been expanded in the current repair iteration.

244

4 5 6

8 7 6 10 5 10 4 10

1 1 2 2 3 3 4 4 5 5

7 6 8 5 8 4 8 3 8

2 2 3 3 4 4 6 6

6 5 4 8 2 8

3 3 4 4 5 5 7

5 4 3 1 8

4 5 5 6 6

4 8 3 2 0

5 6 7

A

1 2 3 4

B

C

D

E

F

G

S

G

D D O O O

O

O

C C C C

C C

D

(a) Before Repair Iteration 1
(After Step 2)

2 3 4 5 6

8 10 7 10 6 10 5 10 4 10

1 1 2 2 3 3 4 4 5 5

7 6 5 4 3

2 2 3 3 4 4 6 6

6 5 4 2

3 3 4 4 5 5 7

5 4 3 1 8

4 5 5 6 6

4 8 3 2 0

5 6 7

A

B

C

3 41 2

D

E

F

G

S

G

O O O O

O

O

O

(b) Before Repair Iteration 1
(After Step 3)

2 3 4 5 6

8 82 7 73 6 64 5 55 4 46

1 1 2 2 3 3 4 4 5 5

7 6 5 4 3

2 2 3 3 4 4 6 6

6 5 4 2

3 3 4 4 5 5 7

5 4 3 1 17

4 5 5 6 6

4 44 3 2 0

5 6 7

A

1 2 3 4

F

G

B

C

D

E

S

G

O O O O O

O

O

(c) Before Repair Iteration 1
(After Step 4)

2 3 4 5 6

8 82 7 73 6 64 5 55 4 46

1 1 2 2 3 3 4 4 5 5

7 6 5 4 3

2 2 3 3 4 4 6 6

6 5 4 2

3 3 4 4 5 5 7 7

5 4 3 1 17

4 5 5 6 6 8

4 44 3 2 0 8

D

E

F

G

7

A

B

C

3 4 5 61 2

S

G

O O O O O

O O

C

(d) After Repair Iteration 1

Figure 2: Second I-ARA* Search

following procedure: Repeated ARA* deletes a cell s with
the smallest f -value from OPEN, inserts it into CLOSED
and expands it by setting v(s) to g(s) and performing the
following operations for each neighbor s′ ∈ Neighbor(s)
with g(s′) > v(s) + c(s, s′): Repeated ARA* sets g(s′) to
v(s) + c(s, s′) and parent(s′) to s. If s′ is neither in OPEN,
CLOSED nor INCONS, then repeated ARA* generates it by
inserting it into OPEN. If s′ is in CLOSED, then repeated
ARA* re-generates it by moving it to INCONS. Repeated
ARA* terminates the current repair iteration when OPEN
is empty (which indicates that no path exists from sstart to
sgoal) or when the f -value of sgoal is no larger than the small-
est f -value of any cell in OPEN (which indicates that re-
peated ARA* found an ε-suboptimal path from sstart to sgoal,
which can be traced in reverse by following the parents from
sgoal to sstart). If ε > 1 and the user-provided time limit
has not yet been reached, then repeated ARA* performs the
following operations before the next repair iteration: Re-
peated ARA* decreases ε by a user-provided constant δε
(to find a path with a smaller error bound on its length),
sets OPEN to the union of OPEN and INCONS, and sets
CLOSED and INCONS to the empty sets. Repeated ARA*
then starts the next repair iteration. It thus improves upon re-
peated weighted A*, which starts each repair iteration with
OPEN containing only sstart and thus does not reuse infor-
mation from the previous repair iteration.

Figures 1(a-d) show a gridworld of size 7 × 7 that we
use as running example throughout the paper. B2 is sstart

(marked “S”), and E6 is sgoal (marked “G”). Cells in OPEN
are marked “O” in the center, cells in CLOSED are marked
“C” in the center, and cells in INCONS are marked “I”
in the center. Arrows point from cells to their parents. We
show the g-, v-, h- and f -values of each cell in its top-left,
top-right, bottom-left and bottom-right corners, respectively.
The f -values are shown only for cells in OPEN, CLOSED or
INCONS. Ties among cells with the same f -values are bro-
ken in favor of cells with larger g-values because this typ-
ically results in smaller runtimes per repair iteration. Fig-
ures 1(a) and 1(b) show the cells before and after the first
repair iteration, respectively. The first repair iteration uses
ε = 10, expands cells in the order B2, C2, D2, E2, E3, E4,
F4, D4, D3, F3, C4, C5, C6 and D6, and returns a subopti-

mal path from B2 to E6 of length 9. Note that it expands D4
with g(D4) = 6 and later D3 with g(D3) = 3. At this point,
it detects that g(D3) + c(D3, D4) = 3 + 1 < 6 = g(D4),
re-generates D4, and inserts it into INCONS. Figures 1(c)
and 1(d) show the cells before and after the second repair it-
eration, respectively. The second repair iteration uses ε = 1
and returns a shortest path of length 7.

