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Abstract

We present a novel optimization-based algorithm for motion
planning in dynamic environments. Our approach uses a
stochastic trajectory optimization framework to avoid colli-
sions and satisfy smoothness and dynamics constraints. Our
algorithm does not require a priori knowledge about global
motion or trajectories of dynamic obstacles. Rather, we com-
pute a conservative local bound on the position or trajectory
of each obstacle over a short time and use the bound to com-
pute a collision-free trajectory for the robot in an incremental
manner. Moreover, we interleave planning and execution of
the robot in an adaptive manner to balance between the plan-
ning horizon and responsiveness to obstacle. We highlight the
performance of our planner in a simulated dynamic environ-
ment with the 7-DOF PR2 robot arm and dynamic obstacles.

1 Introduction
Motion planning is an important problem in many robotics
applications, including autonomous navigation and task
planning. Most of the earlier work on practical motion plan-
ning algorithms is based on randomized algorithm (Kavraki
et al. 1996; Kuffner and LaValle 2000; LaValle 2006) and
is mostly limited to static environments. However, robots
must work reliably in dynamic environments with humans
and other moving objects, e.g., when performing house-
hold jobs like cleaning a room. Therefore, the robot needs
to acquire the ability to safely navigate in the environ-
ment and perform tasks in the presence of moving obsta-
cles. In order to achieve this goal, many planning algorithms
for dynamic environments have been proposed (van den
Berg and Overmars 2005; Phillips and Likhachev 2011b;
Hauser 2012). However, most of these methods assume that
the future trajectories of dynamic obstacles are known a pri-
ori during the planning computation. This assumption may
not hold in many real world applications. As a matter of fact,
most moving objects’ motions are not precisely predictable
or can only be approximated over a small or local time in-
terval. Such uncertainty about moving objects makes it hard
to plan a safe trajectory for the robot over a long horizon.

Another challenge in terms of planning in dynamic envi-
ronments is that the planning algorithm must be responsive
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to unpredictable situations, which requires real-time plan-
ning capability in terms of computing or updating the trajec-
tory. There is some recent work on accelerating high-DOF
planing algorithms, such as GPU parallelism (Pan, Lauter-
bach, and Manocha 2010) or distributed systems (Devaurs,
Simeon, and Cortes 2011). A real-time planner can improve
the responsiveness, but it may not provide an adequate so-
lution for all situations. The reason is that there are difficult
scenarios, e.g., narrow passages (LaValle 2006), which are
hard for any planner in terms of real-time computation. In
these cases, planning before task execution can lead to de-
lays in the robot’s movement and decrease its safety. One
possible solution for handling such scenarios is by interleav-
ing planning with execution; the overall algorithm lands up
computing partial or sub-optimal plans to avoid delays in
its handling of moving obstacles (Petti and Fraichard 2005;
Bekris and Kavraki 2007; Hauser 2012).

In order to overcome these challenges, we present an ef-
ficient replanning framework based on optimization-based
approaches. Our work is based on recent developments
in optimization-based planning that can also handle dy-
namic constraints efficiently (Kalakrishnan et al. 2011;
Ratliff et al. 2009; Dragan, Ratliff, and Srinivasa 2011).
In order to handle dynamic obstacles and perform realtime
planning, our approach uses an incremental approach (IT-
OMP). First, we estimate the trajectory of the moving obsta-
cles over a short time horizon using simple estimation tech-
niques. Next, we compute a conservative bound on the posi-
tion of the moving obstacles based on the predicted motion.
We then calculate a trajectory connecting robot’s initial and
goal configurations by solving an optimization problem that
avoids collisions with the obstacles and satisfies smooth-
ness and torque constraints. In order to make the robot re-
spond quickly to the dynamic environments, we interleave
planning with task execution: that is, instead of solving
the optimization problem completely, we assign a time bud-
get for planning and interrupt the optimization solver when
the time runs out. The computed trajectory may be sub-
optimal, which means that 1) its objective cost may not be
minimized; 2) the collision-free constraints or other addi-
tional constraints may not be completely satisfied. The robot
then executes over the short time interval based on this sub-
optimal path computation. We repeat these steps until the
robot reaches the goal position. During each iterative step,
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we update the conservative bound on the object’s position
and also account for any new objects that may have en-
tered the robot’s workspace. The updated environment in-
formation is incorporated into the optimization formulation,
which uses the sub-optimal result from the last step as the
initial solution and tries to improve it incrementally within
the given timing budget. We demonstrate the performance
of our replanning algorithm in the ROS simulation environ-
ment where the PR2 robot tries to perform manipulation task
with its 7-DOF robot arm.

