
Long-Run Stability in Dynamic Scheduling

Daria Terekhova, Tony T. Trana, Douglas G. Downb, J. Christopher Becka

aDepartment of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
{dterekho,tran,jcb}@mie.utoronto.ca

bDepartment of Computing and Software, McMaster University, Canada
downd@mcmaster.ca

Abstract

Stability analysis consists of identifying conditions un-
der which the number of jobs in a system is guaran-
teed to remain bounded over time. To date, such long-
run performance guarantees have not been available
for periodic approaches to dynamic scheduling prob-
lems. However, stability has been extensively studied
in queueing theory. In this paper, we introduce sta-
bility to the dynamic scheduling literature and demon-
strate that stability guarantees can be obtained for meth-
ods that build the schedule for a dynamic problem by
periodically solving static deterministic sub-problems.
Specifically, we analyze the stability of two dynamic
environments: a two-machine flow shop, which has
received significant attention in scheduling research,
and a polling system with a flow-shop server, an ex-
tension of systems typically considered in queueing.
We demonstrate that, among stable policies, methods
based on periodic optimization of static schedules may
achieve better mean flow times than traditional queue-
ing approaches.

Introduction

In a typical real-world scheduling problem, the set of jobs
changes dynamically over time and their processing times
are affected by various types of uncertainty. The goal is to
determine how the available machine processing time is to
be allocated among competing requests with the objective
of optimizing the performance of the system. The definition
of “good” or optimal performance is dependent on the time
horizon considered. In particular, managers of production
facilities and supply chains are interested in achieving long-
run, strategic goals as well as short-run, operational ones.

Many methods for dynamic scheduling developed within
the scheduling community are based on the idea of period-
ically reviewing the status of a system and solving a static
scheduling problem for the jobs present at that time (Bidot
et al. 2009). The advantage of this approach is that it can
utilize the abundance of methods developed for static deter-
ministic scheduling, and can therefore effectively deal with
short-run objectives. The question of whether such an ap-
proach is able to achieve long-run goals is generally not ad-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dressed in the dynamic scheduling literature. Queueing the-
ory, on the other hand, focuses on analysis of long-run per-
formance of dispatching-type scheduling policies. In this
paper, we utilize ideas from queueing theory in order to
gain an understanding of how well periodic scheduling ap-
proaches perform with respect to long-run objectives.

One of the most important measures of long-run perfor-
mance considered in queueing theory is stability. Infor-
mally, a stable system is one in which the number of jobs
is guaranteed to be bounded over time.1 Knowledge of
whether a system is stable for a given job arrival rate, pro-
cessing rate and scheduling policy is essential for practi-
cal applications. For instance, processes in semi-conductor
manufacturing are frequently modelled as reentrant lines
(Kumar 1994), and Dai and Weiss (1996, p. 27) state that
“stability is a first issue one needs to address if one wishes
to study optimal or near-optimal scheduling of a reentrant
line.” Thus, a proof of stability can be viewed as a neces-
sary, but not a sufficient, step for obtaining an accurate un-
derstanding of a scheduling policy’s long-run performance.
After a policy is proven stable, it is important to evaluate its
effectiveness with respect to more detailed long-run perfor-
mance metrics, such as mean flow time. While stability can
be formally proven, evaluation of other measures usually re-
quires simulation.

In this paper, we introduce long-run stability to the com-
binatorial scheduling literature. We do this by looking at
two related systems: a novel polling system that is an exten-
sion of systems traditionally examined in queueing theory
and a dynamic two-machine flow shop, which is important
in scheduling research. In the dynamic flow shop, stability
of the first-come, first-served policy can be proven using the
fluid model methodology of Dai (1995), while stability of a
periodic scheduling approach is shown using a sample path
argument. In the polling system, stability of both policies is
proven using fluid model methods. We further experimen-
tally evaluate the performance of these policies with respect
to mean flow time. Our results suggest that the periodic ap-
proach that optimizes makespan at each decision time point
provides the best mean flow time for the polling system but

1In the scheduling literature, a predictive schedule is called sta-
ble if the schedule executed online is close to the planned schedule
(Bidot et al. 2009). We do not use this definition here, instead
adopting the meaning of stability from queueing theory.

261

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



not for the dynamic flow shop. These results also provide
several insights into the behaviour of periodic scheduling
policies in dynamic environments.

Our paper has three main contributions. Firstly, we
introduce long-run stability to combinatorial scheduling
and prove that a periodic scheduling approach based on
makespan minimization is stable in the dynamic flow shop
environment. Secondly, we empirically evaluate the perfor-
mance of various scheduling methods with respect to mean
flow time. This analysis demonstrates that periodic schedul-
ing approaches may perform better than traditional queueing
methods in optimizing long-run performance. Finally, this
work develops a new link between queueing and scheduling,
showing that combining problem settings and ideas from
these two areas can lead to novel insights about scheduling
in dynamic environments.

This paper is organized as follows. The first section talks
about the motivations for combining queueing and schedul-
ing ideas, followed by an introduction to the concept of
stability. Next, problem settings and scheduling methods
are presented. In the subsequent two sections, stability and
mean flow time of these methods are analyzed both theo-
retically and empirically. We conclude with a discussion of
related research and ideas for future work.

