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Abstract

Disjunctive scheduling is the problem of scheduling activities
that must not overlap in time. Constraint-based techniques,
such as edge finding and not-first/not-last rules, have been a
key element in successfully tackling large and complex dis-
junctive scheduling problems in recent years. In this work we
investigate new propagation methods based on limited-width
Multivalued Decision Diagrams (MDDs). We present theo-
retical properties of the MDD encoding and describe filter-
ing and refinement operations that strengthen the relaxation
it provides. Furthermore, we provide an efficient way to in-
tegrate the MDD-based reasoning with state-of-the-art prop-
agation techniques for scheduling. Experimental results indi-
cate that the MDD propagation can outperform existing do-
main filters especially when minimizing sequence-dependent
setup times, in certain cases by several orders of magnitude.

Introduction

Disjunctive scheduling refers to a wide range of problems
in which activities (or jobs) must be scheduled in a resource
capable of processing only one activity at a time, without in-
terruptions. Activities are usually associated with a number
of constraints, such as release times, deadlines, or sequence-
dependent setup times. This area has been subject to ex-
tensive research and comprises notoriously hard problem
classes in both Artificial Intelligence and Operations Re-
search (Pinedo 2008; Brucker 2007).

In this work we study techniques for disjunctive schedul-
ing in the context of constraint-based scheduling, which
investigates how scheduling problems can be formulated
and solved as Constraint Satisfaction Problems (CSPs). It
is currently regarded as one of the most successful generic
techniques for tackling disjunctive scheduling (Baptiste,
Le Pape, and Nuijten 2001). Most of its benefits derives
from the fact that it enforces a clear separation between
the problem definition, which includes the input parame-
ters, constraints, and objective function, from the algorithms
and search procedures responsible for solving it. This yields
more general-purpose scheduling systems: Each constraint
can exploit distinct algorithms and scheduling structures,
while the system is flexible to allow for specialized search
heuristics better suited to the given problem.
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In spite of its relative success being a generic method,
constraint-based scheduling still has shortcomings when ap-
plied to certain application domains. Most importantly, these
include disjunctive scheduling problems with sequence-
dependent parameters such as setup costs or transition times,
and more complex objective functions that involve, e.g.,
minimizing the total setup costs. One reason for this neg-
ative performance is that the traditional propagation of vari-
able domains (through the domain store) is relatively weak
in the presence of, e.g., large summations (Baptiste et al.
2006). One of our goals is to strengthen the applicability
of constraint-based scheduling to these important problem
domains, which include transportation or routing problems
(setup costs are associated with travel times) and industrial
paintjob problems (setup costs due to changing paint colors).

Recently, Multivalued Decision Diagrams (MDDs) were
introduced as an alternative to address the weaknesses of the
domain store in CSPs (Andersen et al. 2007). MDDs are
layered graphical representations of logic functions with a
broad application in circuit design, simulation, and software
synthesis (Wegener 2000). In this paper, we apply MDDs
with a user-specified limited size to encode a relaxation of
the feasible solution space of a CSP. The MDD is considered
as part of the constraint store, also collecting the inferences
performed by each constraint in a structured way.

The motivation to complement the domain store with
limited-size MDDs is that the first provides a weak relax-
ation of the problem, simply defined by the Cartesian prod-
uct of the domains. On the other hand, an MDD repre-
sents a more refined relaxation by exploiting non-trivial in-
teractions among variables. Processing a constraint now is
not limited to reducing variable domains; its semantic can
be utilized to improve the MDD relaxation, namely by re-
moving arcs associated with only infeasible solutions, or by
adding nodes that might strengthen the MDD representation.
This new framework is denoted by MDD-based Constraint
Programming, or MDD-based CP (Andersen et al. 2007;
Hoda, van Hoeve, and Hooker 2010).

Our contribution in this work is to approach some of
the well-known deficiencies of state-of-the-art disjunctive
propagators by exploring an MDD-based CP method for
the problem. The techniques described here can be either
applied to a general-purpose MDD-based solver, or en-
tirely encapsulated in a typical unary resource global con-
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straint (Baptiste, Le Pape, and Nuijten 2001). Hence, it
can be readily implemented in any Constraint Program-
ming solver. Furthermore, we provide a natural way to in-
tegrate our MDD-based reasoning with existing domain fil-
ters, such as edge-finding and not-first/not-last rules, by us-
ing the precedence relations that must hold in any feasible
solution as a communication interface between techniques.
Experimental results show that this combined approach is in-
deed very effective, especially when the objective function
is associated with sequence-dependent setup times.

