
Fast Incremental Policy Compilation from
Plans in Hybrid Probabilistic Domains

Florent Teichteil-Königsbuch
florent.teichteil@onera.fr

Onera — The French Aerospace Lab
F-31055, Toulouse, France

Abstract
We present the domain-independent HRFF algorithm,
which solves goal-oriented HMDPs by incrementally
aggregating plans generated by the Metric-FF plan-
ner into a policy defined over discrete and contin-
uous state variables. HRFF takes into account non-
monotonic state variables, and complex combinations
of many discrete and continuous probability distribu-
tions. We introduce new data structures and algorith-
mic paradigms to deal with continuous state spaces: hy-
brid hierarchical hash tables, domain determinization
based on dynamic domain sampling or on static com-
putation of probability distributions’ modes, optimiza-
tion settings under Metric-FF based on plan prob-
ability and length. We deeply analyze the behavior of
HRFF on a probabilistically-interesting structured nav-
igation problem with continuous dead-ends and non-
monotonic continuous state variables. We compare with
HAO∗ on the Rover domain and show that HRFF outper-
forms HAO∗ by many order of magnitudes in terms of
computation time and memory usage. We also experi-
ment challenging and combinatorial HMDP versions of
benchmarks from numeric classical planning.

Introduction
Hybrid Markov Decision Processes (HMDPs) with dis-
crete and continuous state variables (Kveton, Hauskrecht,
and Guestrin 2006; Marecki, Koenig, and Tambe 2007;
Meuleau et al. 2009) offer a rich model for planning in prob-
abilistic domains. Recent advances in solving HMDPs allow
practitioners to solve complex real problems, like irrigation
networks (Kveton, Hauskrecht, and Guestrin 2006) or Mars
rover navigation (Meuleau et al. 2009). Yet, state-of-the-art
algorithms usually consume a lot of time and memory, thus
hardly scaling to larger problems. One of the first papers
about using Hybrid MDPs for solving realistic applications
(Bresina et al. 2002), mentions that such complex problems
could be certainly only tackled by “new and dramatically
different approaches”. They propose an appealing heuris-
tic approach – radically different from existing methods –,
which would consist in building an initial plan that would
be progressively improved by “augmenting it with contin-
gent branches”. However, they only give principles, but not

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

practical algorithmic means, of such a method, mentioning
that it would be non-trivial at all, even in the case of their
particular problem.

This idea has been actually recently implemented with
success in the field of goal-oriented MDPs with only dis-
crete state variables, where many approaches propose to
construct a policy by calling many times a determinis-
tic planner on a determinized domain (Yoon et al. 2008;
Kolobov, Mausam, and Weld 2010; Teichteil-Königsbuch,
Kuter, and Infantes 2010). Such methods have often proven
to scale better than traditional optimal MDP algorithms,
without compromising optimality too much. However, ex-
tending such algorithms like RFF to domains with continu-
ous variables, as envisioned by (Bresina et al. 2002), is not
straightforward because these algorithms rely on assump-
tions that are only valid for discrete state spaces: e.g. count-
able states, notions of explored or expanded graph nodes,
finite number of actions’ effects. Encoding and updating ac-
tion policies in efficient data structures over mixed discrete
and continuous state variables is still an opening issue.

In this paper, we present a heuristic algorithm named
HRFF, for Hybrid RFF, which actually implements and ex-
tends intuitive principles described by (Bresina et al. 2002)
in a domain-independent manner: it incrementally adds con-
tingent branches to an initial plan in order to construct a
compact and adaptive contingent plan, i.e. policy, defined
over discrete and continuous state variables. HRFF is an ex-
tension of RFF (Teichteil-Königsbuch, Kuter, and Infantes
2010) to hybrid state spaces and continuous probabilistic
changes of actions’ effects. As RFF, HRFF incrementally
aggregates plans into a policy, but using the Metric-FF
(Hoffmann 2003) hybrid deterministic planner from many
states that are possibly reachable by executing the current
policy from the initial state. Our algorithm introduces new
data structures and algorithmic paradigms to deal with con-
tinuous state spaces: hybrid hierarchical hash tables, differ-
ent domain determinization techniques based on dynamic
domain sampling or on static computation of probability dis-
tributions’ modes, optimization settings under Metric-FF
based on plan probability and length. HRFF does not only
“simply” merge plans with the current policy: it also takes
into account probabilities of actions’ effects, in order to se-
lect the most helpful actions from the plans to merge into the
current policy, without decreasing its quality.

252

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling



Since HRFF relies on plan aggregation, it assumes the
knowledge of a set of possible goals to reach from the ini-
tial state, usually with the highest probability and the lowest
average accumulated cost, so that it only applies to goal-
oriented HMDPs – like most similar approaches for discrete-
state MDPs. Yet, note that many interesting and realistic
HMDP problems do have terminal states, notably Mars rover
navigation ones (Bresina et al. 2002; Meuleau et al. 2009),
which can be considered as goal states to reach with the
highest probability and the lowest average accumulated cost.
Assuming the existence of goal states is often the price to
pay to find solution policies in reasonable time, since it al-
lows search algorithms like HRFF to prune the search space
by rejecting all state trajectories that do not reach the goal.

