Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

Predicting Optimal Solution Cost with Bidirectional Stratified Sampling

Levi Lelis
Computing Science Dept.
University of Alberta
Edmonton, Canada T6G 2E8
(santanad @cs.ualberta.ca)

Ben Gurion University
Beer-Sheva, Israel 85104
(roni.stern@gmail.com)
(felner@bgu.ac.il)

Abstract

Optimal planning and heuristic search systems solve
state-space search problems by finding a least-cost path
from start to goal. As a byproduct of having an opti-
mal path they also determine the optimal solution cost.
In this paper we focus on the problem of determin-
ing the optimal solution cost for a state-space search
problem directly, i.e., without actually finding a solu-
tion path of that cost. We present an efficient algorithm,
BisSsS, based on ideas of bidirectional search and strat-
ified sampling that produces accurate estimates of the
optimal solution cost. Our method is guaranteed to re-
turn the optimal solution cost in the limit as the sam-
ple size goes to infinity. We show empirically that our
method makes accurate predictions in several domains.
In addition, we show that our method scales to state
spaces much larger than can be solved optimally. In par-
ticular, we estimate the average solution cost for the
6x6, 7x7, and 8x8 Sliding-Tile Puzzle and provide in-
direct evidence that these estimates are accurate.

Introduction

Given an admissible heuristic function, search algorithms
such as A* (Hart, Nilsson, and Raphael 1968) and IDA*
(Korf 1985) find a path from the start state to a goal state
that minimizes the sum of the edge-costs in the path. A
byproduct of finding such a path is that the optimal solution
cost becomes known. Lelis, Stern, and Jabbari Arfaee (2011)
pointed out that there are situations in which one is inter-
ested only in the optimal solution cost, the solution path is
not required. For instance, for the purpose of bidding on
a project, a construction company does not need to know
the entire plan for the project, but only an accurate estimate
of the project’s cost. This allows the time and expenses re-
quired to calculate a complete plan in full detail to be saved
in the event that the company’s bid is not successful. Lelis et
al. (2011) developed SCP, the current state-of-the-art solu-
tion cost predictor. In addition, they showed that an accurate
prediction of solution cost can be used to substantially speed
up certain algorithms for finding suboptimal solution paths.

Heuristic functions themselves provide estimates of the
solution cost of a given problem instance. However, they are

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Roni Stern, Ariel Felner
Information Systems Engineering

155

Sandra Zilles Robert C. Holte
Computer Science Dept. Computing Science Dept.
University of Regina University of Alberta
Regina, Canada S4S 0A2 Edmonton, Canada T6G 2E8
(zilles@cs.uregina.ca) (holte @cs.ualberta.ca)

built to guide search algorithms and are applied to a large
number of nodes during the course of solving an instance. It
is absolutely essential, therefore, that a heuristic function be
very quick to calculate. Often heuristics must trade accuracy
for speed of computation so that they are useful in practice.
By contrast, a solution cost predictor is applied only once for
a given problem instance and it is expected to be as accurate
as possible. Obviously, it should be faster than a search algo-
rithm that finds a least-cost path. However, it is not required
to be nearly as fast as a heuristic function.

In this paper we present a new algorithm for predicting the
optimal solution cost of a problem instance. Our algorithm is
a bidirectional adaptation of Chen’s algorithm (1992), which
estimates a numerical property of a search tree (such as its
size) by stratified sampling. We call our method BiSS, for
Bidirectional Stratified Sampling. BiSS has two advantages
over SCP: (1) BiSS entirely avoids the time-consuming pre-
processing required by SCP; and (2) unlike SCP, BiSS is
guaranteed to return the optimal solution cost in the limit as
its sample size goes to infinity.

We empirically evaluated BiSS on small and large ver-
sions of three domains: the Blocks World, the Sliding-Tile
puzzle, and the Pancake puzzle. Our experiments show that
solution cost prediction using BiSS is orders of magnitude
faster than finding optimal solutions by actually solving the
problem. On the small versions of the domains BiSS’s ac-
curacy is equal to or better than SCP’s. SCP cannot be run on
the large versions of the domains because its preprocessing
step would be too time-consuming. By contrast, our exper-
iments show that BiSS efficiently makes accurate predic-
tions for large versions of these domains too. In addition,
we show that BiSS scales to state spaces much larger than
can be solved optimally. In particular, we predict the average
solution cost for the Sliding-Tile puzzles up to the 8x8 con-
figuration, which has more than 1088 reachable states, and
provide indirect evidence that BiSS’s predictions for these
huge state spaces are accurate.