Preliminaries and Notation

MDDs Let C = (X,D, C) be a CSP with n variables
X = {x1, . . . , xn} in any arbitrary order, discrete domains
D(xi) ∈ D for each xi ∈ X , and constraints C. A Multival-
ued Decision Diagram (MDD) for C is a directed acyclic
multigraph M = (U,R) that encodes the set of feasible
solutions of the CSP in a particular form. Namely, the set
of nodes U is partitioned into n + 1 subsets L1, . . . , Ln+1,
called layers. Layers L1 and Ln+1 consist of single nodes;
the root R and the terminal T, respectively. For the pur-
pose of this work, all arcs in R are directed from nodes in
layer Li to nodes in layer Li+1, for some i = 1, . . . , n.
Each arc a = (u,w) ∈ R leaving layer Lk is labeled
with a value φa ∈ D(xk) and represents the assignment
xk := φa. Moreover, no two outgoing arcs of a node
are allowed to have the same label. As such, a path p :=
(u1, a1, u2, a2, . . . , um−1, am−1, um) from a node u1 ∈ Lk

to a node um ∈ Lk′ for some k < k′ identifies a partial
assignment (xk, . . . , xk′−1) = (φa1 , φa2 , . . . , φam−1). (We
need to explicitly list the arcs a1, . . . , am−1 in p, as there
may exist parallel arcs between two nodes ui−1, ui.) In par-
ticular, a path from R to T represents a feasible solution
of C, and conversely every feasible solution is identified by
exactly one path from R to T in M .

There may exist more than one possible MDD represent-
ing the solutions of C. Let M be one of such MDDs. Two
nodes u, v in M are equivalent if the partial assignments
identified by paths from u to T and by paths from v to T are
the same. We say that M is reduced if no two nodes in any
layer are equivalent. There is a unique reduced MDD for a
given variable ordering x1, . . . , xn, which is the most com-
pact among all MDDs for C with respect to the number of
nodes (Andersen et al. 2007).

We now introduce the main MDD notation used through-
out the paper. The set of incoming and outgoing arcs at node
v of the MDD are given by δin(v) and δout(v), respectively.
The width w of an MDD is the maximum number of nodes
in a layer, given by w := max1≤k≤n+1 |Lk|. In our figures,
a set of multiple arcs connecting nodes u and v is depicted
as a single arc with an equivalent arc domain composed by
the union of such labels, for clarity of presentation.

MDD-based Constraint Programming The Constraint
Programming framework in which MDDs are used as a con-
straint store is referred to as MDD-based Constraint Pro-
gramming (Andersen et al. 2007). The underlying idea is
to use an MDD with restricted size to encode a relaxation
of the feasible solution space of a CSP. More specifically,

all feasible solutions of a CSP C (if any) are represented
by some path in this limited-size MDD, but not necessarily
all paths correspond to solutions that are consistent with the
constraint set C. This MDD is then passed from one con-
straint to the next, which will separately refine the represen-
tation by adding nodes or removing arcs.

The strength of the MDD representation can be controlled
by increasing the maximum allowed width of the MDD, de-
noted by the parameter K . For instance, given a CSP C,
one can construct an MDD of width K = 1 where each
layer contains exactly one node and, for k = 1, . . . , n, an
arc with label v connects nodes u ∈ Lk and v ∈ Lk+1 for
each v ∈ D(xk) (see Figure 1a). Note this MDD is equiva-
lent to the domain store, since its paths identify the solutions
corresponding to the Cartesian product of the variables. At
the other extreme, an unlimited (or large enough) width K
allows to exactly represent all solutions to C.

Processing a constraint on an MDD amounts to a filter-
ing and a refinement operation, which is performed by one
constraint at a time. MDD filtering generalizes traditional
domain filtering and consists of removing arcs that do not
belong to any path that identifies a feasible solution. Refine-
ment consists of adding nodes and arcs to the MDD, so as to
strengthen the relaxation it represents without violating the
maximum width K . This can be accomplished through an
iterative procedure named incremental refinement (Hadzic
et al. 2008), which is based on splitting nodes according to
their set of incoming arcs. We note that the filtering and re-
finement operations can be performed iteratively until a fix-
point is reached. A systematic scheme for MDD propaga-
tion is presented in (Hoda, van Hoeve, and Hooker 2010).
Here, we specialize those procedures to the case of disjunc-
tive scheduling problems.

We henceforth distinguish between an exact MDD and
limited-width MDD for a CSP C: The first exactly represents
all feasible solutions of C, while the second has a limited
width of at most K and might contain infeasible solutions.

Finally, let f : X → R be a separable objective function
defined onX . If arc weights are appropriately set in an MDD
M , then the shortest path from R to T corresponds to the
minimum value of f if M is exact, and to a lower bound of
f if M is a limited-width MDD (Bergman, van Hoeve, and
Hooker 2011).

Example 1 We present an example of MDD processing
for the alldifferent constraint, as proposed in (Andersen
et al. 2007). Consider the CSP defined by X = {x1, x2, x3},
D(x1) = D(x2) = {1, 2}, D(x3) = {1, 2, 3}, and C com-
posed by a single alldifferent(x1, x2, x3).

The alldifferent constraint receives the MDD of Fig-
ure 1a as input and carries out filtering and refinement oper-
ations. For the filtering, notice first that the set of arc labels
occurring in some path from R to v is {1, 2}. Since each
of these paths corresponds to an assignment of x1 and x2,
both values will be necessarily taken by these variables, as
they must be pairwise distinct. Hence, we can remove arcs
with labels {1, 2} connecting v and T. Now, suppose our
refinement operation splits node u into nodes u1, u2, parti-
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tioning its incoming arcs as showed in Figure 1b. Since the
value 1 belongs to all paths from R to u1, it cannot be as-
signed to any other subsequent variable, so we can remove
the arc in δout(u1) with label 1. We analogously remove the
arc labeled with 2 that connects u2 and v.

