Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Improved Non-Deterministic Planning by Exploiting State Relevance

Christian Muise and Sheila A. Mcllraith

Dept. of Computer Science
University of Toronto
Toronto, Canada. M5S 3G4
{cjmuise,sheila} @cs.toronto.edu

Abstract

We address the problem of computing a policy for fully ob-
servable non-deterministic (FOND) planning problems. By
focusing on the relevant aspects of the state of the world, we
introduce a series of improvements to the previous state of
the art and extend the applicability of our planner, PRP, to
work in an online setting. The use of state relevance allows
our policy to be exponentially more succinct in representing a
solution to a FOND problem for some domains. Through the
introduction of new techniques for avoiding deadends and de-
termining sufficient validity conditions, PRP has the potential
to compute a policy up to several orders of magnitude faster
than previous approaches. We also find dramatic improve-
ments over the state of the art in online replanning when we
treat suitable probabilistic domains as FOND domains.

1 Introduction

When an agent executes a plan, there may be aspects of the
environment over which the agent has no control. One way
of modelling this issue is to incorporate non-deterministic
actions into the domain model. In the planning commu-
nity, non-deterministic action outcomes have been intro-
duced in two formalisms: fully observable non-deterministic
(FOND) planning (Daniele, Traverso, and Vardi 2000) and
probabilistic planning (Yoon, Fern, and Givan 2007). The
former deals primarily with finding a contingent plan or pol-
icy, while the latter focuses on maximizing the probability of
achieving the goal. When considering the probability of suc-
cessful execution alone, the two formalisms are quite similar
and the planners for each share many characteristics.

The state of the art for both FOND planning and proba-
bilistic planning involve determinizing the actions by replac-
ing every non-deterministic action with a set of deterministic
ones and using a classical planner to find a solution (Fu et
al. 2011; Yoon et al. 2010). Both approaches build a partial
policy that maps the state of the world to an action and then
simulate execution of this policy. When the planner encoun-
ters a state that the policy does not recognize, it considers the
state as a new planning problem and the planner updates the
policy with a newly computed plan. The key difference is
the FOND techniques simulate every potential outcome of
a non-deterministic action while the probabilistic planning

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

172

J. Christopher Beck
Dept. of Mechanical & Industrial Engineering
University of Toronto
Toronto, Canada. M5S 3G8
jcb@mie.utoronto.ca

techniques consider only one randomly chosen action out-
come for each action in the plan. Both approaches consider
information about the entire state, which is often far too de-
tailed. A more succinct policy should map only the relevant
portion of the state to the actions.

We develop a planner, PRP, that incorporates both FOND
and online probabilistic planning techniques to build a
strong cyclic solution to a FOND planning problem. If no
such plan exists, PRP returns the best quality policy it is
able to find. The strength of our approach stems from fo-
cusing on only those parts of the state that are relevant — in
many real world problems only a small subset of the state
plays a role in the successful execution of a plan. We in-
troduce several novel techniques for non-deterministic plan-
ning based on state relevance and demonstrate how these
improvements allow our planner to outperform the state-of-
the-art techniques in both FOND and probabilistic planning.

PRP generates solutions up to several orders of magni-
tude faster, and generates policies several orders of mag-
nitude smaller than the state-of-the-art FOND planner, FIP
(Fu et al. 2011). When compared to online replanning ap-
proaches for probabilistic planning problems, we find that
PRP achieves the goal with up to several orders of magni-
tude fewer actions than the method employed by FF-Replan
(Yoon, Fern, and Givan 2007). Further, when we consider
“probabilistically interesting” domains that have the poten-
tial for deadends (Little and Thiebaux 2007), we find that
PRP scales better than the state of the art in online replan-
ning, FF-Hindsight+ (Yoon et al. 2010), solving problems
with a perfect success rate where FF-Hindsight+ does not.

2 Preliminaries

We assume that we are given a non-deterministic planning
problem as a PDDL file with “oneof” clauses in the ac-
tion effects, as is the case with FOND planning domains
(Bryce and Buffet 2008). We convert the domains to a non-
deterministic SAS™ formalism using a modified version of
the PDDL-to-SAS™ translation algorithm (Helmert 2009).
We adopt the notation of (Mattmiiller et al. 2010) for non-
deterministic SAS™ planning problems. A SAS™ fully ob-
servable non-deterministic (FOND) planning task is a tuple
IT = (V,s0,s4,A). Vis a finite set of variables v, each
having the finite domain D,. We use D, to denote the ex-
tended domain of v that includes the value L which signifies

the undefined state of v. A partial state is a function s that
maps a variable v € V to a value in Df. If s(v) # L
then v is defined in s, and if every variable v € V is de-
fined for s then s is a complete state. The initial state sq
of a SAST FOND planning task is a complete state, while
the goal state s, is a partial state. A partial state s entails
another partial state s’, denoted as s = ¢, iff s(v) = §'(v)
whenever v is defined for s’. Two partial states s and s” are
said to be consistent with one another, denoted s ~ s/, iff
Yo € V,s(v) = §'(v) Vs(v) = LVs(v) = L. The up-
dated partial state obtained from applying partial state s’ to
partial state s, denoted as s @ s’, is the partial state s where
s"(v) = §'(v) if v is defined for s, and s (v) = s(v) other-
wise. Note that s and s’ need not be consistent for s & s'.