Related Work

Korf, Reid, and Edelkamp (2001) provided a method that
predicts the number of nodes expanded by IDA*, for a given
cost bound, when the heuristic being used is consistent. They
pointed out that predicting the optimal solution cost of a
problem instance, or even the average optimal solution cost

of a domain, was an open problem. Zahavi et al. (2010) pro-
vided a different method, CDP, for the same task. CDP is
more accurate and applicable to inconsistent heuristics as
well as consistent ones. At the core of CDP is the definition
of a “type system” for nodes in a search tree. The type of a
node reflects properties of the node itself (e.g., its heuristic
value, the position of the blank in the Sliding-Tile puzzle)
and of the nodes near it in the search tree (e.g., its parent and
children). In a preprocessing phase, CDP samples the state
space to build an estimate of p(¢|u), the probability that a
node of type ¢ will be generated when a node of type u is
expanded. With this information CDP constructs a tree that
emulates the IDA* search tree, but in which nodes represent
types instead of individual states.

Lelis et al. (2011) presented SCP, an algorithm based on
CDP that predicts the cost of the optimal solution of a prob-
lem instance. Their key idea was to include in the type sys-
tem a “goal type”, which is the type of all the goal states
and no other states. Whenever the goal type is generated in
CDP’s tree with a probability higher than a given threshold,
SCP halts and returns the cost of the path to this goal node
in its tree as the predicted solution cost.

The Knuth-Chen Method

Our method, BiSS, is based on a method by Knuth (1975)
that was later improved by Chen (1992). In this section, we
describe their method; in the next section we describe how
it can be adapted to do optimal solution cost prediction.

Knuth (1975) presents a method to predict the size of a
search tree by repeatedly performing a random walk from
the start state. Each individual random walk is called a
probe. Knuth’s method assumes that all branches have simi-
lar structure in terms of the branching factors along the path.
Thus, walking on one path is enough to derive an estima-
tion of the structure of the entire tree. Despite its simplic-
ity, his method provided accurate predictions in the domains
tested. However, Knuth himself pointed out that his method
was not effective when the tree being sampled is unbalanced.
Chen (1992) addressed this problem with a stratification of
the search tree through a type system to reduce the variance
of the probing process. Chen’s concept of a type system (he
called types “stratifiers”) is defined as follows.

Definition 1. Let S(s*) be the set of nodes in the search tree
rooted at s*. T = {t1,...,t,} is a type system for S(s*) if
it is a disjoint partitioning of S(s*). For every s € S(s*),
T(s) denotes the unique t € T with s € t.

Chen’s Stratified Sampling (SS) is a general method for
approximating any function of the form

>, (s).

SES(s*)

where z is any function assigning a numerical value to a
node. o(s*) represents a numerical property of the search
tree rooted at s*. For instance, if z(s) is the cost of process-
ing node s, then (s*) is the cost of traversing the tree. If
z(s) = 1forall s € S(s*), then p(s*) is the size of the tree.
If z(s) returns 1 if s is a goal node and 0 otherwise, then
©(s*) is the number of goal nodes in the search tree.

156

Algorithm 1 Stratified Sampling

1: input: root s* of a tree and a type system 1’
2: output: an array of sets A, where A[i] is the set of
(node,weight) pairs (s,w) for the nodes s expanded at

level i.
3 AJ0] < {{s",1)}
4: 10
5: while stopping condition is false do
6: for each element (s, w) in A[i] do
7: for each child 5 of s do
8: if Ai 4+ 1] contains an element (s’,w’) with
T(s') =T(3) then
9: w —w' 4w
10: with probability w/w’, replace (s’,w’) in
Ali + 1] by (8, w")
11: else
12: insert new element (8§, w) in A[i 4 1].
13: end if
14: end for
15: end for
16: i i+1

17: end while

Instead of traversing the entire tree and summing all z-
values, SS assumes subtrees rooted at nodes of the same type
will have equal values of ¢ and so only one node of each
type, chosen randomly, is expanded. This is the key to SS’s
efficiency since the search trees of practical interest have far
too many nodes to be examined exhaustively.

Given a node s* and a type system 7', SS estimates ¢(s*)
as follows. First, it samples the tree rooted at s* and returns a
set A of representative-weight pairs, with one such pair for
every unique type seen during sampling. In the pair (s, w)
in A for type t € T, s is the unique node of type ¢ that was
expanded during search and w is an estimate of the number
of nodes of type t in the search tree rooted at s*. p(s*) is
then approximated by ¢(s*,T), defined as

IEC]

(s,w)EA

¢(s",T) =

Algorithm 1 shows SS in detail. For convenience, the set
A is divided into subsets, one for every layer in the search
tree; Afi] is the set of representative-weight pairs for the
types encountered at level 7.