New Research: I-ARA*

I-ARA* operates in the same way as repeated ARA* but re-
uses part of the search tree at the end of the last repair itera-
tion of the previous I-ARA* search as the search tree in the
beginning of the first repair iteration of the current I-ARA*
search, namely the subtree that is rooted in sstart. Figure 3
shows the pseudocode of I-ARA*. The first I-ARA* search
is an ARA* search. Thus, Figure 1 shows the first I-ARA*
search. Figure 2 shows the second I-ARA* search after the
hunter moved from B2 to C2 and the target moved from
E6 to F6. The second I-ARA* search proceeds as follows,
using the additional set DELETED:3

Step 1 (Making sstart Locally Consistent) sstart never needs
to be re-expanded since the search tree trivially contains an
ε-suboptimal path from sstart to itself (namely, the empty
path). To avoid unnecessary re-expansions of sstart and po-
tentially many of its descendants in the search tree, I-ARA*
makes sstart locally consistent if it is locally inconsistent, by
setting its g-value to its v-value. I-ARA* then deletes sstart

from OPEN and INCONS. In our example, I-ARA* skips
Step 1 since C2 is locally consistent already.
Step 2 (Deleting Cells from the Previous Search Tree)
If sstart is different from the previous cell of the hunter
previous sstart, I-ARA* sets the parent of sstart to NULL and
deletes all cells from the previous search tree that are not
in the subtree rooted in sstart by setting their g-values and
v-values to infinity, setting their parents to NULL and delet-
ing them from OPEN and INCONS. All cells deleted from
the previous search tree are inserted into DELETED. In our
example, I-ARA* deletes B2 and B3 and inserts them into

3DELETED is the set of all cells that have been deleted from
the search tree in the current repair iteration.

245

DELETED. All cells in DELETED are marked “D” in the
center, see Figure 2(a).
Step 3 (Completing OPEN) OPEN is still incomplete since
it is missing all cells in DELETED that are neighbors of
at least one cell with a finite v-value and missing all cells
in INCONS. Therefore, I-ARA* iterates through all cells in
DELETED and performs the following check: If a cell s′ in
DELETED is a neighbor of at least one cell with a finite v-
value, I-ARA* sets g(s′) to v(s) + c(s, s′) and parent(s′)
to s, where s is argmins′′∈Neighbor(s′)(v(s

′′)+ c(s′′, s′)), and
inserts s′ into OPEN. In our example, I-ARA* inserts B2
and B3 into OPEN. It then inserts all cells in INCONS into
OPEN and sets CLOSED, INCONS and DELETED to the
empty sets, see Figure 2(b).
Step 4 (Updating Weight ε) If the f -value of sgoal is no
larger than the smallest f -value of all cells in OPEN, then
the search tree already contains an ε-suboptimal path from
sstart to sgoal. Thus, I-ARA* decreases the weight ε by the
user-provided constant δε by setting ε to max(1, ε − δε) to
find a path with a smaller error bound on its length. Other-
wise, I-ARA* has yet to find an ε-suboptimal path. Thus, it
sets weight ε to the user-provided initial weight εmax to find
a path with a large error bound on its length quickly. In our
example, the second case holds and I-ARA* sets the weight
to εmax = 10, see Figure 2(c).
Step 5 (Starting Repair Iterations) I-ARA* starts the next
repair iteration of the current I-ARA* search. In our exam-
ple, this repair iteration with weight 10 expands only E6,
see Figure 2(d). In contrast, it would expand C2, C3, C4,
C5, C6, D6 and E6 without re-using part of the search tree
at the end of the last repair iteration of the previous I-ARA*
search.

Correctness of I-ARA*

Due to space constraints, we are only able to sketch the cor-
rectness proof of I-ARA*, that is, that ImprovePath() with
weight ε finds an ε-suboptimal path from sstart to sgoal if one
exists and reports that no path exists otherwise. We start with
a useful lemma.
Lemma 1. For all cells s ∈ S, g(s) ≤ v(s).

Proof. Initially, g(s) = v(s) = ∞. Whenever g(s) or v(s)
changes, they are both set to infinity, v(s) is set to g(s), or
g(s) is reduced. The lemma follows from these observations.

Corollary 15 in (Likhachev 2005) can be adapted to
prove that g(sgoal) − g(sstart) ≤ ε × c(sstart, sgoal) when Im-
provePath() with weight ε terminates if (A1) CLOSED is
the empty set, (A2) OPEN is the set of all locally incon-
sistent cells, and (A3) for all cells s ∈ S \ {sstart}, g(s) =
v(parent(s)) + c(parent(s), s) = mins′∈Neighbor(s)(v(s

′) +
c(s′, s)) when ImprovePath() is called. 4 In the following,

4The version of ImprovePath() used in (Likhachev 2005) does
not use INCONS and requires that g(sstart) = 0. The version of
ImprovePath() used by I-ARA* uses INCONS only for bookkeep-
ing and the proof in (Likhachev 2005) applies to it if one uses
g(s)− g(sstart) instead of g(s) for all cells s ∈ S.

01 function ImprovePath()
02 while g(sgoal) + ε × h(sgoal, sgoal) > mins∈OPEN(g(s) + ε × h(s, sgoal))
03 move s ∈ OPEN with the smallest g(s) + ε × h(s, sgoal) from OPEN to CLOSED;
04 v(s) := g(s);
05 forall s′ ∈ Neighbor(s)
06 if g(s′) > v(s) + c(s, s′)
07 g(s′) := v(s) + c(s, s′);
08 parent(s′) := s;
09 if s′ /∈ CLOSED
10 if s′ /∈ OPEN AND s′ /∈ INCONS
11 insert s′ into OPEN;
12 else
13 move s′ from CLOSED to INCONS;
14 if g(sgoal) = ∞
15 return false;
16 else
17 return true;

18 function ComputePath()
19 repeat
20 return false if ImprovePath() = false;
21 return true if ε = 1 OR the time limit has been reached;
22 OPEN := OPEN ∪ INCONS;
23 CLOSED := INCONS := ∅;
24 ε := max(1, ε − δε);

25 procedure Step1()
26 if g(sstart) �= v(sstart)
27 g(sstart) := v(sstart);
28 delete sstart from INCONS if sstart ∈ INCONS;
29 delete sstart from OPEN if sstart ∈ OPEN;