Motivations
The problem of scheduling in a dynamic environment in-
volves a long time horizon and has to somehow deal with all
the possible realizations of the job arrival process and of the
job characteristics. The ultimate goal in solving this problem
is to construct a schedule that would be optimal for the spe-
cific realization that actually occurs. The quality should be
close to that of the schedule that could have been constructed
if all of the uncertainty had been revealed a priori. Clearly,
this is a difficult task, because to make a decision, one can
use only the information that is known with certainty at that
particular decision point and the stochastic properties of sce-
narios that can occur in the future. In addition, the effect of
the decision on both short-run and long-run performance has
to be considered. To deal with such problems, queueing the-
ory and scheduling have adopted different approaches.

Queueing theory has taken the viewpoint that, since it
is impossible to create an optimal schedule for every sin-
gle sample path in the evolution of the system, one should
aim to achieve optimal performance in some probabilistic
sense (e.g., in expectation) over a long time horizon. This
goal could be attained by construction of a policy based on
the global stochastic properties of the system. For exam-
ple, a policy could specify how start time decisions should
be made each time a new job arrives or a job is completed.
However, the schedule resulting from such a policy, while
being of good quality in expectation, may be far from opti-
mal for the particular realization of uncertainty that occurs.
Moreover, queueing theory generally studies systems with
simple combinatorics, as such systems are more amenable
to rigorous analysis of their stochastic properties.

In the scheduling community, a dynamic scheduling prob-
lem is generally viewed as a collection of linked static
problems. This viewpoint implies that methods developed

for static scheduling problems become directly applicable
to dynamic ones. Such methods can effectively deal with
complex combinatorics and can optimize the quality of the
schedules for each static sub-problem. However, they tend
to overlook the long-run performance and the stochastic
properties of the system, with notable exceptions being the
work on anticipatory scheduling (Branke and Mattfeld 2002)
and online stochastic combinatorial optimization (Van Hen-
tenryck and Bent 2006).

Thus, queueing theory and scheduling have differing
views on dynamic problems. In this work, we leverage these
differences in order to gain a better understanding of the
long-run performance of dynamic scheduling methods.

Stability

Informally, a system is stable if its queues remain bounded
over time. In queueing theory, establishing the stability of
a system has always been considered a precursor to more
detailed analysis (Kumar and Meyn 1995). In early queue-
ing work, it was believed that, to ensure a stable system, it
was necessary and sufficient to have the load of each ma-
chine, defined as the ratio of the arrival rate to the process-
ing rate, be strictly less than 1 (Dai and Weiss 1996). How-
ever, a series of papers (Lu and Kumar 1991; Bramson 1994;
Seidman 1994) provided counter-examples which demon-
strated that this load condition is not always sufficient for
stability (Dai and Weiss 1996). In particular, the stability of
a system is dependent on the scheduling policy it employs:
for a given set of problem parameters (arrival and process-
ing rates), one policy may stabilize the system while another
might not.

Formally, a system operating under a particular queue-
ing discipline is stable if the Markov process that describes
the dynamics of the system is positive Harris recurrent (Dai
1995). Positive Harris recurrence implies the existence of
a unique stationary distribution. Due to space constraints
and the considerable notation required, we do not formally
define positive Harris recurrence here, but instead refer the
reader to the papers by Dai (1995), Dai and Meyn (1995)
and Bramson (2008). In the case when the state space of the
Markov process is countable2 and all states communicate,
positive Harris recurrence is equivalent to the more widely-
known concept of positive recurrence (Bramson 2008). The
Markov chain is positive recurrent if every state i is positive
recurrent: the probability that the process starting in state i
will ever return to i is 1, and the expected time to return to
this state is finite (Ross 2003). In particular, this property
guarantees that the system will empty.

The next section provides detailed descriptions of two
problem settings. We subsequently analyze the stability of
the two systems under different scheduling methods.

Problem Settings

Consider two dynamic environments: a two-machine flow
shop and a polling system with a flow shop-like server.

2This process is referred to as a continuous-parameter Markov
chain in the book by (Gross and Harris 1998), to which the reader
is referred for an introduction to queueing theory.

262



Dynamic Flow Shop

In a two-machine dynamic flow shop, jobs arrive according
to some stochastic process over time and must be processed
first on machine 1 and then on machine 2. We assume that
the inter-arrival distribution is general with rate λ, while the
processing time distributions for machine 1 and 2 are gen-
eral with rates μ1 and μ2, respectively. Thus, the load for
machine 1 is ρ1 = λ

μ1

and the load for machine 2 is ρ2 = λ
μ2

.

Both ρ1 and ρ2 are assumed to be less than 1, as these are
known necessary conditions for stability.

Processing times of a job on both machines become
known at the instant of its arrival to the system. Both ma-
chines are of unary capacity. Preemptions are not allowed.
The queues in front of machine 1 and machine 2 are both as-
sumed to be of infinite size. In the queueing literature, this
system is known as a tandem queue.

Polling System

Polling systems are also dynamic environments: jobs ar-
rive at random points in time and, under one set of queue-
ing assumptions, the processing times of these jobs be-
come known upon their arrival. Polling systems usually
consist of a single server and multiple job types. Each
arriving job has to wait for processing in the queue cor-
responding to its specific type. The server visits these
queues in a particular order and serves a subset of the
jobs during each visit. A variety of policies for the or-
der in which the queues should be visited and for decid-
ing the number of jobs that should be served on each visit
have been considered in the literature (Levy and Sidi 1990;
Takagi 2000). We assume that the server visits the queues
in a cyclic manner. During each visit, the server employs a
gated discipline: it processes all jobs that are present at the
time of the server’s arrival to the given queue. Preemptions
are not allowed.