The rest of the paper is organized as follows. We sur-
vey related work on planning for dynamic environments
and replanning in Section 2. Section 3 introduces the no-
tation used in the paper and gives an overview of our ap-
proach. We present our optimization-based replanning algo-
rithm (ITOMP) in Section 4. We highlight its performance
on simulated dynamic environments in Section 5.

2 Related Work
In this section, we give a brief overview of prior work on
motion planning in dynamic environments, realtime replan-
ning and optimization-based planning.

Planning in Dynamic Environments
Most of the approaches for motion planning in dynamic en-
vironments assume that the trajectories of moving objects
are known a priori. Some of them model dynamic obstacles
as static obstacles with a short horizon and set a high cost
around the obstacles. (Likhachev and Ferguson 2009). An-
other common approach is to use velocity obstacles, which
are used to compute appropriate velocities to avoid col-
lisions with dynamic obstacles (Fiorini and Shiller 1998;
Wilkie, van den Berg, and Manocha 2009). However, these
methods cannot give any guarantees on the optimality of the
resulting trajectory.

Some of the planning methods handle the continuous
state space directly, e.g., RRT variants have been proposed
for planning in dynamic environments (Petti and Fraichard
2005). For discrete state spaces, efficient planning algo-
rithms for dynamic environment include variants of A* algo-
rithm, which are based on classic heuristic searches (Phillips
and Likhachev 2011b; 2011a) and roadmap-based algo-
rithms (van den Berg and Overmars 2005).

Most planning algorithms for dynamic envi-
ronments (van den Berg and Overmars 2005;
Phillips and Likhachev 2011b) assume that the inertial
constraints, such as acceleration and torque limit, are
negligible for the robot. Such an assumption implies that
the robot can stop and accelerate instantaneously, which
may not be the case for a physical robot.

Real-time Replanning
Since path planning can be computationally expensive, plan-
ning before execution can lead to long delays during a
robot’s movement. To handle such scenarios, real-time re-
planning interleaves planning with execution so that the
robot may decide to compute only partial or sub-optimal
plans in order to avoid delays in the movement. Real-time

replanning methods differ in many aspects; one key differ-
ence is the underlying planner used. Sample-based motion
planning algorithms such as RRT have been applied to real-
time replanning for dynamic continuous systems (Hsu et
al. 2002; Hauser 2012; Petti and Fraichard 2005). These
methods can handle high-dimensional configuration spaces
but usually cannot generate optimal solutions. A* variants
such as D* (Koenig, Tovey, and Smirnov 2003) and anytime
A* (Likhachev et al. 2005) can efficiently perform replan-
ning on discrete state spaces and provide optimal guarantees,
but are mostly limited to low dimensional spaces. Most re-
planning algorithms that interleave planning and execution
use fixed time steps (Petti and Fraichard 2005), although
some recent work (Hauser 2012) computes the interleaving
timing step in an adaptive manner so as to maintain a bal-
ance between the safety, responsiveness, and completeness
of the overall system.