The MDD in Figure 1b, after filtering, yields a stronger
relaxation than the one represented by its projection onto
the variable domains. For instance, suppose we wish to
minimize a function f(x) = x1+x2+x3. The lower bound
provided by the MDD corresponds to the shortest path with
weights defined by the arc labels, which yields a value of 6.
On the other hand, the projection onto the domains is given
by D(x1) = D(x2) = {1, 2}, D(x3) = {3}, and yields a
lower bound value of 5. �

(a) Input (b) After refinement

Figure 1: alldifferent processing for Example 1.

Disjunctive Scheduling We consider a constraint-based
scheduling system in which the tasks to be scheduled are
represented by a finite set of activities A = {1, . . . , n}. With
each activity i ∈ A we associate a processing time pi, a
release time ri (minimum start time of i), and a deadline di
(maximum end time of i). Let s = {s1, . . . , sn} be a set
of variables si ∈ [ri, di − pi] representing the start time of
activity i ∈ A. Furthermore, let t = {tij ≥ 0 : i, j ∈ A} be
a set of sequence-dependent setup times. We are interested in
developing propagation algorithms for the global constraint

disjunctive(s,A, t), (1)

which enforces that activities in A must not overlap in time
and ti,j time units must elapse between the end of activ-
ity i and the start time of activity j, when j is the first to
succeed i with respect to the other activities. Hence, a fea-
sible assignment of variables s, denoted by feasible sched-
ule, implies that activities can be ordered as a sequence
π = (π1, . . . , πn), where πi ∈ A is the i-th activity in
the ordering and π satisfies sπi−1 + pπi−1 + tπi−1,πi

≤ sπi

for i = 2, . . . , n. The disjunctive constraint is also re-
ferred to as a unary resource constraint, since it represents
a non-preemptive resource with a capacity of one, and each
activity requires one unit of the resource during its execu-
tion (Baptiste, Le Pape, and Nuijten 2001). We assume that
this constraint is given in conjunction with an objective func-
tion with respect to s that must be minimized. Moreover,

additional precedence relations might also be specified; i.e.,
if activity i must precede j, which we write i � j, then
si + pi ≤ sj must hold in any feasible solution.

Propagation algorithms for disjunctive aim at deduc-
ing new valid constraints among activities so as to strengthen
the non-overlapping condition. In the traditional domain
store, this consists of tightening the domains of the start
time variables as much as possible. The most effective prop-
agation techniques for this purpose, such as edge-finding
and not-first/not-last rules (Baptiste, Le Pape, and Nuijten
2001), achieve this domain reduction by relying on a higher
dimensional representation of the solution space based on
the precedence relations between activities. Namely, they
are efficient algorithms that deduce all possible precedences
between an activity i ∈ A and a group of activities S ⊆ A
under particular rules, deriving the tightest time bounds ob-
tainable from these relations (Vilı́m 2004).

In MDD-based CP, a propagation algorithm for the
disjunctive must provide a filtering and a refinement op-
eration for a particular encoding of the constraint as an
MDD. This MDD is a global structure which may be shared
and filtered by other constraints as well. We highlight that
this propagation is complementary to the one performed by
domain filters; in particular, the MDD approach could be
entirely encapsulated in a global constraint and only used to
tighten the time variable bounds. Nonetheless, we demon-
strate that stronger filtering can be achieved by exploiting
interactions between our MDD encoding and the precedence
relations derived by existing filters.

MDD Encoding for Disjunctive Scheduling

Our MDD encoding for the disjunctive constraint, sim-
ilar to the description in (Hoda, van Hoeve, and Hooker
2010), is based on a reformulation of (1) into simpler con-
straints that explicitly represent the sequence of activities in
a feasible schedule. Namely, let πk now be a variable rep-
resenting the k-th activity to be performed on the schedule,
and let ei be a variable representing the end time of activity
i ∈ A. Constraint (1) can be equivalently written as follows:

alldifferent(π1, . . . , πn), (2)

eπk−1
+ tπk−1,πk

+ pπk
≤ eπk

, k = 2, . . . , n, (3)

D(eπk
) = [rπk

+ pπk
, dπk

], k = 1, . . . , n, (4)

D(πk) = A, k = 1, . . . , n. (5)

Constraint (2) enforces π to represent a permutation. Con-
straints (3) state that sequence π must yield non-overlapping
time intervals that are consistent with the activity process-
ing times and sequence-dependent setup times. Finally, con-
straints (4) and (5) describe the domains of variables π and
e. In particular, domains in (4) are intentionally written with
variables as subscripts. The linking between start and end
times variables is done by setting si = ei − pi for all i ∈ A,
which we assume for ease of notation to be implicit.

A valid MDD representation can be naturally derived
from the reformulation above. The layers are defined such
that they refer only to variables π1, π2, . . . , πn in that order;
equivalently, layer Lk corresponds to the k-th activity to be
scheduled, k = 1, . . . , n. The paths from R to T therefore
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identify all feasible sequences π that satisfy constraints (2)
to (5) if the MDD is exact. We will refer to this encoding as
permutation MDD, since any path corresponds to a permu-
tation of A. The end time variables are not explicitly repre-
sented in the MDD, but rather implied from any particular
MDD path under consideration.