Unlike standard polling models, ours assumes that the
server consists of two machines in series (a two-machine
flow shop). This is one of the simplest ways to introduce
combinatorial scheduling into a queueing model, and it pro-
vides us with a setting in which ideas from the two areas
can be explored. Browne and Weiss (1992) considered a
polling system with a server consisting of coupled parallel
machines, yet polling models with coupled machines in se-
ries have not been studied. Coupling occurs in, e.g., polling
systems where each queue belongs to a customer who gets
exclusive rights to the resources once its service is started.

We assume that the inter-arrival distribution for each
queue b is general with rate λb. The processing time dis-
tributions are general with rates μ1b and μ2b for machines

1 and 2, respectively. We assume that ρ1b = λb

μ1b
< 1

and ρ2b = λb

μ2b
< 1 for all b, as these assumptions are

necessary for stability. Due to the assumption of a gated
policy, upon arrival to a queue, the server is faced with a
static two-machine flow shop scheduling problem.

The goal, in both systems, is to assign start times to all
jobs in a way that ensures stability and minimizes the mean
job flow time over a long time horizon. A job’s flow time is

defined as the difference between the job’s completion time
on the second machine and its arrival time to the system.

Scheduling in Polling Systems and Dynamic

Flow Shops

We can schedule jobs in the systems described above via
periodic scheduling strategies: at a given point in time, we
review the jobs present in the system or a particular queue
of the system, create a schedule for these jobs, and once this
schedule is executed, review the status of the system again.
We examine two queueing-based and two scheduling-based
methods for creating each sub-schedule in both polling sys-
tems and dynamic flow shops. The time at which scheduling
happens, however, is different in the two environments. In
the polling system, the server switches from one queue to
the next only after all of the jobs present upon its arrival to
the queue have been processed on both machines. The start
time of every new sub-problem is equal to the completion
time of the last job in the previous sub-problem, as shown
in Example 1 in Figure 1. In a dynamic flow shop without a
polling structure, such an assumption is unreasonable since
it would create unnecessary idle time on machine 1. Thus,
in a dynamic flow shop, scheduling is performed once all
jobs of the previous sub-problem have been processed on
the first machine, as illustrated by Example 2 in Figure 2.
This difference may seem minor, but as we show below it
has a significant impact on the analysis of the two systems.

Methods for Solving Static Sub-problems

To our knowledge, policies for the polling system discussed
in this paper have not been examined in the queueing liter-
ature. We are also unaware of any queueing policy that has
been proven to be optimal for the flow time objective, even
in the expected sense, for a dynamic two-machine flow shop
under our assumptions. Thus, we consider two queueing ap-
proaches for which theoretical results are available for sys-
tems related to ours. Specifically, the two queueing policies
we use to solve each sub-problem are first-come, first-served
(FCFS) and shortest total processing time first (SPTsum).

Under FCFS, the jobs are processed in non-decreasing or-
der of their arrival times to the queue. Towsley and Baccelli
(1991) show that FCFS achieves the smallest expected flow
time in a two-machine dynamic flow shop in the class of
work-conserving, non-preemptive policies that do not use
processing time information.

Employing SPTsum means that all jobs present in the
queue at the time when the schedule is constructed are pro-
cessed in non-decreasing order of the sum of their durations
on machine 1 and machine 2. This policy choice is moti-
vated by the fact that, in the case when the server is a single
unary resource, shortest processing time first minimizes the
expected flow time in queueing systems with a single queue
or with a polling structure under a cyclic, gated service dis-
cipline (Wierman, Winands, and Boxma 2007). Wierman et
al. (2007) show that such a policy can outperform FCFS by
as much as 15% in a gated, cyclic polling system.

From the perspective of scheduling, each static queue sub-
problem presents an opportunity for optimization. Since

263



Figure 1: Polling system with 3 sub-problems (each corre-
sponding to a queue visit) and 3 jobs per sub-problem. (Ex-
ample 1)

Figure 2: Dynamic flow shop with 3 sub-problems and 3
jobs per sub-problem. The start of a sub-problem is the start
of a set of jobs on machine 1, the end of a sub-problem is
the end of a set of jobs on machine 2. (Example 2)

minimizing flow time under the above assumptions is equiv-
alent to minimizing the total completion time, a natural
choice of objective to be optimized in a sub-problem is the
sum of completion times of activities on the second ma-
chine. We refer to this model as the completionTime model.
Optimizing the total completion time will lead to the best
short-run performance but, prior to the work presented in
this paper, it was unclear how this method would perform
with respect to long-run objectives. The completionTime
model also has a computational disadvantage: minimizing
the sum of completion times in a two-machine flow shop is
NP-hard (Pinedo 2003).