In section 1, we introduce Goal-oriented Hybrid MDPs.
In section 2, we present two techniques to determinize a
probabilistic domain into a deterministic one in hybrid set-
tings. In section 3, we define a spatial hierarchical equiv-
alence relation between hybrid states, which allows us to
lay the foundations of hybrid hierarchical hash tables de-
signed for efficiently encoding and querying data structures
in HMDP planning. In section 4, we present the HRFF al-
gorithm and discuss how hybrid hierarchical hash tables
and Metric-FF interact together to construct stable and
adaptive policies over hybrid state spaces. Finally, in section
5, we analyze HRFF on many probabilistically-interesting
HMDP benchmarks, and show that HRFF outperforms HAO∗
by many order of magnitudes on the rover domain.

Goal-oriented Hybrid Markov Decision
Processes

A goal-oriented Hybrid Markov Decision Process (goal-
HMDP) is a tuple 〈S,A, T, I,G〉 such that:
• S =

⊗n
i=1 V

c
i ×

⊗m
i=1 V

d
i is a cartesian product

of n continuous and m discrete state variables. A
state s ∈ S is an instantiation of all state variables:
s =

(
vc1, · · · , vcn, vd1 , · · · , vdm

)
, (vci ∈ V ci )16i6n, (v

d
i ∈

V di )16i6m,
• A is the set of enumerated and discrete actions. Each ac-

tion a ∈ A is applicable over a set of states Sa,
• T : S ×A× S → [0; 1] is a transition function, such that

for all (s, a, s′) ∈ S ×A× S, T (s, a, s′) = dP (s′ | a, s)
is the hybrid probability distribution of arriving in state s′
when starting in state s and applying action a; we have:∫
vci∈V

c
i ,16i6n

∑
vdi ∈V

d
i ,16i6m

dP (vc1, · · · , vcn, vd1 , · · · , vdm | a, s) = 1

• I is the initial state of the decision process,
• G is the set of goal states.

We assume that the hybrid probability distribution dP of
the transition function can be algorithmically sampled and
that we can compute its mode, i.e. the values of its random
variables that maximize it. For an action a whose transi-
tion’s probability distribution is discrete, the mode can be
seen as the most probable effect of a. In our implemen-
tation, we use the Gnu Scientific Library (Free Software

Foundation 2011), which offers a wide set of distributions
used in many engineering or physics applications. Contrary
to many models of HMDPs or continuous MDPs proposed
in the literature (Kveton, Hauskrecht, and Guestrin 2006;
Marecki, Koenig, and Tambe 2007; Meuleau et al. 2009), we
do not assume continuous state variables to be in a closed in-
terval of R. We also handle non-monotonic continuous state
variables, which can increase or decrease over time.

We also define a convenient function succ : S ×A→ 2S

such that for all state s and action a, succ(s, a) is the set
of states that are directly reachable with a positive probabil-
ity density by applying a in s. Because of continuous state
variables, succ(s, a) may be an infinite subset of S.

Solving goal-oriented HMDPs. We aim at computing a
policy function π : S → A that, ideally, maximizes the
probability to reach the goal, while minimizing the average
number of steps required to reach the goal from the start-
ing state. In particular, we are interested in problems where
there is a positive probability to reach some states, named
dead-ends, from which there is no path leading to the goal.
As in (Meuleau et al. 2009), we do not need to compute a
policy defined over all states, but a partial and closed one:
π : X ⊆ S → A such that I ∈ X and for all s ∈ X ,
succ(s, π(s)) ⊆ X . In other terms, executing π from the
initial state I will always lead to a state where the policy is
defined. However, some algorithms like HRFF presented in
the next, are based on Monte-Carlo sampling, which means
in theory that states reachable by applying the current pol-
icy from the initial state cannot be all explored in finite time.
Therefore, we define p-closed policies π : X ⊆ S → A
such that for all s ∈ X , Pr(succ(s, π(s)) ⊆ X ) > p.

PPDDL-based modeling of HMDPs. We consider
domain-independent planning, where the goal-oriented
HMDP is modeled in an extension of PPDDL (Younes
and Littman 2004). Our extension to the grammar handles
various discrete and continuous probability distributions,
and so probabilistic continuous state changes (Teichteil-
Königsbuch 2008). It introduces random continuous
variable terms, whose stochastic values impact their under-
lying effects. For instance, in the following example, the
continuous variable fuel is assigned a stochastic value that
follows a lognormal probability distribution:
(probabilistic (lognormal

(capacity ?a) (* 0.001 (capacity ?a)) #rv)
(assign (fuel ?a) #rv))

As described in the next section, PPDDL-based modeling
of HMDPs allows us to automatically derive a deterministic
planning problem in the PDDL-2.1 language (Fox and Long
2003), which can be solved by a numeric deterministic plan-
ner like Metric-FF (Hoffmann 2003).

Hybrid probabilistic domain determinization
Like many successful algorithms for solving discrete-state
MDPs (Kolobov, Mausam, and Weld 2010; Yoon et al. 2008;
Teichteil-Königsbuch, Kuter, and Infantes 2010), our algo-
rithm relies on automatic domain-independent determiniza-
tion of the probabilistic domain. In the deterministic case,

253



two determinization strategies have been particularly stud-
ied: “most probable outcome determinization” and “all out-
come determinization”. The first one consists in translating
each probabilistic action into a deterministic action whose
effect is obtained by recursively keeping the most proba-
ble effect of each probabilistic rule that appears in the ef-
fect of the probabilistic action. The second one translates
each probabilistic action into as many deterministic actions
as the number of possible effects of the probabilistic action.
The first strategy leads to less deterministic actions, reduc-
ing the makespan of the deterministic planner, but it may end
up with empty plans if the goal of the probabilistic problem
is not reachable from the initial state by following only the
most probable trajectories of all actions in the model. On the
contrary, the second strategy is complete, but it drastically
increases the makespan of the deterministic planner.