30 procedure Step2()
31 if sstart �= previous sstart
32 parent(sstart) := NULL;
33 forall s in the search tree rooted at previous sstart but not in the subtree rooted at sstart
34 v(s) := g(s) := ∞;
35 parent(s) := NULL;
36 delete s from INCONS if s ∈ INCONS;
37 delete s from OPEN if s ∈ OPEN;
38 insert s into DELETED;

39 procedure Step3()
40 forall s ∈ DELETED
41 forall s′ ∈ Neighbor(s)
42 if g(s) > v(s′) + c(s′, s)
43 g(s) := v(s′) + c(s′, s);
44 parent(s) := s′;
45 if g(s) �= ∞
46 insert s into OPEN;
47 OPEN := OPEN ∪ INCONS;
48 CLOSED := INCONS := DELETED := ∅;

49 procedure Step4()
50 if g(sgoal) + ε × h(sgoal, sgoal) > mins∈OPEN(g(s) + ε × h(s, sgoal))
51 ε := εmax;
52 else
53 ε := max(1, ε − δε);

54 function Main()
55 forall s ∈ S
56 v(s) := g(s) := ∞;
57 parent(s) := NULL;
58 ε := εmax;
59 sstart := the current cell of the hunter;
60 sgoal := the current cell of the target;
61 OPEN := CLOSED := INCONS := DELETED := ∅;
62 g(sstart) := 0;
63 insert sstart into OPEN;
64 while sstart �= sgoal
65 return false if ComputePath() = false; /* Step 5 */
66 previous sstart := sstart;
67 identify a path from sstart to sgoal using the parents;
68 while the target has not been caught yet AND is still on the path from sstart to sgoal
69 the hunter follows the path from sstart to sgoal;
70 return true if the target has been caught;
71 sstart := the current cell of the hunter;
72 sgoal := the current cell of the target;
73 Step1(); /* Step 1 */
74 Step2(); /* Step 2 */
75 Step3(); /* Step 3 */
76 Step4(); /* Step 4 */
77 return true;

Figure 3: I-ARA*

246

we first prove the premise by proving A1, A2 and A3 sepa-
rately. We then use the conclusion for the correctness proof
of I-ARA*.

We now prove that A1 holds whenever ImprovePath() is
called. This is easy to see since both CLOSED and INCONS
are always set to the empty set before and between calls to
ImprovePath() (Lines 23, 48 and 61).

We now prove that A2 holds whenever ImprovePath() is
called. We start with a useful lemma.

Lemma 2. OPEN ∪ INCONS is the set of all locally in-
consistent cells when ImprovePath() terminates if A2 holds
when ImprovePath() is called.

Proof. We prove the lemma by induction on the number of
times ImprovePath() executes Line 2: The conclusion of the
lemma holds for the first execution of Line 2 since A2 holds
due to the premise of the lemma and CLOSED and INCONS
are the empty set. The conclusion of the lemma also holds
for each subsequent execution of Line 2: ImprovePath() sets
the v-value of a cell to its g-value on Line 4 and thus makes
it locally consistent, and it might reduce the g-value of a
cell on Line 7, thus making it locally inconsistent according
to Lemma 1. Whenever a cell is made locally consistent,
it is deleted from OPEN ∪ INCONS (Line 3). Whenever a
cell is made locally inconsistent, it is inserted into OPEN ∪
INCONS (Lines 11 and 13). These are the only ways how
cells can be inserted into or deleted from OPEN ∪ INCONS.

Next, we prove that A2 holds whenever ImprovePath() is
called if A2 holds whenever ComputePath() is called. We
prove the statement by induction on the number of times
ComputePath() calls ImprovePath(). A2 holds when Com-
putePath() calls ImprovePath() for the first time since A2
holds whenever ComputePath() is called. A2 also holds
when ComputePath() calls ImprovePath() each subsequent
time: OPEN ∪ INCONS is the set of all locally inconsistent
cells when ImprovePath() terminates according to Lemma
2. ComputePath() then restores A2 since it inserts all cells in
INCONS into OPEN (Line 22).

Finally, we prove that A2 holds whenever ComputePath()
is called. We prove the statement by induction on the number
of times Main() calls ComputePath(). A2 holds when Main()
calls ComputePath() for the first time since OPEN contains
the only locally inconsistent cell, namely sstart. A2 also holds
when Main() calls ComputePath() each subsequent time:
OPEN ∪ INCONS is the set of all locally inconsistent cells
when ComputePath() terminates since it is the set of all lo-
cally inconsistent cells when ImprovePath() terminates ac-
cording to Lemma 2. Main() sets the g-value of a cell to
its v-value on Lines 27 and 34 and thus makes it locally
consistent, and it reduces the g-value of a cell on Line 43
and thus makes it locally inconsistent according to Lemma
1. Whenever a cell is made locally consistent, it is deleted
from OPEN ∪ INCONS (Lines 28-29 and 36-37). When-
ever a cell is made locally inconsistent, it is inserted into
OPEN ∪ INCONS (Line 46). These are the only ways how
cells can be inserted into or deleted from OPEN ∪ INCONS.

Main() then restores A2 since it inserts all cells in INCONS
into OPEN (Line 47).

We have proven that A2 holds whenever ImprovePath()
is called if A2 holds whenever ComputePath() is called. We
have also proven that A2 holds whenever ComputePath() is
called. Consequently, we have proven that A2 holds when-
ever ImprovePath() is called.