The fourth method we employ is motivated by a com-
bination of queueing-based reasoning and the fact that
scheduling methods can be used to optimize local queue
performance. Specifically, suppose that we minimize the
makespan for the set of jobs present in the queue, with
makespan being defined as the difference between the end
time of the job that is scheduled in the last position on ma-
chine 2 and the start time of the job that is scheduled in the
first position on machine 1. Minimizing makespan may lead
to a schedule with a sub-optimal mean flow time for the sub-
problem, since minimizing mean flow time is not equivalent
to minimizing makespan. However, the minimum makespan
schedule may allow jobs in subsequent sub-problems to start
earlier than under the completionTime approach. Earlier
start times for all jobs would imply lower total completion
times for all future sub-problems and, therefore, better long-
run performance. Moreover, the optimal makespan sched-
ule for a static two-machine flow shop can be found us-

0 50000 100000 150000 200000 250000 300000

0
50

10
0

15
0

20
0

25
0

30
0

Time

N
um

be
r 

of
 J

ob
s 

in
 Q

ue
ue

 0

FCFS
makespan
SPT_sum
reverse

Figure 3: Number of Jobs at Machine 2 in Queue 0 Over
Time for Example 3.

ing a polynomial-time algorithm – Johnson’s rule (Conway,
Maxwell, and Miller 1967).

Johnson’s rule divides jobs into two sets: set I consists of
all jobs whose processing time on machine 1 is less than or
equal to its processing time on machine 2, and set II con-
sists of all the remaining jobs. Set I is processed before
set II. Johnson’s rule creates permutation schedules, that is,
schedules in which the order of jobs is the same on both ma-
chines. Within set I, jobs are sequenced in non-decreasing
order of the processing time on machine 1, while within set
II, jobs are sequenced in non-increasing order of the process-
ing times on machine 2. The scheduling approach that uses
Johnson’s rule to solve each sub-problem will be referred to
as the makespan approach.

Stability of Dynamic Flow Shop Environments

Consider an instance of the polling system with 5 queues: at
time 0, there are 1000 jobs in queue 0, and no jobs in the
other queues. Jobs arrive to each queue according to (in-
dependent) Poisson processes with rate 1. Processing times
are exponentially distributed with rate 6. Therefore, for each
machine and a given queue, the load is 1

6
< 1, and the load

on the system is 5(1
6
) = 0.833 < 1. We refer to this in-

stance as Example 3. In Figure 3, we show the number of
jobs in queue 0 over time for four policies: FCFS, SPTsum,
makespan and reverse. The reverse policy is a modifica-
tion of Johnson’s rule: set II is scheduled before set I (i.e.,
in reverse order as compared to Johnson’s rule). In Fig-
ure 3, we see that all policies initially have a large number
of jobs at machine 2 in queue 0 – this corresponds to the
sub-problem containing the initial 1000 jobs. Under FCFS,

264



SPTsum and makespan, there is little variation in the num-
ber of jobs at machine 2 after approximately 150,000 time
units: the three policies keep the number of jobs below 25.
For the reverse policy, on the other hand, the number of jobs
in sub-problems following the first one grows over time. Af-
ter slightly over 250,000 time units, the number of jobs in
queue 0 is greater than in the initial sub-problem. The fig-
ure therefore suggests that the number of jobs in queue 0 for
FCFS, SPTsum and makespan will remain bounded, cor-
responding to stable behaviour; for the reverse policy, the
increasing number of jobs in queue 0 suggests instability.

Figure 3 shows the behaviour of the policies on one par-
ticular realization of the evolution of the system. In order to
understand whether the same behaviour will be observed for
other realizations, formal analysis of stability is necessary.

Except for the stability of FCFS in a two-machine flow
shop, the stability problems we address are different from
those in the literature for two reasons. Firstly, our polling
system with a two-machine flow-shop server can be viewed
as a hybrid of two well-studied systems, a tandem queue and
a polling system with a single-machine server. Secondly,
for both the dynamic flow shop and the polling system, we
consider scheduling policies which assume knowledge of
the processing times and are based on the notion of peri-
odic scheduling and makespan minimization. As far as we
are aware, neither the stability of the hybrid system nor the
stability of the periodic scheduling method with makespan
minimization have been addressed in the queueing litera-
ture. In fact, stability analysis of scheduling policies based
on processing time information is rare.

Additional Assumptions on the Distributions

We make additional assumptions on the inter-arrival and
processing time distributions that are standard in the queue-
ing literature dealing with stability analysis (Dai 1995):

• For each queue, the sequences of processing times for
machine 1 and machine 2, and the sequence of inter-
arrival times are independent and identically distributed
sequences. They are also mutually independent.

• Mean processing times and mean inter-arrival times for
all queues are finite.

• The inter-arrival times are unbounded and continuous.

These assumptions are satisfied by commonly used distribu-
tions such as the exponential distribution.

Dynamic Flow Shop

In the dynamic flow shop, the following proposition holds:

Proposition 1. If λ
min{μ1,μ2}

< 1, then the tandem queue

with the periodic FCFS policy is stable.

This result follows from the fact that for the dynamic flow
shop, the periodic FCFS policy is equivalent to the “stan-
dard”, non-periodic implementation of FCFS, and the fact
that, under our assumptions, the tandem queue is a gen-
eralized Jackson network. Stability of such networks un-
der the condition that the load of each machine is strictly
less than 1 has been proven previously by various meth-
ods, such as the fluid model methodology of Dai (1995).

Figure 4: Schedule for makespan approach for Example 2
(the same problem instance as in Figure 2).

The same methodology can be used to show the stability of
FCFS in an m-machine flow shop under the condition that

λ
mini∈{1,...,m}{μi}

< 1.