The final component of a planning task is the set of ac-
tions A. Each action is made up of two parts: Pre,, a partial
state that describes the condition under which a may be exe-
cuted; and Eff ., a finite set of partial states that describe the
possible outcomes of the action. If Eff, contains multiple
elements, then the agent is not able to choose which effect
takes place. An action a is applicable in state s iff s = Pre,
and a is possibly applicable in s iff s =~ Pre,. The progres-
sion of a partial state s, w.r.t. an action a and selected non-
deterministic effect e € EJff ,, denoted Prog(s, a,e), is the
updated state (s @ Pre,) ® e when a is (possibly) applicable
in s, and undefined otherwise. We say that a partial state s
can be regressed through a with effect e € Eff , iff e = s.
The regression of partial state s w.r.t. an action a and effect
e € Eff,, denoted Regr(s,a,e), is the updated s' where
s'(v) = Prey(v) if v is defined for Pre,; else s'(v) = L if
e(v) = s(v); else s'(v) = s(v). Regr(s,a,e) is undefined
if s can not be regressed through a with e.

A solution to a FOND planning task is a policy that maps
a state to an appropriate action such that the agent eventually
reaches the goal. A policy is closed if it returns an action for
every non-goal state a policy reaches and a state s is said to
be reachable by a policy if there is a chance that following
the policy leads the agent to s. When the agent executes
an action the effect is randomly chosen, so a closed policy
must handle every possible outcome of an action it returns.
There are three types of plans for a FOND problem (Daniele,
Traverso, and Vardi 2000): weak, strong, and strong cyclic.

Definition 1 (Weak Plan). A weak plan is a policy that
achieves the goal with non-zero probability.

A weak plan may be as simple as a sequence of actions
that achieves the goal with assumed non-deterministic action
outcomes. The policy for a weak plan need not be closed.

Definition 2 (Strong Plan). A strong plan is a closed policy
that achieves the goal and never visits the same state twice.

A strong plan provides a guarantee on the maximum num-
ber of steps to achieve the goal but is often too restrictive.

Definition 3 (Strong Cyclic Plan). A strong cyclic plan is
a closed policy that achieves the goal and every reachable
state can reach the goal using the policy.

A strong cyclic plan guarantees that the agent eventually
reaches the goal, but does not guarantee the agent can do
so in a fixed number of steps. There are a few approaches

173

to produce a strong cyclic plan and we focus on one that
enumerates weak plans until it creates a strong cyclic plan.

Definition 4 (Determinization). A determinization of a
SAS™ FOND planning task IT = (V, s, s«,.A) is a plan-
ning task IT = (V, s, s+, A’) where A’ is a modification
of A such that every action in A’ is deterministic. The sin-
gle outcome determinization creates A’ by selecting a sin-
gle outcome for every action in A. The all outcomes de-
terminization creates A’ by creating a new action for every
non-deterministic outcome of an action in A.

Finding a classical plan to a determinization provides a
weak plan for the non-deterministic planning task. Recently,
(Fu et al. 2011) showed that it is effective to use this ap-
proach repeatedly to build a strong cyclic plan. The idea in-
volves picking an unhandled reachable state, finding a weak
plan in the all outcomes determinization, and incorporating
the plan into the policy. The planner repeats this process un-
til the policy is strong cyclic or it finds a deadend and back-
tracks to replan. Similar techniques have been used in online
replanning for probabilistic planning problems (Yoon, Fern,
and Givan 2007; Yoon et al. 2010).

Working Example: Triangle Tireworld To situate the
methods we introduce, we use a problem from the triangle
tireworld domain as a running example (cf. Figure 1). The
objective is to drive from location 11 to 15, however driv-
ing from one location to another has the possibility of a tire
going flat. If there is a spare tire in a location of the car
(marked by circles in the diagram), then the car can use it
to fix a flat. The strategy that maximizes the probability of
success is to drive to location 51 and then over to 15, as this
means a spare tire will always be available.

Figure 1: Example from the triangle tireworld domain.

The triangle tireworld problem poses significant difficulty
for probabilistic planners (Little and Thiebaux 2007). We
also found it to be hard for strong cyclic planners due to the
attractive nature of driving straight to the goal as well as the
vast number of states that the optimal policy can reach.

3 Finding a Strong Cyclic Plan

To create a strong cyclic plan, we use the all outcomes de-
terminization to find a weak plan when we encounter a state
that our policy does not handle. In the presence of deadends,
we replan from scratch rather than backtracking. By exploit-
ing state relevance, we make substantial improvements over
current methods. In this section, we describe how we build a
policy offline, and later describe how we restrict our offline
approach to accomplish online replanning. We first describe
precisely what a policy is and the notation surrounding it.

Definition S (Partial Policy). A state-action pair is a tuple
(p, a) where p is a partial state and a is an action. A rule set
R is a set of state-action pairs and R(s) denotes the set of
state-action pairs (p, a) € R such that s = p. If we have a
function & to select a desired pair from a rule set, the partial
policy for R and ® is the partial function P that maps a
partial state s to the desired elementin R: P(s) = ®(R(s)).
If P is defined for s, we say that P handles s.

Given a rule set and a selection function over the possi-
ble state-action pair subsets, we can use the partial policy P
to map a given state to an appropriate action: the question
remains how we build the rule set and selection function.
A significant aspect of our solution involves solving the all
outcomes determinization for various initial states, creating
a weak plan. Our planner then computes a rule set that cor-
responds to the actions in the plan and the relevant condi-
tions for the plan to succeed. The selection function we use,
D eaks chooses the desired state-action pair to be the one
that is closest to the goal with ties broken arbitrarily. We
associate the action outcome from the weak plan to the cor-
responding non-deterministic action in the state-action pairs.