We now prove that A3 holds whenever ImprovePath() is
called. We first prove that A3 holds whenever ImprovePath()
terminates if A3 holds whenever ImprovePath() is called. We
prove the statement by induction on the number of times Im-
provePath() executes Line 2, taking into account Lines 4-8.
We then use this statement to prove that A3 holds when-
ever ImprovePath() is called if A3 holds whenever Com-
putePath() is called. We prove this statement, in turn, by
induction on the number of times ComputePath() calls Im-
provePath(), taking into account that ImprovePath() but not
the rest of ComputePath() can change the g- and v-values.

Finally, we prove that A3 holds whenever ComputePath()
is called. We prove the statement by induction on the num-
ber of times Main() calls ComputePath(). A3 holds when
Main() calls ComputePath() for the first time due to the ini-
tialization of the g-values, parents, and v-values of all cells
(Lines 56-57 and 62). A3 also holds when Main() calls Com-
putePath() each subsequent time: A3 holds whenever Com-
putePath() terminates since it holds whenever ImprovePath()
terminates. We prove that A3 also holds after Main() exe-
cutes Line 76 if it holds before Main() executes Line 66: If
the hunter does not move and its current cell sstart is thus
equal to its previous cell previous sstart, then the g-values,
parents and v-values of no cell changes when Main() exe-
cutes Lines 66-76 and A3 continues to hold. If the hunter
moves, we partition all cells into three sets: Snew is the set of
all cells in the subtree of the search tree rooted in sstart, Sold is
the set of all cells in the search tree (rooted in previous sstart)
but not in Snew, and Srest is the set of all remaining cells. Con-
sider any cell s ∈ S \ {sstart}.

• If s ∈ Snew, then parent(s) ∈ Snew before Main() executes
Line 66 since Snew is the set of all cells in a subtree of the
search tree. Neither the g-value of s, the parent of s nor the
v-value of parent(s) changes when Main() executes Lines
66-76. mins′∈Neighbor(s)(v(s

′)+c(s′, s)) does not decrease
since the v-value of no cell decreases. Consequently, s
does not violate A3 after Main() executes Line 76.

• If s ∈ Srest, then the g-value of s is infinity before Main()
executes Line 66 since Srest is the set of cells that are
not in the search tree and whose g-values are thus in-
finity. For all s′ ∈ Neighbor(s), the v-value of s′ is
also infinity according to A3. Neither the g-value nor
parent of s changes when Main() executes Lines 66-76.
mins′∈Neighbor(s)(v(s

′) + c(s′, s)) does not decrease since
the v-value of no cell decreases. Consequently, s does not
violate A3 after Main() executes Line 76.

• If s ∈ Sold, then the g- and v-value of s are set to infinity
on Line 34. DELETED is the empty set (Lines 48 and 61)
before the cells in Sold are inserted into it (Lines 33 and
38) and thus Sold is the set of all cells in DELETED. The
g-value of s is then set to mins′∈Neighbor(s)(v(s

′)+c(s′, s)),

247

and the parent of s is set to argmins′∈Neighbor(s)(v(s
′) +

c(s′, s)) (Lines 41-44). After the g-value and parent of
s have been set the last time on Lines 43-44, then the
g-value of s, the parent of s and the v-value of no cell
changes. Consequently, s does not violate A3 after Main()
executes Line 76.

We have proven that A3 holds whenever ComputePath()
is called. Thus, A3 also holds whenever ImprovePath() is
called.

Overall, we have proven that g(sgoal) − g(sstart) ≤ ε ×
c(sstart, sgoal) when ImprovePath() with weight ε terminates
if A1, A2, and A3 hold when ImprovePath() is called.
We have also proven that A1, A2, and A3 hold when Im-
provePath() is called. Consequently, we have proven that
g(sgoal) − g(sstart) ≤ ε × c(sstart, sgoal) when ImprovePath()
with weight ε terminates. We now use this result for the cor-
rectness proof of I-ARA*.
Theorem 1. ImprovePath() returns true if a path from sstart

to sgoal exists and false otherwise.

Proof. ImprovePath() always expands a cell in OPEN and
then does not reinsert it into OPEN. Since S is finite,
ImprovePath() eventually terminates. We have shown that
g(sgoal) − g(sstart) ≤ ε × c(sstart, sgoal) when ImprovePath()
with weight ε terminates. If a path from sstart to sgoal exists,
then c(sstart, sgoal) is finite, which means that g(sgoal) is also
finite (since g(sstart) is finite) and ImprovePath() returns true
(Lines 14 and 17). If no such path exists, then g(sgoal) is in-
finity (which can be proven by contradiction using Lemma 1
and A3) and ImprovePath() returns false (Lines 14-15).

Theorem 2. When ImprovePath() with weight ε returns true,
an ε-suboptimal path from sstart to sgoal of length at most
g(sgoal) − g(sstart) can be traced in reverse by following the
parents from sgoal to sstart.

Proof. We have shown that g(sgoal) − g(sstart) ≤ ε ×
c(sstart, sgoal) and A3 holds whenever ImprovePath() with
weight ε terminates. A3 and Lemma 1 ensure that the
g-values of the cells are strictly monotonically decreas-
ing when following the parents from sgoal. One eventu-
ally reaches sstart since all cells with finite g-values, ex-
cept for sstart, have parents. Now consider the resulting path
(s0 = sstart, . . . , sk = sgoal). We prove that the path (s0 =
sstart, . . . , si) is of length at most g(si) − g(sstart) by induc-
tion on i: The path (s0 = sstart, . . . , s0) is trivially of length
at most g(si)−g(sstart) = 0. Now assume that the path (s0 =
sstart, . . . , si) for i > 0 is of length at most g(si) − g(sstart).
g(si+1) = v(si) + c(si, si+1) ≥ g(si) + c(si, si+1) and
thus g(si+1) − g(si) ≥ c(si, si+1) according to A3 and
Lemma 1 since parent(si+1) = si. The length of path
(s0 = sstart, . . . , si+1) is equal to the sum of the length of
path (s0 = sstart, . . . , si), which is at most g(si) − g(sstart),
and c(si, si+1), which is at most g(si+1)− g(si).