For the makespan policy, we can prove a result which
holds for every sample path in the evolution of the system.
Let t∗n be the time point at which sub-problem n completes
(on machine 2) under the makespan approach. Let vn and vπn
be the total processing time of all jobs completed by time t∗n
under the makespan policy and an arbitrary policy π, respec-
tively. Following the queueing literature, we further refer to
vn and vπn as the work completed by time t∗n.

Proposition 2. The amount of work completed by t∗n is max-
imized by the makespan policy. That is, vn ≥ vπn for all n
and all non-idling π.

Proof. For any arbitrary non-idling policy π, vπn can be writ-
ten as v1,πn + v2,πn , where v1,πn is the amount of work com-
pleted by t∗n on machine 1 and v2,πn is the amount of work

completed by t∗n on machine 2. (In Figure 2, t∗0 is 5, v
1,π
0 = 5

and v
2,π
0 = 3.) For the makespan approach, we use the no-

tation without the superscript π, i.e., vn = v1n + v2n. In the
dynamic flow shop, the amount of work completed by t∗n on
machine 1 is the same for any non-idling policy. Thus, it re-
mains to prove that v2n ≥ v2,πn . We prove this by induction.

Base Case: v20 ≥ v
2,π
0 since any policy other than makespan

can complete the set of initial jobs only at the same time as
makespan (t∗0) or later.
Inductive Hypothesis: Assume the property is true for t∗n,
that is, v2n ≥ v2,πn .
Inductive Step: We need to show the same property for

t∗n+1, i.e., that v2n+1 ≥ v
2,π
n+1. For the makespan approach,

v2n+1 = v2n + γ((t∗n−1, t
∗
n]), where γ((t∗n−1, t

∗
n]) is the total

machine 2 workload that arrives in the time period (t∗n−1, t
∗
n]

and, therefore, is the workload that is processed in the sub-
problem starting at t∗n and ending at t∗n+1.

By the induction hypothesis, we know that at t∗n, v2n ≥
v2,πn . Thus, the amount of work processed on machine 2 by

time t∗n+1 by policy π, v
2,π
n+1, equals the amount of work pro-

cessed by π by time t∗n plus some fraction of the difference
in the amount of work completed by π and makespan by t∗n
plus some fraction of the amount of machine 2 work that

arrives in (t∗n−1, t
∗
n]. Thus, v

2,π
n+1 ≤ v2,πn + (v2n − v2,πn ) +

γ((t∗n−1, t
∗
n]) = v2n + γ((t∗n−1, t

∗
n]) = v2n+1.

265



Figure 5: completionTime schedule for Example 4.

Figure 6: makespan schedule for Example 4.

For example, consider the schedules in Figures 2 and 4:
t∗0 = 5, t∗1 = 11, t∗2 = 14, v22 = v21 + γ((t∗0, t

∗
1]) = 9 + 3 =

12, v
2,π
2 = 7 + (9 − 7) + 1 ≤ 12.

Corollary 1. If λ
min{μ1,μ2}

< 1 then the tandem queue with

the periodic makespan policy is stable.

The corollary holds since we know that FCFS is sta-
ble and that, at every sub-problem completion time, the
makespan approach has finished at least as much work as
FCFS. Proposition 2 does not hold for an m-machine flow
shop when m > 2. However, we conjecture that the corol-
lary can be shown true for such an environment via a fluid
model approach.

Polling System

The sample path result of Proposition 2 does not hold in
the polling system. This can be illustrated by Figures 5
and 6, which show schedules for the completionTime and
the makespan approaches for an example instance with jobs
0, 1, 2 available at time 0, job 3 arriving at time 13 and
job 4 arriving at time 14 (Example 4). Under the makespan
approach, sub-problem 0 completes at time 13 and so sub-
problem 1 consists of job 3 only; when the completionTime
method is used, sub-problem 0 completes at time 14, imply-
ing that sub-problem 1 consists of both jobs 3 and 4. Thus,
by time t∗1 = 18, the total amount of work completed is 23
for the makespan model and 25 for the completionTime ap-
proach. However, the following proposition can be proven
by applying the fluid model methodology of Dai (1995):

Proposition 3. The given polling system is stable under both

FCFS and makespan if
∑B

b=1

λb

min{μ1b,μ2b}
< 1.

Proposition 3 also holds for a more general system in
which the server is an m-machine flow shop, under the con-

dition
∑B

b=1

λb

min{μ1b,μ2b,...μmb}
< 1. Similarly, the proposi-

tion and the proof methodology can be extended to a d-stage
flexible flow-shop server with m machines at each stage.
The reader is referred to the paper by Terekhov, Down, and
Beck (2012) for details of the polling system stability proofs.

We leave the investigation of the stability of SPTsum and
completionTime for future work.

In this section, we have considered one measure of long-
run performance – stability. By using a counter-example,
we have shown that, in the polling system, not all non-idling
policies are stable. We have established the stability condi-
tions for FCFS and makespan in both the dynamic flow shop
and the polling system with a two-machine flow shop server.
We now empirically examine the policies with respect to a
more detailed long-run performance metric, mean flow time.

Mean Flow Time in Dynamic Flow Shop

Environments

Proving stability for a scheduling policy provides a high-
level performance guarantee: the queue lengths will remain
bounded if the conditions on the parameter values necessary
for the proof hold. However, different stable policies may
perform differently with respect to more detailed objectives.
Specifically, we would like to determine whether replacing
a queueing policy by an optimization approach will result in
any long-run benefits.