Let M be a limited-width permutation MDD for an in-
stance of the disjunctive constraint. We define a state for
each node of M , which will explore the structure of the per-
mutation MDD for the purpose of filtering and refinement.
With each node v ∈ Lk, associate a tuple

Iv := (A↓v, S
↓
v , Ev), (6)

where each element is described as follows. The states
A↓v and S↓v are the set of activities that belong to all and
some paths from R to v, respectively. They stem from
the alldifferent constraint (2) following (Andersen et
al. 2007). The state Ev is primarily derived from con-
straints (3) and (4). It represents the minimum end time at
v; more specifically, the minimum end time over all partial
sequences that are identified by paths from R to v.

The state (6) can be computed for all nodes by a single

top-down pass in M . Namely, let (A↓
R
, S↓

R
, ER) = (∅, ∅, 0)

and assume the states for all nodes in layersL2, . . . , Lk were
already calculated. Suppose we wish to compute Iv for a
node v ∈ Lk+1. The alldifferent states are obtained by
applying the following rules from (Andersen et al. 2007) (re-
call that the arc labels φ(u,v) refer to activities in A):

A↓v :=
⋂

{A↓u ∪ {φ(u,v)} : (u, v) ∈ δin(v)}, (7)

S↓v :=
⋃

{S↓u ∪ {φ(u,v)} : (u, v) ∈ δin(v)}. (8)

Lastly, Ev can be computed using the following Lemma:

Lemma 1 For a node v ∈ U ,

Ev = min
{
E′(u,v) : (u, v) ∈ δin(v)

}
(9)

where E′a for an arc a = (u, v) is given by

E′a = max

{
rφa

, Eu + min
b∈δin(u)

{tφb,φa
}

}
+ pφa

. (10)

Proof. Let p be any path from R to a node v in the

MDD. We define eet(p)(v) as the earliest end time at v
when processing the activities in the sequence represented
by p, while respecting constraints (2) to (5). Likewise,

we define let(p)(v) as the latest end time at v follow-
ing the sequence given by p. Thus, for any complete path
p = (v1, a1, v2, a2, . . . , vn, an, vn+1) where v1 = R and
vn+1 = T, we can retrieve consistent end (and start) times

by appropriately setting ei ∈ [eet(p)(vk), let(p)(vk)], such
that φak−1

= i, for k = 2, . . . , n+ 1.
Assume wlog that v ∈ Lk+1 for some k. By definition,

Ev := min{eet(p)(v) : p ∈ PR

v } (11)

where PR

v is the set of paths from R to v. To compute Ev ,
note that inequalities (3) and (4) impose

eπk
≥ eπk−1

+ tπk−1,πk
+ pπk

, (12)

eπk
≥ rπk

+ pπk
(13)

which implies, for any path p = (R, a1, . . . , uk, ak, v) rep-
resenting the partial assignment π∗i = φai

(i = 1, . . . , k),

eet(p)(v) = max
{
rπ∗

k
, eet(p)(uk) + tπ∗

k−1
,π∗

k

}
+ pπ∗

k
.

(14)

The equality 9 now follows from a dynamic programming
argument using the relations (11) and (14). �

activity i ri di pi

activity 1 3 15 4 π1

activity 2 5 12 3

activity 3 0 6 2

π2

π3

v w

{2}

{1} {2}

{1}

R

u

T

{3}

[0,6]

[2,8]

[8,11] [7,9

[10,15]

Figure 2: Reduced MDD for Example 2. Next to each node
v, the interval [Ev, Fv] is given.

Example 2 Let A = {1, 2, 3}, (r1, d1, p1) = (3, 15, 4),
(r2, d2, p2) = (5, 12, 3), and (r3, d3, p3) = (0, 6, 2).
Suppose ti,j = 0 for all i, j ∈ {1, 2, 3}. The reduced
permutation MDD is depicted in Figure 2. Next to each
node v we depict the interval [Ev, Fv], reflecting the
earliest, respectively latest, ending time at v (Fv is formally
introduced in Section ‘Filtering’). For each R-T path,
we can determine the earliest and latest ending times for
the activities. In particular, path p = (R, u, w,T) yields
e1 ∈ [7, 9], e2 ∈ [10, 12], and e3 ∈ [2, 6]. �

Refinement of the Permutation MDD

In this section we develop an incremental refinement tech-
nique for the limited-width permutation MDD. We remark
that the refinement operation is a fundamental component of
the MDD-Based CP framework, since it may help filters to
remove a significant part of the infeasible solution space and
dramatically improve the propagation effectiveness.

First, it is in general desirable that the resulting new nodes
are non-equivalent, which prevents unnecessary recomputa-
tions and yields more fine-grained MDDs. We first assess
the complexity of identifying this condition with respect to
the permutation MDD, which is formalized in Theorem 2.

Theorem 2 Let M be an MDD representing an arbitrary
disjunctive instance. Deciding if two nodes u, v are
equivalent is NP-Hard.