Experimental Results

Moving-target search algorithms in known terrain can be
classified into off-line and on-line algorithms. Off-line
moving-target search algorithms, such as Reverse Minimax

A* (Moldenhauer and Sturtevant 2009), determine the opti-
mal strategy for the hunter once by taking into account all
strategies for the target, which tends to make their searches
too slow on larger maps. On-line search algorithms react to
the actual moves of the target and thus need to search re-
peatedly. Some on-line search algorithms use the strategy
for the hunter to find a path from sstart to sgoal and move
along it. If the target moves off the path, then they repeat the
process. Real-time moving-target search algorithms, such
as MTS (Ishida and Korf 1991), find a prefix of a path in
constant time, which tends to result in a large number of
moves for the hunter until it catches the target or needs a
large amount of memory (Bulitko et al. 2007b). We there-
fore study moving-target search algorithms that find a com-
plete path, for example, via repeated A* or weighted A*
searches. Incremental search has been used to speed up both
kinds of moving-target search algorithms. For example, USP
(Edelkamp 1998) is an incremental version of a version of
MTS (Sasaki, Chimura, and Tokoro 1995), and G-FRA*
(Sun, Yeoh, and Koenig 2010) is an incremental version
of repeated A*. G-FRA* finds shortest paths for the hunter
and is the currently fastest such incremental moving-target
search algorithm on known graphs. FRA* optimizes it for
gridworlds (Sun, Yeoh, and Koenig 2009).

We therefore compare I-ARA* experimentally to repeated
A*, G-FRA*, FRA* and repeated ARA* (Likhachev, Gor-
don, and Thrun 2003). It is important to realize that experi-
mental results, such as the runtimes of the search algorithms,
depend on a variety of factors, including implementation
details (such as the data structures, tie-breaking strategies,
and coding tricks used) and experimental setups (such as
whether the gridworlds are four-neighbor or eight-neighbor
gridworlds). We do not know of any better method for eval-
uating search algorithms than to implement them as best as
possible, publish their runtimes, and let other researchers ex-
periment with their own and thus potentially different im-
plementations and experimental setups. For fairness, we use
comparable implementations. For example, all search algo-
rithms use binary heaps as priority queues and replan when
the target moves off the path. We perform our experiments
in (1) four-neighbor gridworlds of size 1, 000× 1, 000 with
25 percent randomly blocked cells and (2) a four-neighbor
video game map of size 676 × 676 adapted from Warcraft
III (courtesy of Nathan Sturtevant). We average over 100
test cases (corresponding to 100 different gridworlds but the
same video game map) with randomly selected unblocked
cells for the hunter and target for both kinds of maps, with
the restriction that a path exists between both cells. The tar-
get always follows a shortest path from its current cell to
a randomly selected unblocked cell and repeats the process
once it reaches that cell. It skips every tenth move, which
allows the hunter to catch it in all cases.

Experiment 1

We first let I-ARA* and repeated ARA* perform only one
repair iteration per search with a user-provided weight,
which we vary from 1.0 to 5.0. Thus, repeated ARA* re-
duces to repeated weighted A*. Table 1 reports one measure
for the solution quality of the search algorithms, namely the

248

Gridworlds Game Map
moves expansions average largest moves expansions average largest

per per runtime runtime per per runtime runtime
test case search per search of any search test case search per search of any search

A* 746 [1.00] 13801.1 (95.0) 6,768 28,114 546 [1.00] 9,079.4 (69.1) 3,789 12,169
FRA* 747 [1.00] 283.5 (14.4) 427 21,417 545 [1.00] 321.1 (26.4) 225 10,196
G-FRA* 746 [1.00] 646.5 (18.1) 592 21,630 545 [1.00] 673.9 (22.3) 340 10,302
ARA* (ε =1.0) 746 [1.00] 13,800.5 (95.0) 7,221 29,500 546 [1.00] 9,082.2 (66.4) 4,071 12,591
ARA* (ε =1.1) 772 [1.03] 6,510.7 (42.2) 3,058 7,416 557 [1.02] 6,288.3 (47.2) 2,675 7,512
ARA* (ε =1.2) 800 [1.07] 3,458.4 (20.6) 1,602 4,669 574 [1.05] 5,021.0 (36.7) 2,065 5,767
ARA* (ε =1.3) 824 [1.10] 1,641.5 (7.7) 732 2,133 590 [1.08] 4,515.0 (31.8) 1,825 4,664
ARA* (ε =1.4) 840 [1.13] 1,087.2 (3.8) 492 1,156 602 [1.10] 4,167.0 (28.9) 1,665 4,323
ARA* (ε =1.5) 851 [1.14] 919.2 (3.0) 430 968 616 [1.13] 3,785.6 (24.0) 1,472 3,699
ARA* (ε =2.0) 882 [1.18] 733.4 (2.3) 370 832 659 [1.21] 2,855.9 (16.2) 1,037 2,583
ARA* (ε =3.0) 919 [1.23] 664.7 (2.0) 351 802 701 [1.28] 2,121.8 (10.6) 697 1,826
ARA* (ε =4.0) 919 [1.23] 656.0 (2.0) 350 805 805 [1.47] 1,731.1 (8.2) 559 1,607
ARA* (ε =5.0) 929 [1.25] 645.3 (2.0) 349 799 915 [1.68] 1,864.0 (7.8) 599 1,486
I-ARA* (ε =1.0) 746 [1.00] 646.5 (18.1) 619 23,485 545 [1.00] 673.9 (22.3) 368 11,681
I-ARA* (ε =1.1) 760 [1.02] 163.2 (6.2) 174 5,939 549 [1.01] 310.4 (20.3) 190 6,298
I-ARA* (ε =1.2) 778 [1.04] 62.3 (3.1) 128 3,303 555 [1.02] 198.2 (19.8) 154 4,944
I-ARA* (ε =1.3) 799 [1.07] 14.7 (0.9) 101 1,375 568 [1.04] 140.4 (18.8) 127 4,065
I-ARA* (ε =1.4) 814 [1.09] 5.9 (0.4) 92 975 578 [1.06] 115.4 (18.1) 116 3,795
I-ARA* (ε =1.5) 828 [1.11] 4.1 (0.3) 93 877 588 [1.08] 110.5 (18.4) 107 3,249
I-ARA* (ε =2.0) 858 [1.15] 3.0 (0.3) 101 796 630 [1.15] 59.3 (17.1) 79 2,204
I-ARA* (ε =3.0) 885 [1.19] 2.6 (0.2) 106 761 672 [1.23] 44.8 (15.7) 71 1,633
I-ARA* (ε =4.0) 890 [1.19] 2.5 (0.2) 105 772 683 [1.25] 42.1 (15.3) 68 1,463
I-ARA* (ε =5.0) 898 [1.20] 2.4 (0.2) 106 759 698 [1.28] 40.0 (14.8) 65 1,352