Below we present experiments comparing the perfor-
mance of FCFS, SPTsum, makespan and completionTime
models for minimizing the mean flow time over a long
time horizon in our two problem settings. The completion-
Time model was implemented via constraint programming
in Ilog Scheduler 6.5 and uses the completion global con-
straint (Kovács and Beck 2011). The remaining methods
were implemented using C++. In these experiments, the
completionTime model was run with a time limit of 1 sec-
ond per sub-problem in order to ensure reasonable run-times
for our experiments. With a time limit, this approach does
not always find the sub-problem schedule with the optimal
sum of completion times. We do not take algorithm run-time
into account in any of our results. Preliminary experiments
with a time limit of 5 seconds as well as with uniformly-
distributed processing times showed identical performance.

The experiments below demonstrate that for some prob-
lems, such as the dynamic flow shop, there is little differ-
ence in the performance of different stable policies at a finer
level of detail, which in this case is evaluated in terms of
the mean flow time. In other problems, such as the polling
system with a flow-shop server, different stable policies lead
to different performance with respect to more detailed met-
rics. More importantly, the polling system results demon-
strate that periodic scheduling methods can perform better
than queueing-based dispatching rules for optimization of
long-run performance. However, the choice of objective
function for each sub-problem, which is a proxy measure
for the long-run objective, may not always be obvious. In
the polling system, optimizing the mean flow time within
each static sub-problem does not lead to the best mean flow
time in the long-run.

Dynamic Flow Shop

To evaluate the performance of our four methods in a dy-
namic flow shop, we considered a system with exponentially
distributed inter-arrival times and exponentially distributed

266



0.2 0.4 0.6 0.8

0
10

0
20

0
30

0

Queue Load

M
ea

n 
F

lo
w

 T
im

e
Mean Flow Times for Various Queue Loads

FCFS
makespan
SPT_sum
completionTime

Figure 7: Mean flow times in a dynamic two-machine flow
shop for FCFS, SPTsum, completionTime and makespan
models as the system load varies.

processing times with the same means on both machines.
We fixed the arrival rate, λ, to 10, and varied the load on the
system by changing the rates of the processing time distri-
butions from 100 to 10.53. The results of these experiments
are shown in Figure 7. Each point in the figure represents
the mean flow time over 100 instances of 55,000 jobs each.

Figure 7 shows that there is no significant difference be-
tween the methods. completionTime has a slight advantage
over the others for loads of 0.7 and less, while SPTsum is
slightly better for loads of 0.8 and greater. The makespan
model is marginally better than FCFS and completionTime
at loads above 0.8.
SPTsum is the best-performing model for loads above

0.8, when the static sub-problems become large. These ob-
servations are supported by the results of Xia, Shanthikumar,
and Glynn (2000), who have shown that SPTsum is asymp-
totically optimal for the static average completion time ob-
jective as the number of jobs in a two-machine flow shop in-
creases. It was not clear, a-priori, that applying this method
to each sub-problem would result in the best long-run be-
haviour for high loads. FCFS, on the other hand, is the worst
performer over all loads, due to the fact that it is the only
method that does not use processing time information. Fur-
ther investigation has shown that FCFS finds sub-problem
solutions that are of lower quality than those of the other
methods, both in terms of their makespan and their total
completion time values.

Polling System

In order to understand the performance of the four methods
in a polling system with a flow-shop server, we simulated
five symmetrical systems with B = 5 queues and with a
fixed arrival rate of λb = 1 for all b. In each system, the

0.3 0.4 0.5 0.6 0.7 0.8

0
50

0
10

00
15

00
20

00

System Load

M
ea

n 
F

lo
w

 T
im

e

Mean Flow Times for Various Queue Loads

FCFS
makespan
SPT_sum
completionTime

Figure 8: Mean flow times in a polling system with a two-
machine flow shop server for FCFS, SPTsum, completion-
Time and makespan models as the system load varies.

processing times are exponentially distributed with the same
means on both machines for all queues (i.e., μ1b = μ2b =
μ for all b). As the mean processing times increase in the
different experimental conditions, the load on the system,

defined as
∑B

b=1
max{ρ1b, ρ2b} = 5ρ1b, increases. Thus,

in order to observe the variation in performance as the load
changes, we considered systems with μ ∈ {16, 12, 10, 8, 6}.

Figure 8 shows the mean flow times for the completion-
Time model with a 1-second time limit, FCFS, SPTsum

and the makespan model as the system load increases. Ev-
ery point in this figure represents the mean flow time over
100 problem instances, each consisting of 25,000 jobs (5000
per queue). The figure shows that, for loads of 0.5 or less,
the performance of the four methods is almost identical, al-
though makespan has a slight advantage over the remain-
ing three approaches. For loads greater than 0.5, makespan
achieves the lowest mean flow times. Moreover, the differ-
ence in performance between makespan and the other meth-
ods grows as the load increases. FCFS results in the highest
flow times, and SPTsum performs better than completion-
Time for a load of 0.85. For an asymmetrical system consist-
ing of five queues with different loads, the results matched
the pattern of Figure 8.