Proof. Consider the n partial assignments composed of a
single activity that are identified by paths with a single arc
(R, v), v ∈ δout(R): (1), (2), . . . , (n). Two partial assign-
ments (i) and (j) with i 
= j have the same completions
only if their set of completions is the empty set. Hence, we
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can decide if the problem is infeasible by performing O(n2)
node equivalence tests, one for each pair of the n assign-
ments. But this is the same as deciding if a single machine
problem with arbitrary release times and deadlines has a so-
lution, which is NP-Hard (Garey and Johnson 1979). �

In spite of the result in Theorem 2, we can still pro-
vide necessary node equivalence conditions by taking the
conjunction of individual tests for each problem con-
straint (Hadzic et al. 2008). We provide one of such nec-
essary conditions in Lemma 3.

Lemma 3 Let M be a limited-width MDD represent-
ing an arbitrary disjunctive instance. For a node u
and an activity i ∈ A, let Tu(i) be the maximum
time activity i could start according to the partial se-
quences identified by paths from R to u, defined by
Tu(i) := max(w,u)∈δin(u)

{
dφ(w,u)

+ tφ(w,u),i

}
. Given two

nodes u, v ∈ Lk, the conditions

S↓v = S↓u ∧ |S↓v | = k − 1, (15)

ri ≥ max {Tu(i), Tv(i)} , ∀ i ∈ A \A↓v (16)

imply that u and v are equivalent.

Proof. The proof follows from contradiction. Sup-
pose, without loss of generality, that there exists
a completion (πk, . . . , πn) such that the sequence
(πu

1 , . . . , π
u
k−1, πk, . . . , πn) is feasible for some partial

sequence (πu
1 , . . . , π

u
k−1) identified by a path from R to u,

but the sequence (πv
1 , . . . , π

v
k−1, πk, . . . , πn) is infeasible

for some (πv
1 , . . . , π

v
k−1) identified by a path from R to v.

We will see in the filtering section that the conditions (15)
will force the filters to remove all arcs with labels in S↓v ,
since they represent the fact that the first k − 1 variables
are taking the corresponding k − 1 values in S↓v . Thus,
the alldifferent is not the reason for infeasibility,
and therefore the deadline of some activity πk, . . . , πn is
violated in the completion for v. Since {πu

k−1, π
v
k−1} ⊆

{φ(w,t) : (w, t) ∈ δin(u) ∪ δin(v)}, condition (16) implies

rπk
≥ max{dπu

k−1
+ tπu

k−1
,πk

, dπv
k−1

+ tπv
k−1

,πk
} and hence

the minimum start time of activity πk in both sequences is
the same, which is a contradiction. �

A number of actively studied problems in scheduling the-
ory may only consider deadlines in the objective function,
not as a constraint (Pan and Shi 2008; Pinedo 2008). In this
case Lemma 4 can be directly applied.

Lemma 4 Suppose the disjunctive instance M repre-
sents is such that di = +∞ for all i ∈ A. Two nodes
u, v ∈ Lk for j = 2, . . . , n are equivalent if and only if
conditions (15) and (16) are satisfied.

Proof. Any sequence corresponding to a permutation of A
is feasible, and the conditions above are necessary and suf-
ficient for the alldifferent constraint (2). �

The node equivalence conditions presented so far are not
expected to be frequently satisfied, since exact MDDs repre-
senting permutations have exponentially large widths in gen-
eral. Hence, the decision on how to choose and split nodes

should be mainly heuristic, in a way that explores the partic-
ular structure of the constraints.

Based on this assumption, we now present a refinement
technique for the permutation MDD. It builds on a previous
method called incremental refinement (Hadzic et al. 2008),
and can be easily generalized to other constraints. The pro-
cedure is outlined in Algorithm 1 and consists of two phases.

In the node processing phase, we first compute the state
of the nodes that would be created if we were to fully
split a node v ∈ Lk into nodes v1, . . . , v|δin(v)| contain-
ing a single incoming arc. This corresponds to one ‘tem-
porary’ state for each arc a = (u, v) ∈ δin(v), denoted by
I ′a := (A↓ ′a , S↓ ′a , E′a), where E′a has the same meaning as
in Lemma 1. The arc a and its respective state I ′a are then
stored in a data structureR. We also apply our filtering rules,
which means we do not add infeasible arcs to R. The node
processing phase is depicted in steps 4 to 15 in Algorithm 1.

In the refinement phase, we partition the set R into at most
K groups according to some heuristic criteria. These groups
will represent the final nodes in the refined layer. Namely,
for each group Vi, a new node v will be created. The incom-
ing arcs at v correspond to the arcs in Vi, and the outgoing
arcs of v correspond to the outgoing arcs of all the target
nodes in Vi. This is represented in steps 17 to 24 in Algo-
rithm 1. We replace a layer Lk by a new layer composed by
these new nodes, which represents the refinement.

The partitions should be defined by taking the state I ′u,v
into account, for instance using particular heuristic crite-
ria. The set R gives a global view of the layer in that it
allows us to infer the state of the resulting new nodes be-
fore actually performing the splits. That is, given any subset
V ⊆ R, the new node v to be created from V is such that

Ev = min(u,w)∈V {E
′
(u,w)}, A↓v =

⋂
(u,w)∈V {A

↓
(u,w)}, and

S↓v =
⋃

(u,w)∈V {S
↓
(u,w)}, which follows from the defini-

tion of the states. We note that special care must be taken to
avoid creating partitions that would force a node in a previ-
ous layer to have two outgoing arcs with the same label.