Mode-based determinization
The “most probable outcome determinization” can be easily
generalized to HMDPs, even if the probability of a continu-
ous effect has no sense a priori (continuous random variables
have no probability mass). The solution resides in the mode
of probability distributions, which is the point in the space of
random variables of the distribution, which maximizes the
density of the distribution. Concerning the transition func-
tion of actions in HMDPs, the mode is the outcome state s∗
such that:
s∗ = argmax

vci∈V
c
i ,16i6n

vdi ∈V
d
i ,16i6m

dP (vc1, · · · , vcn, vd1 , · · · , vdm | a, s)

For discrete-state MDPs, the mode of the transition function
T (s, a, s′) reduces to the most probable outcome of action
a, i.e. the state with the highest chance to be reached in one
step when applying action a in state s. This interpretation is
not directly transposable to continuous state spaces, since a
single state has theoretically no chance to be reached from
a previous one. However, if we sample many states s′ from
s by applying a, most of them will be distributed around
the mode of the transition function, provided it is contin-
uous and smooth enough in the vicinity of the mode. For
this reason, we can often interpret the mode of the transition
function as the state that attracts at most outcomes of action
a applied in state s.

Our implementation of mode-based determinization can
handle effects using complex combinations of all probability
distributions of the GSL (Free Software Foundation 2011),
but the multinomial distribution, for which the mode can-
not be easily computed in practice. The only restriction is
that fluent expressions defining the parameters of probabil-
ity distributions cannot depend on state variable fluents, oth-
erwise we would not be able to determinize the probabilistic
domain into a PDDL form. Yet, probability distribution pa-
rameters can depend on static fluents (problem parameters)
and on random variables of parent probability distributions,
modeling complex conditional probabilistic effects.

Sampling-based determinization
As in discrete-state MDPs, mode-based determinization
does not guarantee to find a policy that reaches the goal with

a positive probability, if none of the trajectories generated by
following most probable outcomes of actions from the ini-
tial state lead to the goal. Indeed, the deterministic planner
run on the determinized domain would always return empty
plans from all possible initial states. In the discrete-state
case, it has been proposed to translate each probabilistic ef-
fect of each action into a deterministic action, but this strat-
egy is impossible in continuous domains, because the num-
ber of outcomes of actions is potentially infinite. Instead, we
propose to dynamically sample the effects of probabilistic
actions to create deterministic effects, at each iteration of
the HMDP planner. Thus, the entire probabilistic domain is
sampled and translated into a deterministic domain before
each call to the deterministic planner. Implementation as-
sumptions of the mode-based determinization are valid, and
the multinomial distribution can be handled by this strategy.

Compact and adaptive representation of
functions defined over continuous variables

A key issue when constructing policies over continuous sub-
spaces is to represent functions of continuous variables,
which are (i) compact, (ii) as precise as possible (if not
exact) at some points of the continuous subspace, and (iii)
which can be updated with a cheap computation cost without
decreasing the precision at the points previously updated.
Some approaches rely on machine learning techniques, es-
pecially classifiers (Fox, Long, and Magazzeni 2011), to
approximate the policy over continuous state variables, but
they often require to tune classifiers’ or regressors’ param-
eters on a problem-by-problem basis. Thus, they are not
perfectly adapted to domain-independent planning where
the structure of solution policies or value functions are not
known in advance. Other techniques come from the field
of spatial database indexing, where querying operations are
adapted to policy update or value function backup operations
(e.g. state space partitioning techniques in (Li and Littman
2005; Meuleau et al. 2009)).

Our solution is actually a rewriting from scratch of hi-
erarchical spatial hash tables, recently used with success in
spatial indexing and graphics computation (Pouchol et al.
2009), but adapted to probabilistic planning operations, and
especially to HRFF. Another motivation is to bring the ef-
ficiency of standard hash tables, used in many successful
discrete-state MDP planners for encoding the search graph
over the discrete state variables, to continuous state vari-
ables. The mathematical tool behind our planning-specific
implementation is a hierarchical equivalence relation de-
fined over the continuous state variables.

Spatial hierarchical equivalence relation
In order to avoid a blowup due to memorizing too many
points in the continuous subspace, we aim at representing
all points that look similar (in terms of value, policy, etc.)
by only one of them. Like many approaches of the litera-
ture (e.g. (Lee and Lau 2004)), we specifically search for an
adaptive state space partitioning mechanism, whose level of
detail is higher in “important” areas of the subspace. To this
end, we define the ∼δ equivalence relation over Rn, which

254



represents the continuous state variable subspace, such that,
for two points (vc1, · · · , vcn) and (wc1, · · · , wcn) in the contin-
uous subspace V c1 × · · · × V cn :1

(vc1, · · · , vcn) ∼δ (wc1, · · · , wcn)⇔
⌊
vci
δ

⌋
=

⌊
wci
δ

⌋
, 1 6 i 6 n

Intuitively, if we imagine a virtual grid discretization of
the continuous subspace whose step is δ, two points v and w
in the continuous subspace are equivalent if they belong to
the same (hypercube) cell centered at:

rδ(w) = rδ(v) =

((⌊
vc1
δ

⌋
+

1

2

)
· δ, · · · ,

(⌊
vcn
δ

⌋
+

1

2

)
· δ
)

Since this point is uniquely defined for all points equiva-
lent to it, it represents their equivalence class. We name it the
δ-reference point of the cell that contains it. We have now a
way to locally aggregate states by substituting them for their
δ-reference point, at a fixed level of detail defined by δ. Yet,
if we need to refine the aggregation inside a given cell, we
use a more detailed aggregation defined by the ∼ δ