Optimization-based Planning Algorithms
The most widely-used method of path optimization is the
so-called ‘shortcut’ heuristic, which picks pairs of con-
figurations along a collision-free path and invokes a local
planner to attempt to replace the intervening sub-path with
a shorter one (Chen and Hwang 1998; Pan, Zhang, and
Manocha 2011). Another approach is based on Voronoi
diagrams to compute collision-free paths (Garber and Lin
2004). Other approaches are based on elastic bands or elas-
tic strips, which use a combination of mass-spring systems
and gradient-based methods to compute minimum-energy
paths (Brock and Khatib 2002; Quinlan and Khatib 1993).
All these methods require a collision-free path as an ini-
tial value to the optimization algorithm. Some recent ap-
proaches, such as (Ratliff et al. 2009; Kalakrishnan et al.
2011; Dragan, Ratliff, and Srinivasa 2011) directly encode
the collision-free constraints and use an optimization-based
solver to transform a naive initial guess into a trajectory suit-
able for robot execution.

3 Overview
In this section, we introduce the notation used in the rest of
the paper and give an overview of our approach.

We use the symbol C to represent the configuration space
of a robot, including several C-obstacles and the free space
Cfree. Let the dimension of C be D. Each element in the
configuration space, i.e., a configuration, is represented as a
dim-D vector q.

For a single planning step, suppose there areNs static ob-
stacles and Nd dynamic obstacles in the environment. The
number of dynamic obstacles is changed between the steps
as the sensor introduces new obstacles and removes out of
range obstacles and the information is kept for a planning
interval. We assume that these obstacles are all rigid bodies.
For static obstacles, we denote them as Os

j , j = 1, ..., Ns.
For dynamic obstacles, as their positions vary with time, we
denote them as Od

j (t), j = 1, ..., Nd. Os
j and Od

j (t) corre-
spond to the objects in the workspace, and we denote their
corresponding C-obstacles in the configuration space as COs

j

and COd
j (t), respectively.
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In the ideal case, we assume that we have complete
knowledge about the motion and trajectory of dynamic ob-
stacles, i.e., we know the functions Od

j (t) and COd
j (t) ex-

actly. However, in real-world applications, we may only
have local estimates of the future movement of the dynamic
obstacles. Moreover, the recent position and velocity of ob-
stacles computed from the sensors may not be accurate due
to the sensing error. In order to guarantee safety of the plan-
ning trajectory, we compute a conservative local bound on
the trajectories of dynamic obstacles during planning. Given
the time instance tcur, the conservative bound for the mov-
ing objectOd

j at time t > tcur bounds the shape correspond-
ing to Od

j (t), and is computed as:

O
d

j (t) = c(1 + es · t)Od
j (t) (1)

where es is the maximum allowed sensing error. As the
sensing error increases the conservative bound becomes
larger. When an obstacle has a constant velocity, it is guar-
anteed that the conservative bound includes the obstacle dur-
ing the time period corresponding to t > tcur with c = 1.
However, if an obstacle changes its velocity, we have to use
a larger value of c in our conservative bound, and it would
be valid for a shorter time interval. We can define the con-
servative bound for a moving object Od

j during a given time
interval I = [t0, t1] as follows:

Od

j (I) =
⋃
t∈I
Od

j (t),∀t ∈ I, t > tcur. (2)

Similarly, we can define conservative bounds in the config-
uration space, which are denoted as COd

j (t) and COd

j (I),
respectively.

We treat motion planning in dynamic environments as
an optimization problem in the configuration space, i.e.,
we search for a smooth trajectory that minimizes the cost
corresponding to collisions with moving objects and some
additional constraints, such as joint limit or acceleration
limit. Specifically, we consider trajectories corresponding
to a fixed time duration T , discretized into N waypoints
equally spaced in time. In other words, the discretized tra-
jectory is composed of N configurations q1, ...,qN , where
qi is a trajectory waypoint at time i−1

N−1T . We can also rep-
resent the trajectory as a vector Q ∈ RD·N :

Q = [qT
1 ,q

T
2 , ...,q

T
N ]T . (3)

We assume that the start and goal configurations of the tra-
jectory, i.e., qs and qg , are given, and are fixed during op-
timization. Figure 1 illustrates the symbols used by our
optimization-based planner.