The heuristic criterion used to partition R in this work
ensures that the K − 1 new nodes are associated with the
lowest K−1 values possible for Ev , breaking ties according
to the size of the A↓v set (i.e,. larger first). This was verified
to be very effective in practice. Intuitively, smaller values
for Ev force paths with small makespan to be present in the
MDD, while larger A↓v countermeasures this procedure by
enforcing that sequences must be pairwise distinct.

Filtering

This section presents our filtering rules that can be applied to
a permutation MDD M . We first extend the state definition
to also consider a bottom-up perspective of M . Namely, for
each node v in M , we now redefine Iv as

Iv := (A↓v, S
↓
v , Ev, A

↑
v, S

↑
v , Fv). (17)

The state elements A↓v , S↓v , and Ev are the same as defined
in (6). The states A↑v and S↑v are bottom-up versions of the
first two, and can be analogously computed within a bottom-
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Algorithm 1: MDD Refinement (Input: MDD M )

begin1

for layer indices k = 2, . . . , n do2

// 1. Node processing phase3

R := ∅4

foreach node v ∈ Lk do5

foreach arc (u, v) ∈ δin(v) do6

A
↓ ′

(u,v) := A↓
u ∩ {φ(u,v)}7

S
↓ ′

(u,v) := S↓
u ∪ {φ(u,v)}8

Compute E′
(u,v) according to (10)9

// filtering10

if a rule (19)-(22) is violated then11

Remove arc (u, v)12

else13

I ′u,v := (A↓ ′

(u,v), S
↓ ′

(u,v), E
′
(u,v))14

R := R ∪ {(I ′(u,v), (u, v))}15

// 2. Refinement phase16

Partition R into (at most) V1, . . . , VK groups17

according to E′
u,v

L′
k := ∅18

foreach group Vi do19

Create a new node v, add it to L′
k20

δ+(v) := {(u, v) : ∃ (u,w) ∈ Vi}21

δ−(v) :=
⋃
{δout(w) : ∃(u,w) ∈ Vi}22

Compute Iv23

Replace Lk by L′
k24

end25

up pass by setting A↑
T
= S↑

T
= ∅ and for any v ∈ Lk, k ≥ 2,

A↑v :=
⋂

{A↑u ∪ {φ(v,u)} : (v, u) ∈ δout(v)},

S↑v :=
⋃

{S↑u ∪ {φ(v,u)} : (v, u) ∈ δout(v)},

which stem from (7) and (8), respectively (Andersen et al.
2007). The state Fv represents the maximum end time at
v ∈ Lk; more specifically, the maximum end time over all
partial sequences identified by paths from R to v. It can be
computed analogous to Lemma 1, as formalized in the fol-
lowing Lemma (presented here without proof):

Lemma 5 For a node v ∈ U ,

Fv = min

{
max

a∈δin(v)
dφa

, max
a∈δout(v)

{F ′a}

}
, (18)

where F ′a for an arc a = (v, w) is given by

F ′a := Fw − min
b∈δin(v)

{tφb,φa
} − pφa

.

The first term of the min function in (18) as well as
minb∈δin(v){tφb,φa

} are computed during a top-down pass,
which can be already used as an upper bound of Fv for fil-
tering purposes. The remaining terms are computed during
a bottom-up pass.

The filtering rules used to remove inconsistent arcs are
now described. They can be applied during both top-down

and bottom-up passes, or simultaneously with refinement
(step 7 in Algorithm 1). Consider nodes u, v with u ∈ Lk

and v ∈ Lk+1. From the alldifferent constraint (2),
arc (u, v) can be removed if any of the conditions below
hold (Hoda, van Hoeve, and Hooker 2010):

φ(u,v) ∈ A↓u ∪A↑v, (19)

|S↓u| = k − 1 ∧ φ(u,v) ∈ S↓u, (20)

|S↑v | = n− k + 1 ∧ φ(u,v) ∈ S↑v . (21)

Observe now that Ev and Fv represent a lower and up-
per bound, respectively, of variable eπk−1

in the reformula-
tion (2)-(5) of the disjunctive constraint. Hence, if we fix
πk−1 = φ(u,v) for an arc (u, v), we need only to check if this
violates the maximum end time at v. This is summarized in
the following rule, in which an arc (u, v) for u ∈ Lk and
v ∈ Lk+1 is removed if

max

{
rφ(u,v)

, Eu + min
(w,u)∈δin(u)

{tφ(w,u),φ(u,v)
}

}
+ pφ(u,v)

> min
{
dφ(u,v)

, Fv

}
. (22)

As a further note, state values are monotonically increas-
ing or decreasing. Hence, they can be preserved along the
refinement or after some search decision that does not nec-
essarily remove the node, possibly yielding extra propaga-
tion since a valid state, even if relaxed, is readily available
without an additional top-down or bottom-up pass.

Optimization A limited-width MDD can provide a lower
bound for any separable scheduling objective function
by assigning appropriate arc weights and computing the
shortest path from R to T. For instance, to mini-
mize the sum of the setup times, we assign a weight
w(u,v) = mina∈δin(u) ta,φ(u,v)

to each arc (u, v). To mini-
mize makespan, the lower bound is directly given by ET.