2 equiv-
alence relation. Successive refinements of this equivalence
relation leads to an adaptive hierarchical partitioning of the
continuous subspace. Two important properties can be high-
lighted for the convergence of HMDP algorithms. P1: given
two points v and w in the continuous subspace, there exists
an integer k such that v 6∼

δ

2k w ; it means that we can always
achieve the most level of precision desired if we want. P2:
given two different integers k and q, all δ

2k
-reference points

are different from all δ
2q -reference points, meaning that as-

sociating points with their reference points in different par-
titioning levels does not lead to redundant information (re-
finement and point referencing increases information). An
illustration of this hierarchical spatial equivalence relation
in action is depicted in Figure 1, which represents different
policies computed by HRFF on a navigation example.

Spatial hierarchical hash tables
We need an efficient algorithmic implementation of the pre-
viously defined equivalence relations, so that we can im-
plicitly represent grid cells and locally create them on-the-
fly, and quickly access and refine them. Our solution is a
spatial hierarchical hash table Hc

δ(T ) whose first level of
(implicit) discretization is δ > 0 and T is the type of el-
ements stored in the hash table. Elements in Hc

δ(T ) are
tuples (point, data, htP tr), where point is a δ-reference
point (i.e. represents a cell at the δ-step discretization), data
is the information of type T stored in the hash table, and
htP tr is a pointer to aHc

δ/2(T ) refined hash table whose all
elements are ∼δ-equivalent to point (i.e. the cells they rep-
resent are all included in the cell represented by the parent
point). For each terminal element, htP tr is NULL, mean-
ing that it is not refined. Coordinates of point are used to
compute the hash value of each element, because reference
points are all unique and different. We call δ-cells the ele-
ments of Hc

δ(T ), since they represent cells (with attached
data) of size δ in the continuous subspace.

1For a real number x, bxc is its integer part.

Three operations on spatial hierarchical hash tables are
sufficient for our needs: (1) find or (2) insert data points,
and (3) refine δ-cells. Algorithm 1 inserts a data point in the
hierarchical hash table and returns the inserted cell, or re-
turns an already existing cell if there is a matching in the
highest-level hash table. It starts at the top hash table (Line
1) and goes down the hierarchy of hash tables until there
is no cell in the current hash table that contains the input
data point (Line 4), or until the cell in the current hashtable
that contains the input data point is terminal (Line 5). In the
first case, it creates a new δ̃-cell (δ̃ is the size of cells of the
current hash table), inserts it in the current hash table and
returns it (Line 4). In the second case, it simply returns the
terminal cell and its size (Line 5). Hash values and collision
tests used for querying the current hash table depend on the
size δ̃ of its cells (Line 3). The ‘find’ operation (see Algo-
rithm 2), looks similar to the ‘insert’ one, but it keeps track
of the parent cell c of the current visited hash table (i.e. that
matched in the parent hash table, see Lines 3 and 6) and re-
turns it if there is no matching with this hash table (Line
4). Otherwise, it returns the cell matched in the highest-level
hash table (Line 5). The third operation, ‘refine’, is presented
in Algorithm 3. It takes a δ-cell c as input, and a point with
its associated data, and inserts it in a refined δ

2 -cell included
in c. For this purpose, it creates a new hash table, attaches it
to cell c (Line 1), and inserts the input data point in it using
cell size δ

2 for hash values and collision tests (Line 2).

Algorithm 1: insert
input :H

c

δ(T ): hierarchical hash table, δ: top-level size of
cells, point: point of the data to insert, data: data to
insert

output: c: highest detailed cell found or inserted, δ̃: size of
the cell, b: boolean indicating whether the cell has
been created and inserted (not found)

1 currentHashtable← H
c

δ(T ); δ̃ ← δ;
2 while currentHashtable 6= NULL do
3 (c, b)← currentHashtable.insert(point, data,

equality test(∼δ̃), hash value(rδ̃(point)));
4 if b = true then return (c, δ̃, true);
5 else if c.htP tr = NULL then return (c, δ̃, false);
6 else currentHashtable← c.htP tr; δ̃ ← δ̃

2
;

Hybrid hierarchical hash table
A single hierarchical hash table can be used to store data de-
fined over the entire discrete and continuous state space, by
pushing a standard hash table, whose keys are sets of dis-
crete state variables, on top of our spatial hierarchical hash
table. We note Hδ(T ) such a hybrid hierarchical hash ta-
ble, whose δ is the top-level size of cells, i.e. the size of
elements included in the top spatial hash table (at level 2).
The refine operation is only available from level 2 ; the
find and insert operations are valid at all levels, but
the equality test and hash value used in Line 3 of Algo-
rithm 1 and Line 3 of Algorithm 2 are computed by using
the values of discrete state variables at the first level. The
δ-reference point of a hybrid state s = (sc, sd) is defined

255



Algorithm 2: find
input :H

c

δ(T ): hierarchical hash table, δ: top-level size of
cells, point: point of the data to find

output: c: highest detailed cell found, δ̃: size of the cell, b:
boolean indicating whether a cell has been found (c is
not NULL)

1 currentHashtable← H
c

δ(T ); δ̃ ← δ; c← NULL;
2 while currentHashtable 6= NULL do
3 (c′, b)← currentHashtable.find(point,

equality test(∼δ̃), hash value(rδ̃(point)));
4 if b = false then return (c, δ̃, false);
5 else if c′.htP tr = NULL then return (c′, δ̃, true);
6 else currentHashtable← c′.htP tr; c← c′; δ̃ ← δ̃

2
;

Algorithm 3: refine
input : c: cell to refine, δ: size of c, point: point of the data

to insert, data: data to insert
output: rc: cell of size δ

2
included in cell c

1 c.htP tr ← create hash tableH
c

δ/2(T );
2 (rc, b)← c.htP tr.insert(point, data,

equality test(∼
δ
2 ), hash value(r δ

2
(point)));

3 return rc;

as: rδ(s) = (rδ(s
c), sd). The first level of our hybrid hierar-

chical data structure can be seen as a hash table implemen-
tation of the Hybrid Planning Graph (HPG) used in HAO∗

(Meuleau et al. 2009). Other levels are obviously different
from KD-trees used in nodes of the HPG.