Traditionally, the state in a state-action pair (s, a) corre-
sponds to the complete state s after executing the plan up to
just before a. Rather than using the full state, we employ re-
peated regression from the goal to just before action a in the
weak plan. Approaches for execution monitoring use regres-
sion to determine precisely which part of the state is relevant
in order for the a plan to succeed (Fritz and Mcllraith 2007).
We use this regressed state as the partial state for the state-
action pair and associate the pair with its distance to the goal
in the weak plan in which it was found.

We refer to the procedure of creating a weak plan for
the all outcomes determinization and then adding the cor-
responding state-action pairs to the policy P as GENPLAN-
PAIRS(II, P). Algorithm 1 shows the high-level approach to
generating a strong cyclic plan. For now, we only describe
aspects of Algorithm 1 that do not involve handling dead-
ends, and we describe the details for deadends below.

Algorithm 1 enumerates the reachable states of the pol-
icy by considering every outcome of the actions our policy
returns (lines 10-13). The algorithm deals with unhandled
reachable states by finding a weak plan to achieve the goal
and adding the state-action pairs to the policy (lines 8-9).

One difference between Algorithm 1 and FIP is the outer
loop of line 2. We must repeat the process until we find a
fixed point because the use of partial states can cause pre-
viously handled states to have a new action returned by the
policy. If the policy behaves differently, it has the chance of
leading to a new unhandled open state. We refer to a single
execution of lines 2-13 as a pass. The check on line 2 suc-
ceeds whenever the previous pass has augmented the policy
or a deadend was found. Similar to FIP, GENPLANPAIRS
ceases planning when it finds a state handled by the policy.

Theorem 1. If a policy generated by Algorithm 1 handles
state s, then following the policy along with the expected
action outcomes leads the agent to the goal in finite steps.

Proof sketch. Every state-action pair (p, a) in the policy is
a part of a weak plan that achieves the goal. Executing the

174

Algorithm 1: Generate Strong Cyclic Plan

Input: FOND planning task IT = (V, s, sx, .A)
QOutput: Partial policy P

1 Initialize policy P

2 while P changes do

3 | Open = {so}; Seen = {};

4 | while Open # 0 do

5 s = Open.pop();

6 if s # s, N s ¢ Seen then

7 Seen.add(s);

8 if P(s) is undefined then

9 | GENPLANPAIRS((V, 5, 54, A), P);
10 if P(s) is defined then

1 (p,a) = P(s);

12 for e € Eff , do

13 | Open.add(Prog(s, a, e));
14 | PROCESSDEADENDS();

15 return P;

action with the expected outcome brings the state to a point
where the next action (denoted a’) in the weak plan is ap-
plicable. It may happen that the agent selects the next state-
action pair from another weak plan, but this pair must be
no further from the goal than a’ was (since the policy uses
D eqr for comparison). With this invariant on the state-
action pairs, we are guaranteed to reach the goal and not
encounter an unhandled, deadend, or repeated state. [

The monotonic decrease in the distance-to-goal means
that once GENPLANPAIRS reaches a state that our policy
handles, we can always follow the policy and expected ac-
tion outcomes to arrive at the goal and generate a weak plan.

3.1 Avoiding Deadends

The FIP planner handles deadends by backtracking through
the policy updates and searching for a new weak plan that
avoids the deadend state. Issues with this approach include
failing to recognize the same deadend later on in the search
and failing to recognize the core reason for the deadend. We
now describe how our approach, while incomplete at find-
ing all deadends, addresses these two issues to sufficiently
provide a complete search for a strong cyclic policy.

Definition 6 (Forbidden State-Action Pair). We define a
deadend for the SAST FOND planning task (V, s, s, A)
to be a partial state p such that Vs € S| s = p, there is no
strong cyclic plan for the task (V, s, s., .A). We define a for-
bidden state-action pair to be a state-action pair (p, a) such
that Je € Eff ,, s = Prog(p, a, e) where s is a deadend.

In other words, a forbidden state-action pair (p, a) is a sit-
uation where executing the action « in any state that entails
p could lead us to a deadend state. Note that we use deadend
to refer to partial states with no strong cyclic plan.

Rather than backtracking, we record the deadends during
one pass of Algorithm 1 and avoid them in all subsequent
passes. A deadend may arise for two reasons: (1) GEN-
PLANPAIRS fails to find a solution in the all outcomes de-

terminization or (2) during the search for a weak plan, the
planner discovers a deadend state. We record all instances
of both types of deadends and process them in the final step
of a pass (PROCESSDEADENDS in Algorithm 1).

The first step of PROCESSDEADENDS is to generalize the
deadends: for each deadend s we compute a minimal par-
tial state p such that p ~ s and p suffices to be a deadend
in the delete relaxation of the all outcomes determinization
(detected using reachability analysis). A generalized dead-
end may be the entire state, saving nothing, but often we
generalize a deadend to a much smaller partial state.

Next, we generate a rule set of forbidden state-action pairs
by regressing the deadends through every non-deterministic
action effect for every action. The rule set captures the
ways in which a non-deterministic action execution may fail.
Once we generate the rule set for every deadend recorded in
a pass, we add all of the forbidden state-action pairs to a
global rule set used during planning. We require only that
a single non-deterministic effect lead to a deadend state for
the action to appear in a forbidden state-action pair.

The final step of PROCESSDEADENDS is to reset the pol-
icy so that we can start the computation over with the knowl-
edge of forbidden state-action pairs. For GENPLANPAIRS,
we modified a forward-search planner to restrict the expan-
sion of nodes in the search frontier to avoid forbidden state-
action pairs by filtering the actions applicable at every point
in the search. We also modified the heuristic computation to
account for the forbidden state-action pairs.