Polling System vs. Dynamic Flow Shop

We can view the global system schedule for each of the two
dynamic flow shop settings as a sequence of linked sub-
schedules. In this global schedule, every job j completes
at time Cj . C0

j denotes the end time of job j under the as-
sumption that the first job of the sub-problem to which j be-
longs starts at time 0 (taking into account any unfinished ma-
chine 2 jobs from the previous sub-problem in the dynamic

267



flow shop). Cj is equal to C0
j shifted forward in time by an

amount that is a function of the previous sub-problems. This
function explains the differences in the relative performance
of the methods shown in Figures 7 and 8.

In a polling system, C0
j is always shifted by the sum of

the makespans of the preceding sub-problems. Thus, as the
number of time periods in the overall problem grows, so
does the saving obtained from applying to each sub-problem
the schedule with the minimum makespan rather than with
the minimum total completion time. In a dynamic flow shop,
in contrast, the value of the shift is also a function of the sum
of machine 1 processing times, which are independent of the
schedule. Unlike in the polling model, the shifts of jobs re-
sulting from the makespan approach are not much smaller
than from the other methods. This analysis suggests that, in
a dynamic flow shop, the model that finds the schedule with
the best total completion time for every sub-problem will
achieve the smallest overall mean flow time. Thus, in our ex-
periments, completionTime is the best for low and medium
loads; SPTsum is the best for high loads since it finds better
quality schedules than completionTime due to the 1-second
run-time limit. Additional analysis under the assumption
that, in the dynamic flow shop, C0

j is calculated without tak-
ing into account unfinished machine 2 jobs is given in the
workshop paper by Terekhov, Tran, and Beck (2010).

In the polling system, a conflict exists between short-run
and long-run objectives. That is, minimization of the sum
of completion times at each scheduling point results in the
best flow time performance for the current sub-problem, but
leads to poor flow time performance in the long-run. Mini-
mization of the makespan, in contrast, leads to sub-optimal
flow time values for each sub-problem, but results in sig-
nificant overall mean flow time improvements. In the dy-
namic two-machine flow shop, there is no conflict between
the ways in which we have attempted to optimize long-run
and short-run objectives: minimizing the total completion
time of each sub-problem also leads to better mean flow time
in the long-run than does minimizing makespan.

Our results indicate that, in a polling system with a flow
shop-like server, an approach that would find, for each sub-
problem, the minimum makespan schedule with the best to-
tal completion time value would outperform the methods we
presented here. This hybrid method would have the long-run
focus of the makespan model, but would also be better than
makespan in the short-run. In a dynamic flow shop, an ap-
proach that finds the optimal completion time schedule with
the smallest makespan is of interest. However, our results
imply that this approach would provide only marginal im-
provements over the completionTime model. Investigation
of these hybrid methods is part of our future work.

Discussion

Our initial motivation for studying the integration of
scheduling and queueing was that the two areas address sim-
ilar problems in different ways. Specifically, the advantages
of using queueing policies for scheduling in dynamic envi-
ronments include guarantees of stability and good expected
long-run performance, and the fact that there is no need for

processing time information. In contrast, periodic schedul-
ing approaches are able to optimize short-run objectives and
provide a framework in which short-run constraints (e.g.,
due dates) can be easily incorporated. In this paper, we
have shown that it is possible to establish stability of peri-
odic scheduling approaches, and thus enhance the periodic
scheduling framework with a guarantee of stability that has
traditionally been available for queueing approaches only.
Moreover, we have shown that in some systems, such as the
polling system with a flow-shop server, periodic schedul-
ing approaches may perform better than queueing-based ap-
proaches with respect to secondary long-run objectives.

In some applications it may be unreasonable to assume
knowledge of job processing times, and queueing policies
may be the only feasible approach to scheduling. However,
if processing time information is available, it is worthwhile
to use it to construct better schedules via periodic methods.
If this information is stochastic, then a periodic approach
may still be useful, though every sub-problem would be-
come a stochastic problem instead of a deterministic one.

Related and Future Work

From the queueing perspective, our paper is related to the
literature on tandem queues (Towsley and Baccelli 1991),
polling systems (Takagi 2000; Levy and Sidi 1990; Browne
and Weiss 1992) and stability (Dai 1995; Meyn and Down
1994; Down 1998; Georgiadis and Szpankowski 1992),
while from the scheduling perspective, it is related to re-
search on flow shop scheduling (Hejazi and Saghafian 2005;
Della Croce, Narayan, and Tadei 1996; Xia, Shanthikumar,
and Glynn 2000) and scheduling in dynamic and uncertain
environments (Aytug et al. 2005; Bidot et al. 2009).

We see a variety of ways to integrate ideas from these ar-
eas in the future. For example, we would like to: look at
the optimization of polling order from a scheduling view-
point; extend our analysis to more general dynamic schedul-
ing environments, such as job shops; compare the methods
discussed in this paper with more complex queueing ap-
proaches; and develop hybrid queueing/scheduling methods.

Conclusion

We have considered two measures of long-run performance
in dynamic flow shop environments. Motivated by the
queueing theory literature, we have discussed stability of
a traditional queueing policy, FCFS, and proved stabil-
ity of a periodic scheduling approach based on optimiz-
ing makespan within each sub-problem. We have therefore
demonstrated that theoretical long-run performance guaran-
tees can be obtained for periodic scheduling methods. Sec-
ondly, we have considered a more detailed measure of long-
run performance, mean flow time. We have shown that,
among the stable policies, methods based on periodic op-
timization can outperform traditional queueing disciplines
in some systems. Our work shows the importance of con-
sidering both short-run and long-run objectives in dynamic
scheduling, and demonstrates that combining ideas from
scheduling and queueing theory can lead to new insights
about dynamic scheduling.