The HRFF algorithm
HRFF is an extension of RFF (Teichteil-Königsbuch, Kuter,
and Infantes 2010) to goal-oriented hybrid MDPs, which re-
lies on three new features specific to hybrid domains: (1)
hybrid hierarchical hash tables, (2) state equivalence rela-
tion∼δ and δ-reference states, (3) plan aggregation based on
actions performance statistics computed over hybrid states.
Like RFF, HRFF is a heuristic algorithm, which uses a deter-
ministic planner as a guide to generate helpful state trajecto-
ries, i.e. trajectories reaching the goal, that are incrementally
merged with the current policy. It is not optimal regarding
standard goal-oriented HMDPs criteria like minimal average
accumulated cost to the goal, but it aims at quickly obtaining
sufficiently good policies in practice.
HRFF incrementally aggregates plans computed by

Metric-FF on a determinization of the probabilistic do-
main into a policy, until the latter is (1− ε)-closed from the
initial state I , where ε > 0 is the computation precision. It
alternates two phases: the first one computes the reference
states that are reachable from the initial state by following
the current policy until reaching a cell where it is not yet
defined (such reference states are similar to reachable un-
expanded graph nodes in RFF) ; the second one expands
the policy on these reference states by calling Metric-FF
from them on a determinized problem. Convergence on the

hybrid state space is guaranteed thanks to properties P1 and
P2 of hybrid hierarchical hash tables highlighted in the pre-
vious section. Before going into details, we first explain how
we transfer deterministic actions from plans to the current
policy and update it, since this operation, which is relatively
trivial in discrete-state settings, is in fact quite challenging
in continuous subspaces.

Policy update using sampled plans
As discussed before, we propose to use sampling-based
domain-independent determinization in hybrid domains to
replace the “all outcome determinization” employed in
discrete-state MDPs, which is not possible in hybrid do-
mains because of the potentially infinite number of actions’
outcomes. Yet, on-the-fly domain sampling is theoretically
challenging, because two successive calls to the determin-
istic planner on the same state but with different sampled
effects (of all actions in the domain) will likely provide very
different plans: some samplings will result in empty plans,
some others with plans of different lengths to the goal or
with different probabilities to reach the goal. Thus, unlike
the discrete-state version RFF, it is no longer possible to
simply replace the action of an already updated state. More-
over, in theory, the probability of visiting the same state mul-
tiple times during the search (from different domain sam-
plings) is zero in hybrid domains. Our solution is to compute
some statistical performance metrics about actions included
in the plans computed by Metric-FF. It is worth noting
that the statistics presented below also boost the mode-based
determinization approach, by selecting actions that are more
likely to lead to the goal in the probabilistic domain.

Let s be some hybrid state and $ = (adi1 , · · · , a
d
ik
) be

a plan of length k computed by Metric-FF from s on a
sampled determinization of the probabilistic domain. When
we compute a sampled effect eϕ of an effect e of a given
probabilistic action a, we also compute the density dPe(eϕ)
of the probability distribution of e at the sampled effect eϕ.
The sampled effect gives rise to a deterministic action ad
whose density is: dP (a) = dPe(eϕ). It allows us to compute

the density of plan $: dP ($) =
∏

16j6k dP
(
adij

)
, which

roughly represents the probability of reaching the goal from
state s by executing plan $ with the current sampling of
the domain. We can also define the density of any subplan
$(adij ) of $ starting at the jth reachable state, which gives
an idea of the probability to reach the goal from this state
using action adij in the current sampled domain. The length
k − j + 1 of this subplan is another good performance cri-
terion, which indicates the length of a solution trajectory to
the goal, starting in the jth reachable state from s with the
current sampled domain. Finally, performance statistics of
each action a are compiled in a hybrid hierarchical hash ta-
ble Ha

δ , such that for each hybrid state s, Ha

δ (s) is a pair
(cd, as) where: cd is the sum of the densities of all subplans
of prefix a starting in the highest-level cell containing s, and
as is the average length of these subplans.

We use the previously defined statistical metrics of actions
to assess the value V π of the current policy π, which we de-
fine as: ∀s ∈ S, V π(s) = −log(Pπg (s)) × Lπg (s), where

256



Pπg (s) is the probability of reaching the goal by executing π
from s, and Lg(s) is the average length of trajectories that
reach the goal by executing π from s. Minimizing V π(s) fa-
vors policies with a high probability of reaching the goal and
a low average length of paths to it. Note that V π is different
from the standard criterion used in MDPs, i.e. average accu-
mulated costs, but recall that HRFF is a non-optimal heuris-
tic search algorithm: for efficiency reasons, we do not want
to search for the optimal policy regarding standard criteria,
and V π as defined actually helps to stabilize the policy (and
thus boost our algorithm).