Table 1: User-Provided Error Bound ε on the Length of the Path of each Search

Gridworlds Game Map
moves expansions average largest searches repair moves expansions average largest searches repair

per per runtime runtime exceeding iterations per per runtime runtime exceeding iterations
test case search per search of any repair time limit t per search test case search per search of any repair time limit t per search

iteration iteration
FRA* (t = 100μs) 747 [1.00] 283.5 (14.4) 427 - 17.6% {17.4%} - 545 [1.00] 321.1 (26.4) 225 - 19.4% {19.2%} -
FRA* (t = 200μs) 747 [1.00] 283.5 (14.4) 426 - 16.1% {15.9%} - 545 [1.00] 321.1 (26.4) 225 - 15.5% {15.3%} -
FRA* (t = 300μs) 747 [1.00] 283.5 (14.4) 426 - 14.9% {14.7%} - 545 [1.00] 321.1 (26.4) 225 - 13.4% {13.1%} -
FRA* (t = 400μs) 747 [1.00] 283.5 (14.4) 427 - 13.9% {13.7%} - 545 [1.00] 321.1 (26.4) 224 - 11.5% {11.2%} -
FRA* (t = 500μs) 747 [1.00] 283.5 (14.4) 426 - 12.8% {12.6%} - 545 [1.00] 321.1 (26.4) 226 - 10.0% {9.8%} -
FRA* (t =1, 000μs) 747 [1.00] 283.5 (14.4) 427 - 9.0% {8.9%} - 545 [1.00] 321.1 (26.4) 224 - 5.7% {5.5%} -
FRA* (t =2, 000μs) 747 [1.00] 283.5 (14.4) 427 - 5.4% {5.2%} - 545 [1.00] 321.1 (26.4) 226 - 2.2% {2.0%} -
FRA* (t =3, 000μs) 747 [1.00] 283.5 (14.4) 427 - 3.6% {3.5%} - 545 [1.00] 321.1 (26.4) 224 - 1.3% {1.1%} -
ARA* (t = 100μs) 877 [1.18] 741.4 (1.4) 382 827 78.8% {78.8%} 2.40 656 [1.20] 2,874.1 (7.8) 1,062 2,631 79.0% {79.0%} 2.50
ARA* (t = 200μs) 868 [1.16] 760.2 (1.1) 408 838 65.2% {65.1%} 3.29 652 [1.19] 2,897.2 (6.1) 1,087 2,636 69.1% {69.1%} 3.29
ARA* (t = 300μs) 862 [1.16] 787.2 (0.9) 444 835 51.9% {51.8%} 4.06 649 [1.19] 2,919.4 (5.3) 1,103 2,651 60.5% {60.4%} 3.87
ARA* (t = 400μs) 857 [1.15] 818.9 (0.8) 497 874 39.6% {39.5%} 4.80 647 [1.18] 2,952.2 (4.8) 1,146 2,644 54.2% {54.2%} 4.30
ARA* (t = 500μs) 852 [1.14] 858.5 (0.7) 557 836 28.4% {28.3%} 5.53 645 [1.18] 2,983.5 (4.4) 1,182 2,634 49.0% {48.9%} 4.69
ARA* (t =1, 000μs) 836 [1.12] 1,140.2 (0.5) 944 844 4.1% {4.1%} 7.82 639 [1.17] 3,183.5 (3.5) 1,388 2,637 34.3% {34.3%} 5.97
ARA* (t =2, 000μs) 818 [1.10] 1,921.3 (0.6) 1,746 837 0.0% {0.0%} 9.17 627 [1.15] 3,736.4 (3.0) 1,883 2,680 17.9% {17.9%} 7.28
ARA* (t =3, 000μs) 809 [1.08] 2,698.1 (0.8) 2,473 822 0.0% {0.0%} 9.59 620 [1.14] 4,336.3 (2.8) 2,418 2,636 11.2% {11.1%} 7.91
I-ARA* (t = 100μs) 847 [1.14] 5.3 (0.1) 158 742 26.8% {26.6%} 4.07 623 [1.14] 62.8 (6.1) 139 2,190 24.8% {24.6%} 4.08
I-ARA* (t = 200μs) 827 [1.11] 12.2 (0.1) 246 746 6.8% {6.6%} 5.47 613 [1.12] 76.1 (4.2) 221 2,187 6.1% {5.8%} 5.47
I-ARA* (t = 300μs) 818 [1.10] 22.4 (0.1) 325 751 2.5% {2.3%} 6.33 605 [1.11] 94.6 (3.4) 297 2,189 2.3% {2.1%} 6.33
I-ARA* (t = 400μs) 809 [1.08] 34.8 (0.1) 402 748 0.7% {0.5%} 7.02 601 [1.10] 119.5 (3.0) 366 2,175 1.2% {1.0%} 6.99
I-ARA* (t = 500μs) 804 [1.08] 49.7 (0.1) 473 740 0.5% {0.4%} 7.55 596 [1.09] 148.4 (2.8) 429 2,174 0.7% {0.4%} 7.51
I-ARA* (t =1, 000μs) 785 [1.05] 136.4 (0.1) 762 750 0.2% {0.1%} 9.07 577 [1.06] 309.0 (2.4) 687 2,192 0.3% {0.1%} 8.87
I-ARA* (t =2, 000μs) 766 [1.03] 299.8 (0.3) 1,076 749 0.2% {0.2%} 9.73 555 [1.02] 534.1 (2.4) 912 2,194 0.3% {0.2%} 9.60
I-ARA* (t =3, 000μs) 757 [1.01] 414.5 (0.5) 1,251 745 0.3% {0.3%} 9.88 550 [1.01] 634.3 (2.5) 980 2,196 0.2% {0.1%} 9.79