268



References

Aytug, H.; Lawley, M.; McKay, K.; Mohan, S.; and Uz-
soy, R. 2005. Executing production schedules in the face
of uncertainties: A review and future directions. European
Journal of Operational Research 161:86–110.

Bidot, J.; Vidal, T.; Laborie, P.; and Beck, J. C. 2009. A the-
oretic and practical framework for scheduling in a stochastic
environment. Journal of Scheduling 12(3):315–344.

Bramson, M. 1994. Instability of FIFO queueing networks.
The Annals of Applied Probability 414–431.

Bramson, M. 2008. Stability of queueing networks. Proba-
bility Surveys 5(169-345):1.

Branke, J., and Mattfeld, D. C. 2002. Anticipatory schedul-
ing for dynamic job shop problems. In Proceedings of the
ICAPS’02 Workshop on On-line Planning and Scheduling,
3–10.

Browne, S., and Weiss, G. 1992. Dynamic priority rules
when polling with multiple parallel servers. Operations Re-
search Letters 12(3):129–137.

Conway, R. W.; Maxwell, W. L.; and Miller, L. W. 1967.
Theory of Scheduling. Addison-Wesley.

Dai, J. G., and Meyn, S. P. 1995. Stability and con-
vergence of moments for multiclass queueing networks via
fluid limit models. IEEE Transactions on Automatic Control
40(11):1889–1904.

Dai, J. G., and Weiss, G. 1996. Stability and instability of
fluid models for reentrant lines. Mathematics of Operations
Research 21(1):115–134.

Dai, J. G. 1995. On positive Harris recurrence of multi-
class queueing networks: A unified approach via fluid limit
models. The Annals of Applied Probability 5(1):49–77.

Della Croce, F.; Narayan, V.; and Tadei, R. 1996. The two-
machine total completion time flow shop problem. European
Journal of Operational Research 90(2):227–237.

Down, D. 1998. On the stability of polling models with
multiple servers. Journal of Applied Probability 35(4):925–
935.

Georgiadis, L., and Szpankowski, W. 1992. Stability of
token passing rings. Queueing systems 11(1):7–33.

Gross, D., and Harris, C. 1998. Fundamentals of Queueing
Theory. John Wiley & Sons, Inc.

Hejazi, S. R., and Saghafian, S. 2005. Flowshop scheduling
problems with makespan criterion: a review. International
Journal of Production Research 43:2895–2929.

Kovács, A., and Beck, J. C. 2011. A global constraint for
total weighted completion time for unary resources. Con-
straints 16(1):100–123.

Kumar, P. R., and Meyn, S. P. 1995. Stability of queueing
networks and scheduling policies. IEEE Transactions on
Automatic Control 40(2):251–260.

Kumar, P. R. 1994. Scheduling semiconductor manufactur-
ing plants. IEEE Control Systems Magazine 14(6):33–40.

Levy, H., and Sidi, M. 1990. Polling systems: Applications,
modeling, and optimization. IEEE Transactions on Commu-
nications 38(10):150–1760.

Lu, S. H., and Kumar, P. R. 1991. Distributed scheduling
based on due dates and buffer priorities. IEEE Transactions
on Automatic Control 36(12):1406–1416.

Meyn, S. P., and Down, D. 1994. Stability of general-
ized Jackson networks. The Annals of Applied Probability
4(1):124–148.

Pinedo, M. L. 2003. Scheduling: Theory, Algorithms, and
Systems. Prentice-Hall, 2 edition.

Ross, S. M. 2003. Introduction to Probability Models. Aca-
demic Press. chapter 6 – Continuous-Time Markov Chains,
349–399.

Seidman, T. 1994. “first come, first served” can be unsta-
ble! IEEE Transactions on Automatic Control 39(10):2166–
2171.

Takagi, H. 2000. Analysis and application of polling mod-
els. In Performance Evaluation: Origins and Directions,
Lecture Notes in Computer Science. Springer. 423–442.

Terekhov, D.; Down, D. G.; and Beck, J. C. 2012. Sta-
bility of a polling system with a flow-shop server. Techni-
cal Report MIE-OR-TR2012-01, Department of Mechanical
and Industrial Engineering, University of Toronto. Available
from http://www.mie.utoronto.ca/labs/ORTechReps/.

Terekhov, D.; Tran, T. T.; and Beck, J. C. 2010. Investi-
gating two-machine dynamic flow shops based on queueing
and scheduling. In Proceedings of ICAPS’10 Workshop on
Planning and Scheduling Under Uncertainty.

Towsley, D., and Baccelli, F. 1991. Comparisons of service
disciplines in a tandem queueing network with real time con-
straints. Operations Research Letters 10(1):49–55.

Van Hentenryck, P., and Bent, R. 2006. Online Stochastic
Combinatorial Optimization. MIT Press.

Wierman, A.; Winands, E.; and Boxma, O. 2007. Schedul-
ing in polling systems. Performance Evaluation 64:1009–
1028.

Xia, C. H.; Shanthikumar, J. G.; and Glynn, P. W. 2000.
On the asymptotic optimality of the SPT rule for the flow
shop average completion time problem. Operations Re-
search 48(4):615–622.

269