We can approximate V π with the action statistics pre-
sented previously. Each time an action a is found in a given
subplan of Metric-FF, we first compute its corresponding
state s in the plan (by executing the plan from its head up to
this action in the determinized domain), then we update its
statistics hierarchical hash table at state s and compute its
metrics performance in this state using the updated statistics
(cd, as), defined as: ma(s) = −log(cd) × as. We update
the current policy in state s if s has not been yet visited,
or if ma(s) < V π(s). We encode the value function V π

in a hybrid hierarchical hash table, like action performance
statistics and the policy.

Moreover, using Metric-FF allows us to optimize some
metric criterion during plan generation, which was not pos-
sible with deterministic planners used in determinization-
based approaches to solving discrete-state MDPs. Thus, in
order to consolidate the convergence of the value function
in the probabilistic domain, we can ask Metric-FF to find
the plan that minimizes the value function in the determin-
istic domain. To this end, we add two additional fluents to
the deterministic domain: one representing the sum of the
opposite logarithms (−log(·)) of probability densities of the
actions in the plan (seen as a cost), the other representing the
length of the plan. Unfortunately, Metric-FF is not able to
minimize fluent products, so we instead minimize their sum.
However, this strategy can significantly improve HRFF per-
formances in some domains. In others, it takes far too long
for Metric-FF to optimize plan metrics.

Putting it all together
Algorithm 4 presents a detailed pseudo-code of HRFF. The
main procedure (Lines 1 to 15) is a loop, which alter-
nates a phase of computation of reference states where
no policy is defined and that are reachable from the
initial state by following the current policy (procedure
compute reachability, see Lines 16 to 31), and a
phase of policy expansion by merging plans computed by
Metric-FF from these reachable reference states with the
current policy (procedure generate trajectory, see
Lines 32 to 43). Iterations stop when the policy is (1 − ε)-
closed from the initial state (see Line 15). There are numer-
ous differences with the original RFF due to hybrid settings.
First, the sampling-based determinization strategy requires
to generate many sampled trajectories from the initial state
before entering the main loop (Lines 3 to 5), as well as from
each reachable reference state inside the loop (Lines 10 to
13). Indeed, many plans must be generated from different
sampled domains to ensure a sufficient coverage of the long-

Algorithm 4: HRFF
input : I: initial state,M: PPDDL-based HMDP, N : number

of Monte-Carlo samples, δ: size of highest-level cells
(initial discretization)

output:H
π

δ : hybrid hierarchical hash table encoding the
solution policy

1 Procedure main()
2 policyProb← 0; referenceStates← Empty set of states;
3 if sampling-based determinization then
4 P ← sampling-based determinization ofM;
5 for 1 6 i 6 N do generate trajectory(P, I);

6 else P ← mode-based determinization ofM;
7 repeat
8 compute reachability();
9 for s ∈ referenceStates do

10 if sampling-based determinization then
11 P ← sampling-based determinization ofM;
12 for 1 6 i 6 N do
13 generate trajectory(P, s);

14 else generate trajectory(P, s);
15 until (1− policyProb) < ε ;

16 Procedure compute reachability()
17 referenceStates.clear(); policyProb← 0;
18 for 1 6 i 6 N do
19 s← I;
20 while true do
21 if s ∈ G then break ; // goal state

22 (v, δ̃, b)← H
V

δ .find(s);
23 if b = true and v.data = +∞ then
24 break ; // dead-end

25 (a, δ̃, b)← H
π

δ .find(s) ;
26 if b = false or s 6∈ Sa then
27 referenceStates.insert (rδ̃(s));
28 policyProb← policyProb+ 1

N
;

29 break;

30 else s← sample next state from a;

31 policyProb← 1− policyProb;
32 Procedure generate trajectory(P, s)
33 $ = (adi1 , · · · , a

d
ik
)← solve P with Metric-FF ;

34 if $ is empty then update hashtable(H
V

δ , s,+∞);
35 else
36 s′ ← s;
37 for 1 6 j 6 k do
38 m

adij (s′)← update statistics and compute action value
;39 (v, δ̃, b)← H

V

δ .find(s
′);

40 if b = false or v.data > m
adij (s′) then

41 update hashtable(H
V

δ , s
′,m

adij (s′));
42 update hashtable(H

π

δ , s
′, adij ) ;

43 s′ ← successor state of s′ with action adij in P;

44 Procedure update hashtable(Hδ, s, data)
45 (c, δ̃, b)← Hδ.insert(s);
46 if b = false then
47 if |data− c.data| > ε then Hδ.refine(c, δ̃, s, data);
48 else c.data← data ;

257



term effects of actions in the plans. Second, contrary to RFF,
HRFF can not search for single reachable states where no
policy is defined, because there are infinite but, above all, un-
countable. Instead, it tracks reachable reference points (Line
27) since they are countable: if two reachable single states
are in the same δ̃-cell of the continuous subspace, where
there is no policy attached (policy query at Line 25 fails),
then they will be merged in the same reference point, which
represents their equivalence class for∼δ̃ . Third, HRFF com-
putes and updates statistics about Metric-FF plans’ den-
sity and average length to the goal, by optionally asking
Metric-FF to directly optimize them in the solution plan
via additional fluents (Line 38). It then uses these statistics to
decide if it replaces an action of the policy in a given cell by
an action from the plan (Lines 40 to 42), which is required
by hybrid settings and was not present at all in the original
RFF. Finally, HRFF extensively relies on hybrid hierarchical
hash tables to access or update the value or the policy over
hybrid states (Lines 44 to 48) in a compact and efficient way.