In the triangle tireworld example, a common deadend
found by our planner is for the car to be in a non-goal loca-
tion with a flat tire and no spare. The generalization of this
deadend removes all information pertaining to the location
of spare tires in other locations. The forbidden state-action
pairs created for this deadend include any state that has the
car one location away without a flat and the action that drives
the car to the deadend location. The forbidden state-action
pairs allow the GENPLANPAIRS procedure to avoid driving
to the problematic location.

Theorem 2. Algorithm 1 computes a strong cyclic plan for
a FOND problem if such a plan exists.

Proof sketch. For soundness and completeness, we need
only look at the final iteration of the outer while-loop. In the
final pass, the policy does not change and no new deadend
is found. Therefore, the condition on line 8 can only be met
if s = s¢, in which case no strong cyclic plan exists. Other-
wise, we know that the policy handles sy and we can follow
the policy to eventually achieve the goal for some arrange-
ment of non-deterministic action outcomes (due to Theorem
1). Further, since the condition on line 8 always fails, the
policy always returns an action for any state we reach. Since
we start with the initial state in the open list (line 3) and enu-
merate every possible successor for the non-deterministic
actions chosen by the policy (lines 12-13), we are guaran-
teed that the policy represents a strong cyclic plan. Finally,
we know that there is a final pass of Algorithm 1 since the
policy monotonically adds further state-action pairs to cover
unhandled states (line 9) and forbidden state-action pairs to
handle discovered deadends. [J

175

4 Extensions

The techniques presented so far are sufficient to produce a
strong cyclic plan if one exists. In this section, we present
two extensions. The first is an extension of a technique in-
troduced in the FIP planner. The second is a novel technique
for determining if a policy is a strong cyclic plan for a state.

4.1 Planning Locally

One of the significant contributions of FIP was to investigate
an unhandled state in the search for a strong cyclic plan in
a special way: a local plan to get back to the intended state
was sought prior to replanning for the goal (stopping early if
the policy handles a state in the search space). We leverage
reasoning about partial states to make planning locally more
efficient. Rather than planning for the complete state that we
expected our planner to be in, we plan for the expected par-
tial state. Formally, if at state s, P(s) = (p, a), the expected
action outcome of a is e € Eff , and we must consider an un-
expected action outcome ¢’ € Eff ,. Planning locally occurs
when P(Prog(s,a,e’)) is undefined. Instead of searching
for a plan from Prog(s,a,e’) to Prog(s,a,e), we search
for a plan from Prog(s,a,e’) to P(Prog(s,a,e)).

The partial state we plan for contains only the relevant
portion of the intended complete state, which is often more
succinct and easier to achieve. In the running example, if
the agent drives to a location with a spare with the expected
outcome of not getting a flat tire, it must handle the case
where a flat tire does occur. The complete expected state
includes not having a flat tire and a spare tire being present
at the destination — a state we can no longer achieve when
driving causes a flat. However, the partial expected state
does not require a spare tire to exist at the destination, but
only that we do not have a flat tire.

When we plan locally we do not record deadends as a
strong cyclic plan that achieves the goal may still exist. If
planning locally fails, the approach is no different than be-
fore since the planner records nothing and we subsequently
plan for the goal. If planning locally succeeds, it reaches
a state that our policy handles and by Theorem 1 we retain
soundness and completeness. The technique can provide a
large advantage in certain domains, but we discovered that
when we scale other domains, planning locally was detri-
mental to performance. Planning locally tends to only pro-
vide a benefit when the local plan is extremely short. As
such, we limit the search effort when planning locally.

4.2 Strong Cyclic Confirmation

Up to this point we completely enumerate every state reach-
able by a policy to certify the policy is strong cyclic. We
improve on this exhaustive approach by identifying states
where our policy properly acts as a strong cyclic plan.

Definition 7 (Strong Cyclic State-action Pairs). We define
a strong cyclic state-action pair, with respect to a policy P,
to be a state-action pair (p, a) such that for any state s where
P(s) = (p,a), P is a strong cyclic plan for the state s.

If we knew precisely which state-action pairs in our pol-
icy were strong cyclic, then we could stop expanding states
whenever we arrive at one that corresponds to a strong cyclic

Algorithm 2: Mark State-Action Pairs

Input: Planning problem II and rule set R
Output: Annotated rule set R
1 Y{p,a) € R, (p,a).marked = True;
2 while Some pair becomes unmarked do
foreach (p,a) € R s.t. (p,a).marked Ap¥ s. do
foreach e € Eff , do
if A(p’,a’) € Rs.t. p' |= Prog(p, a,e) then
L(p, a).marked = False;
elseif 3(p’,a’) € R s.1.
(p',a’y.marked = False N
p’ &~ Prog(p,a,e) then
10 | (p, a).marked = False ;

o e A U B W

11 return R;

state-action pair. The condition for a pair to be a strong
cyclic, however, is difficult to compute. We instead deter-
mine sufficient conditions for a state-action pair to be strong
cyclic. Algorithm 2 outlines how we compute pairs that
match this condition, denoted as being marked.

Algorithm 2 works by first assuming that every state-
action pair is marked, and then iteratively un-marking those
that no longer satisfy the condition to remain marked. The
algorithm repeats until it reaches a fixed point, and returns
the resulting rule set. Lines 4-10 of the algorithm deter-
mine if the state-action pair (p, a) should remain marked and
there are two conditions that can cause a pair to become un-
marked; if either condition holds for an effect e € Eff ,, then
we unmark the pair. The first condition ensures that if the
policy returns (p, a) for a state s, there is at least one state-
action pair returned by the policy in the state Prog(s, a, e)
(line 5). We require this so that if the policy uses (p, a),
then it handles every possible outcome. The second condi-
tion ensures that if the policy returns (p, a) for state s, every
state-action pair returned by the policy in a state reached by
executing a is itself marked (lines 7-9). The condition may
be overly zealous in checking possible state-action pairs. A
better approximation of the applicable pairs has the potential
to leave more pairs marked and is left as future work.