Similarly to previous work (Ratliff et al. 2009; Kalakr-
ishnan et al. 2011), our optimization problem is formalized
as:

min
q1,...,qN

N∑
i=1

c(qi) +
1

2
‖AQ‖2, (4)

where c(·) is an arbitrary state-dependent cost function,
which can include obstacle costs for static and dynamic
objects, and additional constraints such as joint limit and

torque limit. That is, the cost function can be divided into
three parts:

c(q) = cs(q) + cd(q) + co(q), (5)

where cs(·) is the obstacle cost for static objects, cd(·) is
the obstacle cost for moving objects and co(·) is the cost for
additional constraints. As cd(·) changes along with time due
to movement of dynamic obstacles, we sometimes denote it
as ctd(·) to show the dependency on time explicitly. A is a
matrix that is used to represent the smoothness costs. We
choose A such that ‖AQ‖2 represents the sum of squared
accelerations along the trajectory. Specifically, A is of the
form

A =



1 0 0 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0 1 −2 1
0 0 0 · · · 0 1 −2
0 0 0 0 0 1


⊗ID×D, (6)

where ⊗ denotes the Kronecker tensor product and ID×D is
a square matrix of size D. It follows that Q̈ = AQ, where
Q̈ represents the second order derivative of the trajectory Q.

The solution to the optimization problem in Equation (4)
corresponds to the optimal trajectory for the robot:

Q∗ = {q∗1 = qs,q
∗
2, ...,q

∗
N−1,q

∗
N = qg}. (7)

However, notice that Q∗ is guaranteed to be collision-free
with dynamic obstacles only during a short time horizon.
Because we only have a rough estimation based on the ex-
trapolation of the motion of the moving objects, rather than
an exact model of the moving objects’ motion, the cost func-
tion ctd(·) is only valid within a short time interval. In order
to associate a period of validity with the result of our op-
timization algorithm, we use Q∗I to represent the planning
result that is valid during the interval I = [t0, t1] ⊆ [0, T ].

In order to improve robot’s responsiveness and safety, we
interleave planning and execution threads, in which the robot
executes a partial or suboptimal trajectory (based on a high-
rate feedback controller) that is intermittently updated by the
replanning thread (at a lower rate) without interrupting the
execution. We assign a time budget ∆k to the k-th step of
replanning, which is also the maximum allowed time for ex-
ecution of the planning result from last step. We use a con-
stant timing budget ∆t = ∆, but our approach can be easily
extended to use a dynamic timing budget that is adaptive
to replanning performance (Hauser 2012). The interleaving
strategy is subject to the constraint that the current trajectory
being executed cannot be modified. Therefore, if the replan-
ning result is sent to the robot for execution at time t, it is
allowed to run for time ∆, and no portion of the computed
trajectory before t + ∆ may be modified. In other words,
the planner should start planning from t + ∆. Due to lim-
ited time budget, the planner may not be able to compute
an optimal solution of the optimization function shown in
Equation (4) and the resulting trajectory may be, and usu-
ally is, sub-optimal. Its cost may be greater than or equal to
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dynamic obstacle COd
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q1

qk

qN0

t
T

C-Space at different time

I
=

[t 0
, t 1

]

COd
([t0, t1])

Figure 1: Optimization-based motion planning for dynamic environments. We show
how the configuration space changes over time: each plane slice represents the con-
figuration space at time t. In the environment, there are two C-obstacles: the static
obstacle COs and the dynamic obstacle COd. We need to plan a trajectory to avoid
these obstacles. The trajectory starts at time 0, stops at time T , and is represented by
a set of way points q1, ..., qk , ..., qN . Supposing that the trajectory is to be executed
by the robot during time interval I = [t0, t1], we only need to consider the conser-
vative bound COd

([t0, t1]) for the dynamic obstacle during the time interval. The
C-obstacles shown in the red color correspond to the obstacles at time t ∈ I .

the cost of the optimal trajectory Q∗. i.e., f(Q∗I) ≤ f(Q
∗
I),

where we denote the resulting trajectory from the planner as
Q
∗
I , and f(Q) =

∑N
i=1 c(qi) + 1

2‖AQ‖2.

4 ITOMP Algorithm
In this section, we present our ITOMP algorithm for plan-
ning in dynamic environments, i.e., how to solve the opti-
mization problem corresponding to Equation (4). We first
introduce the cost metric for static obstacles and dynamic
obstacles. Next, we present our incremental optimization
algorithm.