Experimental evaluation
We now present several experimentations conducted with
HRFF. We note: HRFF-MD-δ (resp. HRFF-SD-δ) the ver-
sion using mode-based (resp. sampling-based) determiniza-
tion with an initial (implicit) cell discretization of δ ;
HRFF∗-[M,S]D-δ denotes the same variants, but using
plan density and length optimization inside Metric-FF.
For all tests, mode-based (resp. sampling-based) deter-
minization was used with N = 100 (resp. 10) Monte-Carlo
samples at each iteration.

Structured navigation problem. We first tested a simple
but probabilistically-interesting navigation problem, which
illustrates our hybrid hierarchical hash tables (see Figure 1).
A robot starts at the upper left corner, must grab some item
a in the bottom left corner, item b in the upper right cor-
ner, and then navigate to the bottom right corner with both
items grabbed (goal state). Moves are stochastic and follow
a bivariate gaussian distribution. If the robot goes out of the
big square, the only possible action is to stay and the goal is
no more reachable (dead-end). There are 2 binary state vari-
ables (one for each item grabbed) and two continuous state
variables (robot’s position).

Figure 1 shows that turning on plan density and optimiza-
tion inside Metric-FF’s plan generation (2nd row com-
pared with 1st) decreases the number of cells explored in
the policy hash table. Indeed, Metric-FF provides better
plans to HRFF, so that the policy is more focused to the goal.
These tests also highlight the benefit of using sampling-
based determinization (row 3) over the mode-based one
(rows 1 and 2): the policy is more refined, especially in im-
portant areas near the border of the environment (the robot
must move away from the border to avoid dead-ends).

Comparison with HAO∗ on the Rover domain. The
Rover domain from NASA (Bresina et al. 2002; Meuleau
et al. 2009) is much larger than the previous one. A rover
has to take some pictures of rocks scattered in an outdoor
environment, while navigating along predefined paths. This

benchmark has been solved with success by the HAO∗ al-
gorithm (Meuleau et al. 2009), which we could gracefully
use for comparison purposes. HAO∗ is an optimal heuris-
tic search algorithm, which performs dynamic programming
updates on a subset of states, and uses a heuristic estimate of
the optimal value function to decide which new states to ex-
plore during the search. In our settings, HAO∗ minimizes the
average length of paths to the goal. HRFF and HAO∗ solve
slightly different classes of problems: non-oversubscribed
goals and possibly non-monotonic continuous state vari-
ables for the former, oversubscribed goals but only mono-
tonic continuous state variables (resources) for the latter.
Also, we compare HRFF and HAO∗ (exact same version as
in (Meuleau et al. 2009)) on problems that can be solved by
both planners, i.e. without oversubscribed goals.

Figure 2 shows that HRFF uses nearly 3-order of mag-
nitude lower RAM than HAO∗ on all problems. Moreover,
HRFF’s memory usage increases at a far lower rate than
HAO∗. We come to the same conclusion regarding CPU time
consumption. We see that HRFF with δ = 1000 takes more
time and consumes more CPU than HRFF with δ = 10000,
which was expected because lower values of δ increase the
chance to discover unexplored cells during the search, thus
generating more Metric-FF trajectories. We also obtained
(not included in the paper) the same average length to the
goal with HRFF and with HAO∗ for all tested problems, al-
though only HAO∗ is proven to be optimal.

 1000

 10000

 100000

 1e+06

 1e+07

p1 p2 p3 p4 p5 p6 p7 p8

R
A

M
 u

s
a

g
e

 i
n

 k
B

 (
lo

g
 s

c
a

le
)

Problem number (increasing complexity)

HAO*
HRFF-MD-10000

HRFF-MD-1000
HRFF-SD-10000
HRFF-SD-1000

 0

 50

 100

 150

 200

 250

p1 p2 p3 p4 p5 p6 p7 p8

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Problem number (increasing complexity)

HAO*
HRFF-MD-10000

HRFF-MD-1000
HRFF-SD-10000

HRFF-SD-1000

Figure 2: Rover domain (RAM is resident set size)

Large domains. We now compare different versions of
HRFF on very large problems from the numeric part of the
International Planning Competition, that were made prob-
abilistic, with more than 700 binary state variables and 10
continuous state variables for the biggest ones. Figure 3
presents results for the Depot domain, where we added uni-
form (resp. gaussian) distributions on load (resp. fuel cost)
variations. We also added an effect, which destroys a crate
with probability 0.2, in order to decrease the probability of
potential paths to the goal in harder problems (see right plot).
As for the navigation problem, the tests show that HRFF ver-
sions, which force Metric-FF to optimize plan density
and length, perform better than others, because the proba-
bilistic quality of plans merged with the policy is better.

Finally, Figure 4 presents tests on a probabilistic version
of the zeno domain with non-smooth and non-standard prob-
ability distributions (laplace, exponential-power, lognormal)
on the fuel consumption, to demonstrate that HRFF is not
sensitive to the particular probabilistic model of the problem
solved. We varied the initial size of hierarchical hash table’s
cells: it clearly appears that lower values of δ degrade the

258



STAY UP DOWN RIGHT LEFT

no item grabbed item a grabbed item b grabbed all items grabbed

Figure 1: Navigation problem (one column per discrete state). 1st row: HRFF-MD-1 policy ; 2nd row: HRFF∗-MD-1 policy ;
3rd row: HRFF-SD-1 policy. Small black points are reference points explored during the search.

performance of HRFF, by refining too much the hierarchical
hash tables ; Monte-Carlo sampling is lost by too much in-
formation. The number of samples should be drastically in-
creased to overcome this issue. Finally, all HRFF-SD-500
policies reach the goal with probability 1 (not in the paper).