The value v∗ of the shortest path can be used in different
ways for filtering purposes. If a cost variable is associated
with the disjunctive, we update its domain according to
v∗. Moreover, if the shortest path from R to a node is above
the upper bound of this cost variable, we may remove the
corresponding arcs from the MDD as well. Note that, by do-
ing so, Algorithm 1 remains valid — except for the equiva-
lence tests — and it can be improved by taking the objective
function into account for its heuristic component.

Integration with Domain Filters

The inferences performed by state-of-the-art scheduling do-
main filters and the permutation MDD can be shared so as
to increase the effectiveness of both propagation techniques.
The key insight is that existing filters, as discussed pre-
viously, tighten variable domains by deducing precedence
relations among activities according to specific rules. We
show in this section that there is an intrinsic connection be-
tween the permutation MDD and the precedence relations
of a disjunctive instance. Namely, given a limited-width
permutation MDD M , we can efficiently deduce all prece-
dence relations that are satisfied by the solutions encoded
in M . Conversely, given a set of precedence relations that
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must hold in any feasible sequence, we can apply additional
filtering rules to M to further strengthen the relaxation it
provides. Hence, precedence relations can be used as a com-
munication interface between traditional scheduling propa-
gators and the MDD-based filters.

To formally state our result, we assume that all considered
MDDs henceforth associate a state Iv , as defined in (17),
with each of its nodes v. We have the following Theorem.

Theorem 6 Let M be an exact permutation MDD for an
arbitrary disjunctive instance. An activity i must precede
activity j in any feasible solution if and only if

(j 
∈ A↓u) or (i 
∈ A↑u)

for all nodes u in M .

Proof. Suppose there exists a node u in layer Lk, k ∈
{1, . . . , n + 1}, such that j ∈ A↓u and i ∈ A↑u. By defini-
tion, there exists a path (R, . . . , u, . . . ,T) that identifies a
sequence where activity j starts before activity i. This can
only be true if and only if activity i may not precede j in
some feasible solution. �

Corollary 7 The set of all precedence relations that must
hold in a disjunctive instance can be efficiently extracted
from its exact MDD M = (U,R) in O(n2|U |).

Proof. Construct a digraph G∗ = (A, E∗) by adding an arc
(i, j) to E∗ if and only if there exists a node u in M such
that j ∈ A↓u and i ∈ A↑u. Checking this condition for all pairs
of activities takes O(n2) for each node in M , and hence the
time complexity to construct G∗ is O(n2|U |). According to
Theorem 6 and the definition of G∗, the complement graph
of G∗ contains an edge (i, j) if and only if i � j. �

As we are mainly interested in limited-width MDDs, we
derive an additional Corollary of Theorem 6.

Corollary 8 Given a limited-width MDD M for a
disjunctive instance, an activity i must precede activity
j in any feasible solution (in case one exists) if

(j 
∈ S↓u) or (i 
∈ S↑u)

for all nodes u in M .

Proof. It follows from the state definitions that A↓u ⊆ S↓u
and A↑u ⊆ S↑u. Hence, if the conditions for the relation i � j
from Theorem 6 are satisfied by S↓u and S↑v , they must be
also satisfied by a reduced MDD containing only the feasible
solutions of the instance. �

By Corollary 8, the precedence relations implied by the
solutions of a limited-width MDD M can be extracted by
applying the algorithm in Corollary 7 to the states S↓v and
S↑v . These precedences can then be used to tighten start time
variables, as shown in Example 3 below, or be provided
directly to constraint-based solvers that may benefit from
them. Since M has at most O(nK) nodes, this algorithm
has a worst-case complexity of O(n3K).

Conversely, suppose we collect the set of precedences de-
duced by domain filters in a set P ∈ A × A, such that
(i, j) ∈ P if i � j. Then, Theorem 6 and the state defi-
nitions immediately yield the following filtering rules. Arc

(u, v) with u ∈ Lk, v ∈ Lk+1 can be removed if any of the
conditions below holds, where i ∈ A is an activity.

i ∈ A↓u, ∃ (φ(u,v), i) ∈ P , (23)

|S↓u| = k − 1 ∧ i ∈ S↓u, ∃ (φ(u,v), i) ∈ P , (24)

i ∈ A↑v, ∃ (i, φ(u,v)) ∈ P , (25)

|S↑v | = n− k + 1 ∧ i ∈ S↑v , ∃ (i, φ(u,v)) ∈ P . (26)

These conditions can be efficiently checked during a top-
down and a bottom-up pass, or in step 7 in Algorithm 1.

Example 3 The propagation of the precedence rela-
tions inferred by the MDD can lead to a stronger do-
main filtering than edge-finding and not-first/not-last rules,
even for smaller widths. Consider the following instance
from Vilı́m (2004):A = {1, 2, 3}, (r1, d1, p1) = (0, 25, 11),
(r2, d2, p2) = (1, 27, 10), and (r3, d3, p3) = (14, 35, 5),
with zero setup time for any pair of activities.