Obstacle Costs
Similarly to prior work (Kalakrishnan et al. 2011; Ratliff
et al. 2009), we model the cost of static obstacles using
signed Euclidean Distance Transform (EDT). We start with
a boolean voxel representation of the static environment, ob-
tained either from a laser scanner or from a triangle mesh
model. Next, the signed EDT d(x) for a 3D point x is
computed throughout the voxel map. This provides infor-
mation about the distance from x to the boundary of the
closest static obstacle, which is negative, zero or positive
when x is inside, on the boundary or outside the obstacles,
respectively. One advantage of EDT is that it can encode
the discretized information about penetration depth, contact

and proximity in a uniform manner and can make the op-
timization algorithm more robust. After the signed EDT is
computed, the planning algorithm can efficiently check for
collisions by table lookup in the voxel map. In order to com-
pute the obstacle cost, we approximate the robot shape B by
a set of overlapping spheres b ∈ B. The static obstacle cost
is as follows:

cs(qi) =
∑
b∈B

max(ε+ rb − d(xb), 0)‖ẋb‖, (8)

where rb is the radius of one sphere b, xb is the 3D point
of sphere b computed from the kinematic model of the robot
in configuration qi, and ε is a small safety margin between
robot and the obstacles. The speed of sphere b, ‖ẋb‖, is
multiplied to penalize the robot when it tries to traverse a
high-cost region quickly. The static obstacle cost is zero
when all the sphere are at least ε distance away from the
closest obstacle.

EDT computation is efficient for static obstacles but can-
not be applied to dynamic obstacles, though a GPU-based
parallel EDT computation algorithm could be used (Sud,
Otaduy, and Manocha 2004). The reason is that the move-
ment of dynamic obstacles implies that EDT needs to be re-
computed during each time step and it is hard to perform
such computation in real-time on current CPUs. Instead, we
perform geometric collision detection between the robot and
moving obstacles and use the collision result to formalize
the dynamic obstacle cost. Given a configuration qi on the
trajectory and the geometric representation of moving obsta-
clesOs

j at the corresponding time (i.e., i−1
N−1T ), the obstacle

cost corresponding to configuration qi is given as:

cd(qi) =
∑
j

is collide(Os

j(
i− 1

N − 1
T ),B), (9)

where is collide(·, ·) returns one when there is a colli-
sion and zero otherwise. The is collide function can be
performed efficiently using object-space collision detection
algorithms, such as (Gottschalk, Lin, and Manocha 1996).
This obstacle cost function is only used during a short or lo-
cal time interval, i.e. from replanning’s start time t to its end
time t + ∆, since the predicted positions of dynamic obsta-
cles can have high uncertainty during a long time horizon.

Dynamic Environment and Replanning
ITOMP makes no assumption about the global motion or tra-
jectory of each moving obstacle. Instead, we predict the fu-
ture position and the velocity of moving obstacles based on
their recent positions, which are generated from noisy sen-
sors. This prediction and maximum error bound are used to
compute a conservative bound on the moving obstacles dur-
ing the local time interval. Therefore, the planning result is
guaranteed to be safe only during a short time period. In or-
der to offer quick response during unpredictable cases (e.g.,
the trajectory prediction about some of the objects is not cor-
rect or new moving obstacles enter the robot’s workspace),
the robot must sense the environment frequently and the
planner needs to be interrupted to update the description of
the environment.
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EXECUTION

EXECUTION

step 0 step 1 step 2 step n− 1 step n

t0 t1 t2 tn−1 tn tn+1t3

∆0 ∆1 ∆2 ∆n−1 ∆n tf

goal

time

predict model in [t1, t2] predict model in [t2, t3] predict model in [t3, t4] predict model in [tn,∞]