Theorem 3. If Algorithm 2 leaves a state-action pair of pol-
icy P marked, then it is strong cyclic with respect to P.

Proof sketch. Assume for the sake of contradiction that Al-
gorithm 2 completes and there exists a marked state-action
pair (p, a) that is not a strong cyclic state-action pair. Since
(p,a) remained marked, we know that for any state s if
P(s) = (p,a), then Ye € Eff,, P(Prog(s,a,e)) is de-
fined and further, P(Prog(s,a,e)) must be marked. We
also know from Theorem 1 that P(Prog(s,a,e)) is a pair
closer to the goal than (p,a). Inductively, we extend this
reasoning until we arrive at goal states which are trivially
marked. The collective set of states that we reach serve as
a certificate for P to be a strong cyclic plan for state s, and
thus violates our assumption. []

We incorporate marked state-action pairs into Algorithm
1 by adding a condition on line 10 — we only expand the

176

outcomes of an action in a state-action pair if the pair is not
marked. The marking of state-action pairs in the rule set for
a policy is only valid until we modify the policy. As soon
as we introduce a new state-action pair into the policy, we
recompute the marking from scratch. After line 9 in Algo-
rithm 1, we run Algorithm 2 to compute a valid marking.

To take advantage of the marked state-action pairs, we
modify the search conducted by Algorithm 1. Line 5 of this
algorithm selects an arbitrary state in the set of open states.
FIP explores the states in a breadth first manner, but we do
not require this for the algorithm to be sound and complete.
We instead explore the states in a depth first manner, inves-
tigating open states that are closer to the goal in weak plans
that we find. The exploration works in concert with Algo-
rithm 2 to progressively mark more of the state-action pairs.

One final change we make to increase the efficiency of us-
ing Algorithm 2 is to strengthen the conditions in the state-
action pairs of our policy. If the policy returns the state-
action pair (p,a) for state s with the intended effect e €
Eff ., and we find that a new plan must be computed for the
unintended effect ¢’ € Eff ,\e, then we have a newly created
state-action pair (p’, a’) where P(Prog(s,a,e’)) = (p',a’).
We incorporate the condition for the new plan to succeed
into p by replacing (p, a) with (p® Regr(p’, a, e’), a). Since
the applicability of a non-deterministic outcome depends
only on the precondition of the action, we know that p and
Regr(p', a, e’) are consistent (i.e., p ~ Regr(p’,a,e’)).

Strengthening the partial states has the consequence of
making the partial states in the state-action pairs less gen-
eral, but the benefits outweigh the drawback. Doing so al-
lows the condition on line 5 of Algorithm 2 to fail much
more frequently, allowing more states to remain marked.
The intuition behind this modification is to strengthen the
condition in a state-action pair to include the relevant part of
the state for all possible outcomes to succeed.

For the triangle tireworld example, we find state-action
pairs where the partial state contains only the location of the
car and the fact that the tire is not flat. Strengthening the
state-action pair adds the status of spare tires the car needs
in the future to the partial state and allows the marking of
Algorithm 2 to be much more effective.

Theorem 4. If modified to plan locally and use Algorithm
2, Algorithm 1 computes a strong cyclic plan if one exists.

Proof sketch. We have already seen that planning locally
does not affect the soundness and completeness of Algo-
rithm 1. From Theorem 3 we know that any marked state-
action pair is a strong cyclic state-action pair. Looking at
the final pass of Algorithm 1 that uses all extensions, we can
see that the policy remains unchanged, as does the marking
of the state-action pairs in the policy. The search through
reachable states would therefore follow the policy’s choices,
or stop when a marked state-action pair signifies that the pol-
icy is a strong cyclic plan for the reached state. [

5 Offline vs Online

Our approach to building a policy repeatedly discards the
previous policy in the presence of deadends, and then gener-
ates a new one that avoids the deadends. While the policies

are not strong cyclic, they may still be of use. We evaluate
the quality of a policy by simulating nature and observing
how often the policy achieves the goal. If the offline ap-
proach does not find a strong cyclic plan, either because one
does not exist or because the planner has run out of time, it
returns the policy with the highest quality found.

When the planner is executing actions from the policy, it
behaves similarly to online replanning approaches for prob-
abilistic planning. If the planner encounters a state that it
does not recognize, it computes a weak plan using GEN-
PLANPAIRS and updates the policy accordingly. When re-
planning online we only augment the current policy. The
monotonic nature of our policy construction means that we
must ignore forbidden state-action pairs.

By allowing our planner to process the problem offline,
we are able to take advantage of finding a policy that max-
imizes the probability of success. Not taking deadends into
account is one of the major drawbacks of the online replan-
ning approach of FF-Replan (Yoon, Fern, and Givan 2007),
and FF-Hindsight addressed this issue by sampling several
potential futures before deciding on the action it should take
(Yoon et al. 2008; 2010). The philosophy we take is to do
this simulation prior to execution, allowing us to avoid po-
tentially disastrous outcomes and build a more robust policy.

6 Evaluation

We implemented our approach and extensions to FOND
planning by augmenting Fast Downward (FD) (Helmert
2006). In our planner, PRP, we altered many aspects of FD
to make it suitable for non-deterministic planning, but the
specific details are outside the scope of this paper.