Table 2: User-Provided Time Limit t for each Search

number of moves of the hunter until it catches the target.
The ratio of this number and the number of moves of the
hunter of repeated A* is shown in square brackets. The table
reports three measures for the efficiency of the search algo-
rithms, namely the number of expanded cells per search and
two runtimes in microseconds on an Intel Xeon 3.20 Ghz
PC with 2 GByte of RAM, namely the average runtime per
search over all searches until the hunter catches the target
and the largest runtime of any search until the hunter catches
the target. The trends for the number of expanded cells per
search, the average runtime per search and the largest run-
time of any search are similar, and we thus refer only to the
runtime per search. The standard deviation of the mean for
the number of expanded cells per search is shown in paren-
theses. We notice the following relationships:

• The numbers of moves of all search algorithms tend to be
similar when I-ARA* and repeated ARA* use weight one
since they all find the same paths (modulo tie breaking).

• The runtime per search of repeated A* tends to be smaller
than the one of repeated ARA* with weight one since
they operate in the same way and thus tend to have
the same number of expanded cells per search but re-
peated ARA* needs extra bookkeeping operations. The
runtime per search of I-ARA* with weight one tends
to be smaller than the one of repeated A* since it uses
incremental search. The runtime per search of G-FRA*
tends to be smaller than the one of I-ARA* with weight
one since they operate in the same way and thus tend to
have the same number of expanded cells per search but I-
ARA* needs extra bookkeeping operations. The runtime
per search of FRA* tends to be smaller than the one of
G-FRA* since it is optimized for gridworlds.

• The numbers of moves of I-ARA* tends to be smaller than
the one of repeated ARA* with the same weight and both
increase slowly as the weight increases since they trade-
off solution quality and efficiency.

249

• The runtime per search of I-ARA* tends to be smaller
than the one of repeated ARA* with the same weight
since it uses incremental search to re-use information
from the last repair iteration of the previous search to
speed up the first repair iteration of the current search.
The runtimes per search of I-ARA* and repeated ARA*
with the same weight tend to decrease as the weight in-
creases. The runtime per search of I-ARA* tends to be
smaller than the ones of all other tested search algorithms
for sufficiently large weights.

The advantage of I-ARA* over G-FRA* and repeated
ARA* searches is due to the following reasons:

• The average runtime per search of G-FRA* tends to be
smaller than the one of repeated A* but its largest runtime
of any search tends to be only slightly smaller. Both the
average runtime per search and the largest runtime of any
search of I-ARA* with weights larger than one tend to be
smaller than the ones of G-FRA* but the largest runtime
of any search tends to be much smaller. The reason for
this is that the first search is often the one with the largest
runtime. The first G-FRA* search is an A* search (and the
largest runtime of any search of G-FRA* thus tends to be
similar to the one of repeated A*), while the first I-ARA*
search is a faster weighted A* search.

• Both the average runtime per search and the largest run-
time of any search of I-ARA* tend to be smaller than the
ones of repeated ARA* with the same weight but the av-
erage runtime per search tends to be much smaller. The
reason for this is that the first search is often the one with
the largest runtime. The first searches of I-ARA* and re-
peated ARA* operate in the same way (and the largest
runtime of any search of I-ARA* thus tends to be similar
to the one of repeated ARA*), while I-ARA* uses incre-
mental search to speed up the subsequent searches.