Figure 3: Interleaving of planning and execution. The planner starts at time t0. During the first planning time budget [t0, t1], it plans a safe trajectory for the first execution interval
[t1, t2], which is also the next planning interval. In order to compute the safe trajectory, the planner needs to compute a conservative bound for each moving obstacle during [t1, t2].
The planner is interrupted at time t1 and the ITOMP scheduling module notifies the controller to start execution. Meanwhile, the planner starts the planning computation for the next
interval [t2, t3], after updating the bounds on the trajectory of the moving obstacles. Such interleaving of planning and execution is repeated until the robot reaches the goal position.
In this example, n interleaving steps are used, and the time budget allocated to each step is ∆i, which can be fixed or changed adaptively. Notice that if the robot is currently is an
open space, the planner may compute an optimal solution before the time budget runs out (e.g., during [t2, t3]).

Ready

Monitor

Finish

Goal Motion Planner

Robot
Controller

Sensor

Setting

Scheduling Module

Data

Figure 2: The overall pipeline of ITOMP: the scheduling module runs the main algo-
rithm. It gets input from the user and interleaves the planning and execution threads.
The Motion Planner module computes the trajectory for the robot and the Robot Con-
troller module is used to execute the trajectory. The planner also receives updated
environment information frequently from sensors.

In order to handle uncertainty from moving obstacles and
provide high responsiveness, ITOMP interleaves planning
and execution of the robot. As illustrated in Figure 2, IT-
OMP consists of several parts: the scheduling module, the
motion planner, the robot controller and the data-collecting
sensor. The scheduling module gets the goal information as
input and controls the other modules. When a new goal po-
sition is set, the scheduling module sends a new trajectory
computation request to the motion planner. When the mo-
tion planner computes a new trajectory that is safe within a
short horizon, the scheduling module notifies the robot con-
troller to execute the trajectory. Meanwhile, it also sends a
new request to the motion planner to compute a safe trajec-
tory for the next execution interval. The planner also needs
to incorporate the updated environment description from the
sensor data. Since the motion planner runs in a separate
thread, the scheduling module does not need to wait for the
planner to terminate. Instead, it checks whether the robot
reaches the goal, updates the dynamic environment descrip-
tion, and checks whether the planner has computed a new
trajectory.

The details about the interleaved planning and execution
method are shown in Figure 3. The i-th time step of short-
horizon planning has a time budget ∆i = ti+1− ti, which is
also the time budget for the current step of execution. Dur-
ing the i-th time step, the planner tries to generate a trajec-
tory by solving the optimization problem in Equation 4. The
trajectory should be valid during the next step of execution,
i.e., during the time interval [ti+1, ti+2].

Due to the limited time budget, the planner may only be
able to compute a sub-optimal solution before it is inter-
rupted. The sub-optimal solution may not be collision-free
or may violate some other constraints during the next execu-
tion interval [ti+1, ti+2]. To handle such cases, we use two
techniques. First, we assign higher weights to the obstacle
costs related to the trajectory waypoints during the interval
[ti+1, ti+2], which biases the optimization solver to reduce
the cost during the execution interval. If the optimization
result is not valid during the execution interval, ITOMP’s
scheduling module chooses not to execute during the follow-
ing execution interval. This approach keeps the planner from
violating hard constraints(e.g. torque, end effector orienta-
tion, etc.) and allocates more time to the planner to improve
the result. If the optimization result is valid but not optimal,
i.e., the cost is not minimized during time interval [ti+2,∞],
the planner can also improve it incrementally during follow-
ing time intervals. The time budget for each step of short-
horizon planning can be changed adaptively according to the
quality of the resulting trajectory, which tries to balance the
robot’s responsiveness and safety (Hauser 2012).

Notice that usually the optimization can converge to lo-
cal optima quickly because during the i-th step planning we
use the result of (i − 1)-th step as the initial value. On the
other hand, the optimization algorithm tends to compute a
sub-optimal solution when the robot is near a region with
multiple minima in the configuration space or a narrow pas-
sage.
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5 Results
In this section, we highlight the performance of our plan-
ning algorithm in dynamic environments. We have imple-
mented our algorithm in a simulator that uses the geometric
and kinematic model of Willow Garage’s PR2 robot in the
ROS environment. All the experiments are performed on a
PC equipped with an Intel i7-2600 8-core CPU 3.4GHz with
8GB of memory. Our experiments are based on the accuracy
of the PR2 robot’s LIDAR sensor (i.e. 30mm), and the plan-
ning routines obtain information about dynamic obstacles
(positions and velocities) every 200 ms.