Edge-finding and not-first/not-last rules deduce 1 � 3
and 2 � 3, which does not suffice to change the start time
bounds of any variables i ∈ A. However, starting with an
MDD of width 1 and applying our filters and refinement
operations, we obtain the same MDD presented in Figure 1b
(where xi = πi, for i = 1, . . . , 3). If the precedences are
kept in a set Ωi := {j : j ∈ A, j � i} for each i ∈ A,
the filtering rules will set Ω3 := {1, 2}. This triggers the
propagation s3 ≥ 10 + 11 = 21, which can be used to
update the start time variable of activity 3. �

Computational Experiments

We have implemented our MDD propagation algorithm as a
global constraint in IBM-ILOG CP Optimizer that is pack-
aged within CPLEX Academic Studio 12.4. We evaluate our
methods on problem instances arising from the Traveling
Salesman Problem with Time Windows, which can be mod-
elled by a single disjunctive. Even though specialized
CP algorithms have been previously applied to this partic-
ular problem (Pesant et al. 1996; Focacci, Lodi, and Milano
2002), existing domain filters are known to be less effec-
tive when setup times are involved. We consider two differ-
ent objective functions: one minimizes makespan, while the
other minimizes the sum of setup times. The makespan is
a traditional objective function studied in scheduling, while
the sum of setup times represents an important component of
many real-world scheduling problems, as discussed before.

We compared three techniques: a formulation with
the unary resource constraint from CP Optimizer (CP),
IloNoOverlap, set with extended filtering; the standalone
MDD filtering (MDD); and a combined approach (CP+MDD).
However, a relatively loose integration is considered for
CP+MDD, since the precedences inferred by CP Optimizer
are only partially available. Specifically, the precedences in-
ferred by the MDD propagation are communicated to CP
Optimizer by restricting a variable IlcIntervalSequenceVar,
which specifies the activities that may be next in the se-
quence. Conversely, the domain of this variable is used to
prune arcs in the first and previous to the last layer of the
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Figure 3: Performance between CP and MDD

MDD. Tests were implemented in C++ and ran on an Intel
Xeon E5345 with 8 GB RAM. For exposition convenience,
we set our maximum MDD width to 16, which was chosen
based on manual parameter tuning. Generally, however, this
value can be dynamically determined based on the problem
size or other parameters (e.g., memory).

We selected 85 instances from the Dumas (Dumas et al.
1995) and AFG (Ascheuer 1995) benchmarks for which at
least one of the methods would not exceed the time limit.
These instances contain between 10 and 60 activities, and
have a wide range of time windows, i.e., [di − ri] for ac-
tivity i. In order to make a proper qualitative comparison
(in terms of filtering and propagation strength) between the
three methods CP, MDD, and CP+MDD, all use the same lex-
icographic search, in which activities were recursively as-
signed to be first in the schedule according to a previously
fixed order. We impose a time limit of 3600 seconds. All
reported averages correspond to geometric means.

CP vs. MDD We first compare CP to the pure MDD ap-
proach. Figure 3 shows a scatter plot for the number of fails
(the number of dead ends encountered during the backtrack
search), and the solving time in seconds. For these instances,
the average relative improvement (as a percentage) of CP
and MDD is presented in Figure 4.a. Here, the relative im-
provement between values a and b is computed as (b− a)/b
for those data cases where a < b− 0.01, i.e., the method for
a was strictly better than the method for b. The figure also
shows the number of instances for which one method was
better than the other between parentheses for each class. To-
gether, these figures indicate that the pure MDD approach
can substantially improve CP Optimizer when the objective
is to minimize the sum of the setup times. For example, re-
garding the number of fails, MDD was better than CP for 65
instances (these are all instances that were solved), with an
average of 69% less fails than CP. It is also important to note
that the CP performs much better than MDD when minimiz-
ing the makespan. Most likely, this behavior is due to the
very well-developed filtering techniques for makespan that
are not being explored by the MDD.

CP vs. CP+MDD We next compare CP and the combined
approach CP+MDD. This is perhaps the most relevant analy-
sis, since CP solvers usually run a portfolio of filtering tech-
niques, to which the MDD-based approach could be added.
The results are shown in Figure 5 as a scatter plot, while the
average relative performance is shown in Figure 4.b. These
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Figure 4: Relative performance of CP versus MDD (a), and
CP versus CP+MDD (b), for minimizing setup times and
makespan. The number of instances that were used to pro-
duce each bar is indicated between parentheses.
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Figure 5: Performance between CP and CP+MDD.

figures indicate that the combined approach yields more ro-
bust results, often outperforming both CP and MDD alone.
For some instances, we observed orders of magnitude im-
provement; e.g., n60w20.003 from Dumas, with 60 activ-
ities and average time window width of 20, was solved in 30
seconds by CP+MDD, but could not be solved within 1 hour
by CP. Again, the improvement of the combined approach
manifests itself mainly when minimizing setup times, while
CP remains the better method (in terms of time) for mini-
mizing makespan.

Dynamic Search As a last comment, we also tested all
three methods with a dynamic search strategy, where ac-
tivities are sequentially added to the schedule according to
their propagated earliest start time. We found that the results
were almost unchanged, except that the combined approach
CP+MDD could now solve three more instances while the to-
tal solved instances remained the same for CP and MDD.

Conclusion

In this paper we studied propagation techniques based on
MDDs for disjunctive problems. We presented refinement
and filtering operations to strengthen the relaxation it rep-
resents, and showed how it can be integrated with existing
filters such as edge-finding. Experimental results demon-
strated that MDD propagation can yield stronger filtering
that existing domain propagation methods, especially when
minimizing sequence-dependent setup times.
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