Experiment 2

We now impose a time limit per search, which we vary from
100 to 3,000 μs. Since all search algorithms have to find a
path from sstart to sgoal, we let FRA* complete its searches in-
dependent of the time limit and repeated ARA* and I-ARA*
complete their first repair iterations of all searches indepen-
dent of the time limit. We use εmax = 2.0 and δε = 0.1 for
repeated ARA* and I-ARA*. Table 2 reports, in addition to
some of the measures from Table 1, the largest runtime of
any repair iteration per search, the number of repair itera-
tions per search, and the percentage of searches that exceed
the time limit. The percentage of searches different from
the first search that exceed the time limit is shown in curly
braces since the first search is performed before the hunter
starts to move and thus might not be subject to the time limit.
We notice the following relationships:

• The number of repair iterations per search of I-ARA*
tends to be larger than the one of repeated ARA* with the
same time limit, as already suggested by the average run-
time per search in Experiment 1. Consequently, I-ARA*
tends to be able to provide smaller error bounds on the
lengths of the paths found than repeated ARA* and its

Gridworlds Game Map
Off the Path Every Move Off the Path Every Move

I-ARA* (t = 100 μs) 847 [1.14] 829 [1.11] 623 [1.14] 613 [1.12]
I-ARA* (t = 200 μs) 827 [1.11] 806 [1.08] 613 [1.12] 599 [1.10]
I-ARA* (t = 300 μs) 818 [1.10] 795 [1.07] 605 [1.11] 591 [1.08]
I-ARA* (t = 400 μs) 809 [1.08] 786 [1.05] 601 [1.10] 585 [1.07]
I-ARA* (t = 500 μs) 804 [1.08] 777 [1.04] 596 [1.09] 579 [1.06]
I-ARA* (t =1, 000 μs) 785 [1.05] 764 [1.02] 577 [1.06] 559 [1.02]
I-ARA* (t =2, 000 μs) 766 [1.03] 754 [1.01] 555 [1.02] 551 [1.01]
I-ARA* (t =3, 000 μs) 757 [1.01] 750 [1.01] 550 [1.01] 548 [1.00]

Table 3: Moves per Test Case

number of moves tends to be smaller since it tends to be
able to decrease the weight more. The number of moves
of I-ARA* tends to be similar to the one of FRA* for suf-
ficiently large time limits.

• The percentage of searches of I-ARA* that exceed the
time limit tends to be smaller than the one of repeated
ARA* since the largest runtime of any repair iteration
per search of I-ARA* tends to be smaller than the one
of repeated ARA*, as already suggested by the largest
runtime of any search in Experiment 1. (The largest run-
times of any repair iteration tend not to depend on the time
limit since the first repair iteration per search is often one
with the largest runtime.) Large time limits in gridworlds
are an exception: Large time limits allow I-ARA* to per-
form searches with smaller weights, which result in larger
search trees, whose preprocessing times can sometimes
exceed the time limit.

• The percentage of searches of I-ARA* that exceed the
time limit tends to be smaller than the one of FRA*, as
already suggested by the largest runtime of any search
in Experiment 1. Small time limits are an exception: The
time needed to preprocess the search trees is often longer
for I-ARA* than FRA* (and can be longer than the time
limit for small time limits) since it needs extra bookkeep-
ing operations and it is not optimized for gridworlds.
So far, all search algorithms replanned when the target

moved off the path (marked “Off the Path”). However, the
hunter might have the time to perform a search before ev-
ery move (marked “Every Move”). The number of moves of
repeated ARA* remains about the same, but the number of
moves of I-ARA* decreases slightly since it uses incremen-
tal search, see Table 3.

Conclusions

We developed Incremental ARA* (I-ARA*), the first incre-
mental anytime search algorithm for moving-target search in
known terrain. We provided an error bound on the lengths of
the paths found by I-ARA* and showed experimentally in
known four-neighbor gridworlds that I-ARA* can be used
with smaller time limits between moves of the hunter than
competing state-of-the-art moving-target search algorithms.
The hunter tends to make more moves with I-ARA* than
repeated A*, G-FRA* or FRA*, which find shortest paths
for the hunter, but fewer moves with I-ARA* than repeated
ARA*, which finds suboptimal paths for the hunter like I-
ARA*. Also, the error bounds on the lengths of the paths
of the hunter tend to be smaller with I-ARA* than repeated
ARA*.

250

References
Bulitko, V.; Björnsson, Y.; Luvstrek, M.; Schaeffer, J.; and Sig-
mundarson, S. 2007a. Dynamic control in path-planning with real-
time heuristic search. In Proc. of ICAPS, 49–56.
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007b. Graph ab-
straction in real-time heuristic search. Journal of Artificial Intelli-
gence Research 30(1):51–100.
Edelkamp, S. 1998. Updating shortest paths. In Proc. of ECAI,
655–659.
Ishida, T., and Korf, R. 1991. Moving target search. In Proc. of
IJCAI, 204–211.
Koenig, S.; Likhachev, M.; Liu, Y.; and Furcy, D. 2004. Incremen-
tal heuristic search in artificial intelligence. AI Magazine 25(2):99–
112.
Koenig, S.; Likhachev, M.; and Sun, X. 2007. Speeding up moving-
target search. In Proc. of AAMAS, 1136–1143.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: Anytime
A* with provable bounds on sub-optimality. In Proc. of NIPS.
Likhachev, M. 2005. Search-based Planning for Large Dynamic
Environments. Ph.D. Dissertation, Carnegie Mellon University.
Loh, P., and Prakash, E. 2009. Performance simulations of mov-
ing target search algorithms. International Journal of Computer
Games Technology 2009:1–6.
Moldenhauer, C., and Sturtevant, N. 2009. Optimal solutions for
moving target search. In Proc. of AAMAS, 1249–1250.
Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.
Pohl, I. 1970. First results on the effect of error in heuristic search.
Machine Intelligence 5:219–236.
Sasaki, T.; Chimura, F.; and Tokoro, M. 1995. The trailblazer
search with a hierarchical abstract map. In Proc. of IJCAI, 259–
265.
Sun, X.; Yeoh, W.; and Koenig, S. 2009. Efficient incremental
search for moving target search. In Proc. of IJCAI, 615–620.
Sun, X.; Yeoh, W.; and Koenig, S. 2010. Generalized Fringe-
Retrieving A*: Faster moving target search on state lattices. In
Proc. of AAMAS, 1081–1087.

251