The first experiment is designed to to evaluate the per-
formance of our planner with various levels of sensor error.
We use a simulation environment with moving obstacles as
shown in Figure 4. There are two static (green) and two
moving (red) obstacles. We plan a trajectory for the right
arm of the PR2, which has 7 degrees of freedom, from a
start configuration to a goal configuration. The obstacles
move along a pre-determined trajectory, which is unknown
to the planner. The planner uses replanning to compute a
collision-free trajectory in this environment. During each
planning step, the planner computes the conservative bound
for each moving obstacle using Equation 2 and uses that
bound to compute a trajectory. If the planner computes a
collision-free trajectory for a given time step, ITOMP al-
lows the robot to execute the planned motion during the next
time step. This replanning step is repeated until the robot
reaches the goal configuration. If the robot collides with an
obstacle during the execution, we count it as a failure. We
measure the success rate of planning and the cost of trajec-
tory with different values of sensor noise. We repeat the test
10 times for each value of the sensor noise, and result is
shown in Table 1. The costs of trajectories are the average
costs corresponding to successful plans. It is shown that as
the maximum sensor error increases, the success rate of the
planner decreases and the cost (as shown in Equation 5) of
the computed trajectory increases. For a successful planning
instance with no collisions with the obstacles, this cost cor-
responds to the smoothness cost ( 1

2‖AQ‖2 in Equation 4):
i.e. trajectories associated with higher cost values are less
smooth than trajectories with lower costs.

For a succeeded planning result which has no collision,
the cost mostly corresponds to the smoothness cost, i.e., tra-
jectories with high costs are less smooth than other trajec-
tories which have low costs. A large error value results in
large conservative bounds for the moving obstacles, which
reduces the search space for the planner to explore, and
thereby it is harder to compute a feasible or optimal solution.
However, we observe that at the maximum error of 30mm
corresponding to PR2 robot sensors, our planner demon-
strates good performance. We use this error value (30mm)
in the following experiments.

In the second experiment, we test the responsiveness of
our parallel replanning algorithm in dynamic environments
with a high number of moving obstacles (Figure 5). In this
environment, there are several moving obstacles which have
the same speed and direction and some of them may col-
lide with the arm of PR2 robot if the arm remains in the
initial position. As in the first experiment, the planner uses

Figure 4: The planning environment used in experiments related to sensor noise. The
planner computes a trajectory for the right arm of PR2 robot, moving it from the start
configuration to the goal configuration while avoiding both static and dynamic obsta-
cles. In the figure, green spheres correspond to static obstacles and the red spheres are
dynamic obstacles.

sensor noise (mm) # of successful
plans trajectory cost

0 10/10 1.373
30 10/10 1.400
60 10/10 1.417

120 10/10 1.480
180 4/10 1.541

Table 1: Results obtained from sensor noise experiments. Success rate of planning and
trajectory cost are measured with different sensor noise values. As the noise increases,
the trajectory cost increases.

the replanning approach to reach the goal position and avoid
collisions with the moving obstacles. Figure 6 shows a
planned trajectory and conservative bounds of moving ob-
stacles. In this environment, we vary the speed of the ob-
stacles, and measure the resulting success rates of the plan-
ning computations, as well as the cost functions correspond-
ing to each computed trajectory. The performance data for
each scenario (run for 10 trials per scenario) is laid out in
Table 2. In this experiment, the planner successfully com-
pute collision-free trajectory when the obstacles are moving
at a slow speed. However, if the speed of obstacles is too
high for the planner to avoid, the planner frequently fails to
find a collision-free path. In each planning step, the planner
finds a trajectory which avoids collision with the conserva-
tive bounds of the obstacles for the next time step (Equa-
tion 2). As the obstacle speed increases, the distance that
an obstacle moves during a given time step is larger, and the
resulting conservative bound for the rapidly-moving object
covers a large area of the configuration space.