In SS the types are required to be partially ordered: a
node’s type must be strictly greater than the type of its par-
ent. Chen suggests that this can always be guaranteed by
adding the depth of a node to the type system and then sort-
ing the types lexicographically. In our implementation of
SS, types at one level are treated separately from types at an-
other level by the division of A into the A[¢]. If the same type
occurs on different levels the occurrences will be treated as
though they were different types — the depth of search is im-
plicitly added to the type system.

Representative nodes from A[i] are expanded to get rep-
resentative nodes for A[i + 1] as follows. A[0] is initialized
to contain only the root of the search tree to be probed, with

Figure 1: Hypothetical example of bidirectional sampling.

weight 1 (Line 3). In each iteration (Lines 6 through 15),
all nodes in A[i] are expanded. The children of each node
in A[i] are considered for inclusion in A[i 4 1]. If a child §
has a type t that is already represented in A[i + 1] by an-
other node s’, then a merge action on § and s’ is performed.
In a merge action we increase the weight in the correspond-
ing representative-weight pair of type ¢ by the weight w(s)
of §’s parent s (from level 4) since there were w(s) nodes
at level ¢ that are assumed to have children of type ¢ at level
1+1. § will replace the s’ according to the probability shown
in Line 10. Chen (1992) proved that this probability reduces
the variance of the estimation. Once all the states in A[i] are
expanded, we move to the next iteration. In Chen’s original
version of SS, the process continued until A[i] was empty;
Chen was assuming the tree naturally had a bounded depth.
One run of the SS algorithm is called a probe. Chen
proved that the expected value of ¢(s*,T) converges to
©(s*) in the limit as the number of probes goes to infinity.

Using S S for Optimal Solution Cost Prediction

One approach to predicting the optimal solution cost of a
given problem instance is to run SS and have it stop when a
goal state is generated. The cost of the path found to the goal
state is an upper bound on the optimal solution cost, so the
minimum of these upper bounds over a set of probes gives
an estimate of the optimal solution cost. However, in an ex-
periment we ran on the 24-puzzle using the same heuristic
function and the same number of probes we use in our ex-
periments below, the predictions produced by this approach
were more than double the optimal cost.

Bidirectional Solution Cost Prediction

BiSS is a bidirectional variant of SS for predicting optimal
solution costs. It interleaves the execution of two copies of
SS, one proceeding forwards from the start state, the other
proceeding backwards (using inverse operators) from the
goal state. We switch between the two searches when one
iteration of the loop in lines 5 to 16 of Algorithm 1 has fin-
ished. One “step” in a particular direction thus corresponds
to the expansion of all the representative nodes at a given
level. When referring to the array A in the SS algorithm, we
will use a superscript to distinguish the array used in the for-
ward search (A" from the one used in the backward search
(AB). For example, AZ[3] is the set of (node,weight) pairs
for the nodes expanded at level 3 of the backward search.

157

Figure 1 illustrates the situation after three steps in each
direction. Nodes around both the start state s and goal state
g are shown. The filled nodes are those that BiSS expands
in its first three steps from s and its first three steps from g.

Stopping Condition

The stopping condition for bidirectional state-space search,
when an optimal solution path is required, involves testing
if a state has been generated in both directions.! Since A
and AP contain individual states that have been generated
by SS in each direction, the same test could be used in
BiSS. However, Af'[n] and AB[m] contain only one state
of each type, chosen at random, so if the number of dis-
tinct types is much smaller than the number of states this
test is doomed to failure unless the number of probes is pro-
hibitively large. We therefore base our stopping condition
on the set of types that have occurred at each level of the
searches and define 77 [n] = {T(s)|(s,w) € AF[n]}, the
set of types of the nodes expanded at level n by the copy of
the SS algorithm searching forward from the start state, and
T8 [m] = {T(s)|(s,w) € AP[m]}.

The naive stopping condition would be to stop as soon as
T¥[n] and T5[m] have a type in common, where n and m
are the most recently generated levels. The problem with this
approach is that states of the same type might occur close to
the start and the goal even if the start and goal are very far
apart. In Figure 1, for example, states a and b might have the
same type (T'(a) = T'(b)) even though the actual distance
between start and goal is much greater than 6 (the combined
distance from start to ¢ and from goal to b).