 0.1

 1

 10

 100

 1000

 10000

p1 p2 p3 p4 p5

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Problem number (increasing complexity)

HRFF-MD-5
HRFF*-MD-5
HRFF-SD-5

HRFF*-SD-5

 0

 10

 20

 30

 40

 50

 60

 70

p1 p2 p3 p4 p5

%
 G

o
a

l 
s
u

c
c
e

s
s

Problem number (increasing complexity)

HRFF-MD-5
HRFF*-MD-5
HRFF-SD-5

HRFF*-SD-5

Figure 3: Depot domain

 0.01

 0.1

 1

 10

 100

 1000

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
1

0
p

1
1

p
1

2
p

1
3

p
1

4
p

1
5

p
1

6
p

1
7

p
1

8
p

1
9

p
2

0

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Problem number (increasing complexity)

HRFF-MD-500
HRFF-MD-50

HRFF-MD-5

 0.01

 0.1

 1

 10

 100

 1000

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
1

0
p

1
1

p
1

2
p

1
3

p
1

4
p

1
5

p
1

6
p

1
7

p
1

8
p

1
9

p
2

0

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Problem number (increasing complexity)

HRFF SD-500
HRFF-SD-50

HRFF-SD-5
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
1

0
p

1
1

p
1

2
p

1
3

p
1

4
p

1
5

p
1

6
p

1
7

p
1

8
p

1
9

p
2

0

A
v
e

ra
g

e
 l
e

n
g

th
 t

o
 t

h
e

 g
o

a
l

Problem number (increasing complexity)

HRFF-MD-500
HRFF-MD-50

HRFF-MD-5
HRFF-SD-500

HRFF-SD-50
HRFF-SD-5

Figure 4: Zeno domain

Conclusion
We have presented the HRFF algorithm for solving large
goal-oriented Hybrid Markov Decision Processes. HRFF
determinizes on-the-fly the input probabilistic domain,
solves it from many different reachable states by using
Metric-FF, and incrementally merges plans produced
by the latter with the policy. Some action statistics based
on plans’ probabilities and lengths are updated during the
search to improve the convergence of HRFF. The policy and
the action statistics are encoded in hybrid hierarchical hash
tables, which are novel, compact and efficient data struc-
tures to reason over hybrid state spaces. Experimental re-
sults show that HRFF outperforms HAO∗ by many order of
magnitudes on the rover domain. It can also solve problems,
whose size, complexity, and expressivity, were not yet tack-
led by any existing domain-independent HMDP algorithm,
to the best of our knowledge.

In the future, we would like to provide a PPDDL HMDP
model of the multiple battery usage problem (Fox, Long,
and Magazzeni 2011), which is a challenging and exciting
benchmark. It would be interesting to compare the specific
algorithm proposed by the authors, which relies on classi-
fiers for encoding the policy, with our domain-independent
approach, which uses hybrid hierarchical hash tables.

259



References
Bresina, J.; Dearden, R.; Meuleau, N.; Ramkrishnan, S.;
Smith, D.; and Washington, R. 2002. Planning under Con-
tinuous Time and Resource Uncertainty: A Challenge for
AI. In Proceedings of the Eighteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-02), 77–84. San
Francisco, CA: Morgan Kaufmann.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
construction of efficient multiple battery usage policies. In
ICAPS.
Free Software Foundation. 2011. GNU Scientific Library.
http://www.gnu.org/software/gsl/.
Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating ”ignoring delete lists” to numeric state variables. J.
Artif. Intell. Res. (JAIR) 20:291–341.
Kolobov, A.; Mausam; and Weld, D. S. 2010. Classical
planning in MDP heuristics: with a little help from general-
ization. In ICAPS, 97–104.
Kveton, B.; Hauskrecht, M.; and Guestrin, C. 2006. Solving
factored MDPs with hybrid state and action variables. J.
Artif. Int. Res. 27:153–201.
Lee, I. S., and Lau, H. Y. 2004. Adaptive state space par-
titioning for reinforcement learning. Engineering Applica-
tions of Artificial Intelligence 17(6):577 – 588.
Li, L., and Littman, M. L. 2005. Lazy approximation for
solving continuous finite-horizon MDPs. In Proceedings of
the 20th national conference on Artificial intelligence - Vol-
ume 3, AAAI’05, 1175–1180. AAAI Press.
Marecki, J.; Koenig, S.; and Tambe, M. 2007. A fast analyt-
ical algorithm for solving markov decision processes with
real-valued resources. In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, IJCAI’07,
2536–2541. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam. 2009. A heuristic search approach to planning
with continuous resources in stochastic domains. J. Artif.
Int. Res. 34:27–59.
Pouchol, M.; Ahmad, A.; Crespin, B.; and Terraz, O. 2009.
A hierarchical hashing scheme for nearest neighbor search
and broad-phase collision detection. J. Graphics, GPU, &
Game Tools 14(2):45–59.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1 -
Volume 1, AAMAS ’10, 1231–1238. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Teichteil-Königsbuch, F. 2008. Extending PPDDL1.0 to
Model Hybrid Markov Decision Processes. In Proceedings
of the ICAPS 2008 workshop on A Reality Check for Plan-
ning and Scheduling Under Uncertainty.

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of the 23rd national conference on Artificial in-
telligence - Volume 2, AAAI’08, 1010–1016. AAAI Press.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University.

260