We also measure the performance of ITOMP with sets of
different number of moving obstacles (Figure 7). We fix the
size and speed of obstacles, varying only change the number
of obstacles in each scenario. In this environment, a higher
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(a) (b) (c) (d)

Figure 6: A collision-free trajectory and conservative bounds of moving obstacles. (a) There are five moving obstacles. The arrows shows the direction of obstacles. (b)(c) During
each step, the planner computes conservative local bounds on obstacle trajectory for the given time step. (b)(c)(d) The robot moves to the goal position while avoiding collisions with
the obstacle local trajectory computed using the bounds. (d) The robot reaches the goal position.

(a) Planning environment
with fast-moving obstacles

(b) Planning environment
with slow-moving obstacles

Figure 5: Planning environments used to evaluate the performance of our planner with
moving obstacles with varying speeds. The planner uses the latest obstacle position
and velocity to estimate the local trajectory. (a)(b) The obstacles (corresponding to
red spheres) in the environment have varying (high or low) speeds. The size of each
arrow corresponds to the magnitude of each’s speed.

obstacle speed(m/s) # of successful
plans trajectory cost

1 10/10 0.694
2 10/10 0.748
3 8/10 0.714
4 3/10 0.816

Table 2: Results obtained from experiments corresponding to varying obstacle speeds.
The higher speed of obstacles lowers the success rate of planning and increases the
trajectory cost.

number of obstacles result in reducing the size of collision-
free space. The results are shown in Table 3. We observe that
that a higher number of obstacles result in lower planning
success rates and higher-cost trajectories.

6 Conclusion and Future Work
We present ITOMP, an optimization-based algorithm for
motion planning in dynamic environments. ITOMP does
not require a priori knowledge about global movement of
moving obstacles and tries to compute a trajectory that is
collision-free and also satisfies smoothness and dynamics
constraints. In order to respond to unpredicted cases in dy-
namic scenes, ITOMP interleaves planning optimization and
task execution. This strategy can improve the responsive-
ness and safety of the robot. We highlight the performance

(a) Planning environment
with 3 moving obstacles

(b) Planning environment
with 8 moving obstacles

Figure 7: Planning environments used to evaluate the performance of our planner with
different numbers of moving obstacles.

# of obstacles # of successful
plans trajectory cost

3 10/10 1.382
5 9/10 1.404
8 6/10 2.876

Table 3: Results obtained from the experiments with different number of moving ob-
stacles. Success rate of planning and trajectory cost are measured. The success rate of
the planner decreases when there are more obstacles in the environment.

of the planning algorithm at guiding a model 7-DOF PR2
robot arm through various environments containing dynamic
obstacles. We measured the algorithm’s changing perfor-
mance at differing levels of sensing error; in environments
with dynamic obstacles moving at varying speeds; and in
environments with varying numbers of dynamic obstacles.

Our approach has some limitations. Currently, we need
to assume the overall time for trajectory computation and
set the time for each waypoint on the trajectory before the
optimization solver is used. In our implementation, we set
the overall time to be T and distribute the waypoints equally
spaced in time. These two requirements may cause failure
of the planner in some cases: for example, when a robot
is at a crossroad and there is a moving object passing by
in the perpendicular direction, the robot needs to wait for a
certain time and then starts moving. In this case, it is diffi-
cult to know the time corresponding to the waypoint a pri-
ori and our method may not be able to compute a collision-
free trajectory. One possible solution is to remove these as-
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sumptions and solve the trajectory using dynamic program-
ming similar to (Vernaza and Lee 2011). However, we need
an incremental optimization solver to use interleaved plan-
ning and execution to obtain high responsiveness and safety.
Recently, we have developed a parallel version of ITOMP
for multi-core CPUs and many-core GPUs (Park, Pan, and
Manocha 2012). In particular, we show that by exploiting
commodity parallelism, we can considerably improve the re-
sponsiveness and performance of the planner.
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