We therefore use a more elaborate condition to decide
when to stop the bidirectional search, requiring the type sets
at the frontiers of the two searches to overlap for several con-
secutive levels. We call this stopping condition a “match”
between the two searches, defined as follows.

Definition 2. (match) — For any n and m we say that T [n]
and TB[m] match if T [n+r|NTEm —r] # 0 forall r €
{0,1,--+ , K} where K = max{|y-m|, 1}. Herey € [0,1]
is an input parameter.

After each step in each direction we test if the same type
occurs in both 7 [n] and 75[m], where n and m are the
most recently generated levels in the respective search di-
rections. If this happens, we extend the forward search up
to level n + K so that a match, as defined in Definition 2,
can be fully tested. This concept of match is illustrated in
Figure 2 for K = 2. Each circle in the figure represents a
set of types at a level of search (T[] or TB[.]); each ¢,
denotes just one of the types in the corresponding set. The
forward search has a state of type ¢ at level n; the backward
search has a state of the same type at level m. The forward
search continues for K more levels, producing (among oth-
ers) a node of type t; at level n + 1 and a node of type to
at level n 4 2. This yields a match since there are nodes of
type t1 and t5 at levels m — 1 and m — 2, respectively, of the
backwards search.

If a match occurs at step n from the start state and at step
m from the goal state, then the searches terminate and n+m

'The correct stopping condition is more complex (Holte 2010).

............

— _/
YT
m

Figure 2: Illustration of a match for K = 2. Each circle
represents a set of types at a level of search (7F'[.] or 72[.]);
each ¢,. denotes just one of the types in the corresponding set.
A match occurs for K = 2 as t,. € T [n + r]nT8[m — 7]
forr € {0,1,2}.

is returned as an estimate of the optimal solution cost. If a
match does not occur, then the searches resume from levels
n+1 and m, or from levels n and m+1 depending on which
frontier advanced last before checking for the match.

When a type system makes use of properties of the chil-
dren and/or grandchildren of a node the definition of match
only makes sense if the children/grandchildren are computed
in the backward search using the forward version of the
operators. Otherwise, the forward and backward searches
might assign different types to the same state, thus making
it impossible for a match to occur (even if K = 0).

Multiple Probes

The procedure just described represents one probe of our
algorithm. We now describe how the information obtained
from a set of p probes can be aggregated to produce a more
accurate solution cost prediction. Let the type frontiers gen-
erated by probe i be denoted 7' [n;] and 72 [m;], where n;
is the depth of the last level generated in the forward direc-
tion by probe ¢ and m; is the depth of the last level gener-
ated in the backwards direction by probe 4. Let 7£[n] de-
note the union of all the 7 [n], for 0 < n < maz;{n;}
and let T5[m] denote the union of all the 75[m;], for
0 < m < max;{m;}. To compute the final estimate of
the optimal solution cost we set m and n to zero and grad-
ually increment them, checking for a match between 7 ' [n]
and T B[m)] after each increment; n + m is returned as the
predicted optimal solution cost when the first match occurs.

Chen assumes an SS probe eventually terminates by
reaching leaf nodes of the search tree. We also assume that
each of BiSS’s probes eventually terminates. In our case
a probe will finish if it either reaches leaf nodes (A% [n] or
AB[m] is empty), or if a match is found between the forward
and backward frontiers. If the former happens, it means this
BiSS probe predicts there is no path from start to goal. If
the latter happens, this BiSS probe produces an estimate of
the optimal solution cost. In all our experiments every BiSS
probe finished by finding a match between the forward and
backward frontiers.

Theoretical Analysis

Assuming a BiSS probe always terminates we now prove
that the predictions of BiSS never overestimate the optimal
solution cost when the number of probes goes to infinity.

158

Lemma 1. Given start state s, goal state g, type system T,
any value ~y € [0, 1], and a number p of probes, B1SS almost
surely outputs an estimate ¢* with ¢* < ¢* as p — oo.

Proof. Let BFSF[n] be the set of types of all nodes dis-
tance n from the start state, and BF'SB[m] be the sets of
types of all nodes distance m from the goal state (using in-
verse operators). For instance, in Figure 1, BFSBJ1] is the
set of types of the states one step from g. In SS every node
in the tree rooted at s can be expanded with nonzero proba-
bility. By the law of large numbers, as p — oo, at least one
node of each type at each level of the tree rooted at s will
be expanded by SS, and the same argument is also true for
the tree rooted at g. Therefore, as p — oo, T [n] will equal
BFSF[n] and TB[m] will equal BFSB[m].