To ascertain the effectiveness of our approach, we evalu-
ate our planner’s efficiency on a range of domains from the
FOND and probabilistic planning benchmark suites. When-
ever possible (and appropriate), we compared PRP to FIP.
As our planner is not tailored to use the competition soft-
ware from the probabilistic planning track, we created a spe-
cial version of PRP to compare with techniques employed
by FF-Replan. All experiments were conducted on a Linux
desktop with a 2.5GHz processor, and we limited the execu-
tion of the planners to 30 minutes and 2GB memory.

As in previous work, the run times reported do not include
pre-processing of the domain. For PRP, the pre-processing
time was typically a fraction of a second unless the problem
size became prohibitively large. There are many compo-
nents to PRP, however planning for a weak plan in the deter-
minized domain represents the majority of time our planner
takes to find a solution: usually less than 1% of the time is
spent in other parts of the overall planning process.

To evaluate the efficiency of finding a strong cyclic plan
we assess the time it takes to compute the plan (in seconds).
For the quality, we adopt the standard of using the number of
state-action pairs in the policy (smaller being better). When
evaluating the online replanning efficiency of our approach,
we consider the mean number of actions needed to reach the
goal, the mean number of replans needed, the mean time it
takes to reach the goal, and the number of successful trials
when executing the plan with our computed policy.

177

Domain No. of FIP Solved | PRP Solved

Problems (unsat) (unsat)
blocks 30 30 (0) 30 (0)
faults 55 55 (0) 55 (0)

first 100 100 (25) 100 (25)
forest 90 20 (11) 66 (48)
blocks-new 50 33 (0) 46 (0)
forest-new 90 51 (0) 81 (0)

| Total H 415 [289 (36) [378 (73) |

Table 1: The number of problems for which FIP and PRP
either successfully find a strong cyclic plan or prove none
exists (the latter is shown in brackets).

6.1 Offline Planning Efficiency

To measure the efficiency of PRP at computing a strong
cyclic plan, we first consider the benchmark suite from the
FOND track of the 2008 International Planning Competi-
tion (IPC). The suite contains four domains: blocksworld
(blocks), faults, first responders (first), and forest. Not every
problem has a strong cyclic plan. The top of Table 1 details
the number of problems each planner solved, along with the
number of those found to not have a solution.

PRP has a distinct advantage in the FOND benchmark do-
mains, but both planners are capable of solving the majority
of the problems quickly. In the forest domain, where this
is not the case, many problems do not have a strong cyclic
plan. Both PRP and FIP produce the optimal policy for prob-
lems in the faults and first domains — search for a weak plan
in these domains goes directly towards the goal, and plan-
ning locally always successfully repairs the policy. In the
forest domain, the only version of FIP that we had access to,
falsely identifies 11 domains as having a strong cyclic plan
when none exists (these do not appear in the table).

To investigate how the planners scale in the two domains
that were not trivially handled, we generated a larger bench-
mark set for the blocksworld and forest domains. For the
forest domain, we modified the problem generator slightly to
guarantee that every problem has a strong cyclic plan. For
the blocksworld domain, we scaled the number of blocks
from 1 to 50 (the highest number of blocks in the origi-
nal benchmark set is 20). We show the coverage for these
domains at the bottom of Table 1. For the problems both
solved, Figures 2a and 2b show the relative time to com-
pute and size of a policy respectively. Figure 2c shows the
coverage for each planner as a function of time. We found
that PRP significantly outperformed FIP in these domains,
improving both size and run time by an order of magnitude.

Impact of Relevance To demonstrate an extreme example
where state relevance plays a vital role in computing a pol-
icy, we introduce the concept of irrelevant action outcomes.

Definition 8 (Irrelevance). We define an irrelevant vari-
ablev € V such that s, (v) = L andVa € A, Pre,(v) = L.
That is, v is never relevant for the applicability of an ac-
tion or the goal. We define an irrelevant action outcome e;
to be an outcome of action a that differs from another out-

10° - o HO'F 3 o 1201 E
5 10 .] & 100k] 5 1001 1
g 10 s -h"* & - ® 80fF 1
g 10° - 1 S 102 m#‘ E 2 60} i
E —1 [] L] ‘ A Gaﬁ
10 [P] = 401 i
E o 10 (] o
102 Mp"w o £ 20l |
10-3 I 10° ‘ ‘ ‘ L3 ok ! ‘ ‘ ‘ ‘ L
1073 1072 107* 10° 10' 10* 10% 10° 10! 102 10° 10* 1073 1072 10~' 10° 10' 102 10°
FIP Time (s) FIP Policy Size Time

Figure 2: Time to find a strong cyclic plan, and size of the plan’s policy for PRP and FIP in the newly generated blocksworld
and forest benchmark sets. Figure 2¢ shows the number of problems solved if given a limited amount of time per problem.

come of a by only irrelevant variables: Je € Eff , \ e;,Vv €
V,e;(v) = e(v) or e;(v) = L orw is irrelevant.

The presence of irrelevant action outcomes causes a plan-
ner that uses full state to spend unnecessary time generating
a strong cyclic plan. In the extreme, the performance of a
planner using the full state is exponentially worse.

Theorem 5. In a domain with irrelevant action outcomes,
our approach computes a policy exponentially smaller in the
number of irrelevant action outcomes than the smallest pol-
icy computed by existing methods that use the entire state.

Proof sketch. Consider the case in which every action ran-
domly changes a set of irrelevant variables. The number of
irrelevant action outcomes is exponential in the number of
irrelevant variables and a strong cyclic plan must be able to
handle every one of them. Using only the relevant portion of
the state means that our approach only needs to find a plan
for the relevant action outcomes. The states reached by ir-
relevant action outcomes match a partial state in our policy,
while approaches using complete states must replan. [

To investigate the empirical impact of state relevance,
we modified the original blocksworld benchmark domain to
have a varying number of irrelevant variables that every ac-
tion non-deterministically flips to true or false. Due to limi-
tations of FIP on the number of non-deterministic effects, we
compare a version of our planner that uses complete state for
everything (PRPgy) to a version that uses partial states only
for the policy it constructs (PRP). The degree of irrelevance,
k, was varied between 1 and 5 variables creating up to a fac-
tor of 2° = 32 times the number of non-deterministic out-
comes for each action. Out of 150 problems, using the full
state solves only 85 problems while using the partial state
solves 130 problems — the remaining 20 problems have too
many ground actions to even be parsed. Figures 3a, 3b, and
3c show the time and size comparison for all k. We find
a clear exponential separation between the two approaches
and for higher k the difference in time to find a solution and
size of the policy is up to several orders of magnitude.

Probabilistic Planning Domains For domains with prob-
abilistic action outcomes, we ignore the probabilities and
treat the problem as a FOND planning task. We investigated
three domains from the IPC-2006 probabilistic planning
track: blocksworld-2 (bw-2), elevators (elev), and zeno-
travel (zeno). We also considered the four “probabilistically
interesting” domains introduced in (Little and Thiebaux
2007): climber, river, bus-fare, and triangle-tireworld (tire).

178

Domain Success Rate (%) || Total Time (sec.)
(# Probs) FF-H+ | PRP FF-H+ | PRP
bw-2 (15) 74.4 100 900 8.4
elev (15) 64.9 100 1620 1.7
zeno (15) 68.9 100 1620 98.7

climber (1) 100 100 - 0

river (1) 66.7 66.7 - 0

bus-fare (1) 100 100 - 0

tire-1 (1) 100 100 - 0
tire-17 (1) 100 100 - 18.5
tire-35 (1) - 100 - 1519.5

Table 2: Percentage of successful runs out of 30 per problem
for PRP and FF-Hindsight+ in a range of domains.

In Table 2 we show the percentage of successful runs (out of
30 per problem) and the total time spent computing a policy
for all of the problems in a domain. For a rough comparison,
we include the results for FF-Hindsight+ (FF-H+) reported
in (Yoon et al. 2010) (‘-’ indicates unreported results).

While our experimental setup is not identical to the prob-
abilistic IPC track, the efficiency of PRP in finding a strong
cyclic plan in these domains is a strong indication that pro-
cessing the planning problems before execution has a great
deal of promise. Most notable is the ability of PRP to
solve large triangle tireworld problems. Previously, FF-
Hindsight+ claimed the record for this domain by solving
tire-17, but through the advances introduced in this paper
PRP is capable of solving tire-35 in under 30 minutes.

6.2 Online Replanning Efficiency

We measure the efficiency of our approach to compute plans
online and replan in the presence of unexpected states. We
give PRP zero time to process the domain before it starts
execution and compare ourselves to PRPr: a version of our
planner that behaves like FF-Replan, using complete states
rather than partial ones. Similar to the offline case, we see
little improvement in the standard benchmark set as they
are all fairly trivial for online replanning (with the notable
exception of the forest domain where deadends are quite
common and online replanning fails consistently). We also
found this to be the case for the selection of probabilistic
planning problems that yield strong cyclic plans.

We instead present results on the generated blocksworld
(bw-new) and forest (fr-new) benchmarks described earlier,

10°F 7 _
g 10°F E < 120F i
2 oy] @ 2100 |
: — g 3 80
A 10] 2 102 A 80t |
a

o 100 .-“ .] E '.f: f.n" E 6o0f i
E |] a E = | |

. " E 1o o iy : +— PRPpy)
101k . .] 10 o o E £ 20f o
-t 10° 10t 10 10% 10! 10? 10° 10-0 100 10! 102 10°

PRPpy Time (s) PRPpy) Policy Size Time (s)

Figure 3: Time to find a strong cyclic plan, and size of the plan’s policy for PRP and PRPgy in the blocksworld domain with
irrelevant fluents added. Figure (c) shows the number of problems solved if given a limited amount of time per problem.

Domain Avg. Actions Avg. Replans Avg. Time

PRPg | PRP | PRPg | PRP | PRPz | PRP
bw-new 77.4 75.8 5.3 5.3 3.2 2.6
fr-new 60.4 65.7 39 3.5 0.6 0.2
bw-irr-2 || 17593.3 | 73.6 | 67.2 3.0 34 1.2

Table 3: Mean number of actions, replans, and time (in sec-
onds) for PRP and PRPy to reach the goal.

as well as the blocksworld domain with two irrelevant flu-
ents added (bw-irr-2). Domains with further irrelevant flu-
ents caused PRPR to not complete many of the problems.
Table 3 presents the average number of actions, states re-
quiring replanning, and time to achieve the goal.

We observe an increase in performance on the newly gen-
erated benchmarks, but most notably a striking decrease in
the number of actions required in a domain with irrelevant
fluents. The variance for the number of replans and time
to achieve the goal is fairly low for PRPg, but the number
of actions required is extremely high in a handful of prob-
lems. The large increase is due to the planner making poor
choices when replanning for the goal and ending up in a cy-
cle of states that it has low probability of escaping. There
is always a non-zero chance of escaping, which is why both
PRP and PRPy have perfect coverage in the tested domains.

7 Related Work

Directly related to our work are the approaches for comput-
ing strong cyclic plans. FIP is the most recent and effective
solver for FOND problems (Fu et al. 2011). (Mattmiiller
et al. 2010) propose an LAO* search based on pattern
database heuristics to solve SAS™ FOND planning tasks
and older approaches use either general game playing or
symbolic model checking (Kissmann and Edelkamp 2009;
Cimatti et al. 2003). Algorithm 2 is also related to the
strong extension phase presented in (Cimatti et al. 2003).
The key difference is that we only search through the state-
action pairs in our policy when marking; not all possible
pairs in the domain. Additionally, our approach may return
a strong cyclic policy even if a strong policy exists.

In online replanning, similar approaches include FF-
Replan and FF-Hindsight+ (Yoon, Fern, and Givan 2007;
Yoon et al. 2008; 2010). FF-Replan replans online for a
new weak plan when the agent encounters an unrecognised

179

state. FF-Hindsight+ samples several futures by planning for
multiple time-dependent determinizations. The sampling al-
lows FF-Hindsight+ to avoid bad areas of the state space if
enough futures fail when a bad action choice is taken.

Our use of relevance to construct a policy is inspired by
approaches for execution monitoring (Fritz and Mcllraith
2007; Muise, Mcllraith, and Beck 2011). They use regres-
sion to determine relevant portions of the state to build a
policy for online execution. Similar approaches have been
proposed for probabilistic planning to compute a so-called
basis function for the existence of a weak plan that has
a non-zero probability of reaching the goal (Sanner 2006;
Kolobov, Mausam, and Weld 2010a). The deadend general-
ization we employ is also related to computation of deadends
in (Kolobov, Mausam, and Weld 2010b); the key difference
is how our initial candidate is chosen. Finally, the condition
strengthening we use for strong cyclic detection is related
to the regression of a formula through a non-deterministic
action to determine relevance (Rintanen 2008).

8 Conclusion

We exploit state relevance to achieve state-of-the-art perfor-
mance in non-deterministic planning. Our planner is capa-
ble of finding a strong cyclic plan for a FOND problem sev-
eral orders of magnitude faster than the previous state of the
art and generates a policy representation that can be expo-
nentially smaller. Key contributions include a new approach
for handling the presence of deadends in a non-deterministic
domain and a novel method to compute sufficient conditions
for a policy to be a strong cyclic plan. The improvements
we make to computing a policy for planning in the presence
of non-deterministic action outcomes represent a significant
step forward in planner capabilities for this type of problem.

In the future, we hope to focus on improving the reasoning
in domains where action outcome probabilities are known by
following an approach similar to (Bidot 2005). We also plan
on developing better techniques for reasoning with deadends
in non-deterministic domains. Finally, we intend to investi-
gate the reason behind the success of planning locally. Con-
tinuously trying to get back to the main plan may result in a
policy that is less robust or has a higher expected plan length.

Acknowledgements We gratefully acknowledge funding
from the Ontario Ministry of Innovation and the Natural Sci-
ences and Engineering Research Council of Canada.

References

Bidot, J. 2005. A General Framework Integrating Tech-
niques for Scheduling under Uncertainty. Ph.D. Disserta-

tion, Ecole Nationale d’Ingénieurs de Tarbes, France.

Bryce, D., and Buffet, O. 2008. 6th International Planning
Competition: Uncertainty Track. In Proceedings of Interna-
tional Planning Competition.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence 147(1):35-84.

Daniele, M.; Traverso, P.; and Vardi, M. Y. 2000. Strong
cyclic planning revisited. Recent Advances in Al Planning
35-48.

Fritz, C., and Mcllraith, S. A. 2007. Monitoring plan opti-
mality during execution. In Proceedings of the 17th Interna-

tional Conference on Automated Planning and Scheduling
(ICAPS), 144-151.

Fu, J.; Ng, V;; Bastani, F. B.; and Yen, [.-L. 2011. Simple
and fast strong cyclic planning for fully-observable nonde-
terministic planning problems. In Proceedings of the 22nd
International Joint Conference On Artificial Intelligence (1J-
CAI), 1949-1954.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191-246.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503-535.

Kissmann, P., and Edelkamp, S. 2009. Solving fully-
observable non-deterministic planning problems via transla-
tion into a general game. In Proceedings of the 32nd Annual
German Conference on Advances in Artificial Intelligence,
KI'09, 1-8. Berlin, Heidelberg: Springer-Verlag.

Kolobov, A.; Mausam; and Weld, D. S. 2010a. Classical
planning in MDP heuristics: with a little help from gener-
alization. In 20th International Conference on Automated
Planning and Scheduling (ICAPS), 97-104.

Kolobov, A.; Mausam; and Weld, D. S. 2010b. SixthSense:
Fast and reliable recognition of dead ends in MDPs. In Pro-
ceedings of the Conference on Artificial Intelligence (AAAI),
1108-1114.

Little, 1., and Thiebaux, S. 2007. Probabilistic planning vs
replanning. ICAPS Workshop International Planning Com-
petition: Past, Present and Future.

Mattmiiller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable non-
deterministic planning. In Proceedings of the 20th Interna-

tional Conference on Automated Planning and Scheduling
(ICAPS), 105-112.

Muise, C.; Mcllraith, S. A.; and Beck, J. C. 2011. Moni-
toring the execution of partial-order plans via regression. In
Proceedings of the International Joint Conference On Arti-
ficial Intelligence (IJCAI), 1975-1982.

Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In Proceedings of the European Confer-
ence on Artificial Intelligence (ECAI), 568-572.

180

Sanner, S. 2006. Practical linear value approximation tech-
niques for first-order MDPs. In Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence (UAI).

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of the Conference on Artificial Intelligence
(AAAI), 1010-1016.

Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010. Im-
proving determinization in hindsight for online probabilistic
planning. In Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 209—
216.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In Proceedings of the

17th International Conference on Automated Planning and
Scheduling (ICAPS), 352-359.