If there exists a path from s to g with cost ¢*, then, for
some 7, bidirectional BFS would find a state that occurs both
in the forward frontier of depth r starting from s and in the
backward frontier of depth r’ starting from g, where ' €
{r,7—1} and ¢* = r-+7'. This means that 7 £ [r] and 7 Z[r']
have at least one type in common. Hence, for any v € [0, 1],
as p — oo, BiSS almost surely finds the level n and the
level m for which 7% [n] and 72[m] match with respect
to «y. Since the candidate values for n and m are gradually
increased, the first such values n and m found must fulfill
cF=n+m<c". O

By mapping the goal state g to a special unique type,
named goal type (Lelis et al. 2011), and setting v = 1.0,
we prove our prediction algorithm to be optimal as p — oo.

Definition 3. (goal type) — The goal type is a type t9 € T
witht9 = {g}, i.e., T(g) = t? and T(s) # t9 for s # g.

Theorem 1. Given a start state s, a goal state g, a type
system T mapping g to a goal type, v = 1.0, and a number
p of probes, B1SS almost surely outputs an estimate ¢* with
¢t =c*asp— oo

Proof. ¢* =n + m where BFSF[n] and BFSB[m)] is the
first match found by BiSS for v = 1.0.

n+m < c¢* almost surely as p — oo follows from Lemma
1.

To prove n + m > ¢*, note that BF'SB[0] contains only
the goal type t9. Thus, with v = 1.0, a match between
BFSF[n] and BFSB[m] occurs only if t € BFSF[n +
m]. Since 9 contains only the goal state g, g must be on a
path of cost m + n from s. Since c¢* is the optimal solution
cost for s, this implies m + n > c*.

Consequently, m +n = c¢*. O

The proof of Theorem 1 assumes that BiSS’s probing
expanded states of all possible types in every level before
checking for a match between TZ[.] and 72[.]. This theo-
rem proves that Bi S S correctly predicts the optimal solution
cost when 7 = 1.0 and the number of probes goes to infinity.
In the next section we show empirically that BiSS also pro-
duces accurate predictions with a limited number of probes
and lower y-values.

Time Complexity — What dictates the time complexity
of Biss is |T, the size of the type system being used, b,
the problem’s branching factor, p, the number of probes,

and C' = max;{n; + m;}, the largest n; + m; value re-
turned by the probes. We assume the representative-weight
pairs (maintained by all the collections such as A'[.], AB[.])
are stored in a hash table and that the insert and search
operations on the table are made in constant time. We fur-
ther assume a probe will terminate with a match of the two
frontiers. BiSS generates |T| - b nodes at each step of the
forward or backward frontiers in the worst case. Therefore,
BiSsS generates up to |7'| - b - C nodes during each probe.
In the worst case, when checking for a match between the
two frontiers there will be a nonempty intersection between
T[] and T[] for all values of r (as in Definition 2) ex-
cept the last one. When v = 1.0 this results in |T] - C?
comparisons until the match is found and the probe termi-
nates. Therefore, in the worst case BiSS has a running time
of O(p- (IT|-b-C+|T|-C?)).

Memory Complexity — The size of the type system |T|
and C' = max;{n;+m,} determine the memory complexity
of B1SS. We again assume a probe will always finish with a
match between the two frontiers. In the worst case there will
be |T'| states at each level of both forward and backward
frontier. As the difference of the number of steps between
TF[.] and TB[.] will be at most one we can approximate the
number of representative-weight pairs to be stored in mem-
ory wheny = 1.0as C - |T| + & - |T). The first term in the
sum accounts for the pairs in the forward frontier, and the
second for the pairs in the backward frontier. Recall that the
memory requirement for the forward frontier is larger as this
is the frontier we advance while looking for a match. Thus,
BiSsS has a worst-case memory complexity of O(C - |T).

Experimental Results

In this section we experimentally evaluate the accuracy and
runtime of BiSS. Our experiments are run in three domains:
the Blocks World, the Sliding-Tile puzzle, and the Pancake
puzzle. These domains offer a good challenge for the op-
timal solution cost predictors as they have different prop-
erties. For instance, the Sliding-Tile puzzle has deeper so-
lutions and a smaller branching factor than the other two
domains. The Pancake puzzle has a constant branching fac-
tor, the Sliding-Tile puzzle has small variance in its branch-
ing factor, and the Blocks World’s branching factor can vary
considerably from one state to another. We use two sizes for
each domain, a smaller size used to compare BiSS to SCP
and a larger size to demonstrate the scalability of BiSS. SCP
cannot be run on the large versions of the domains as its pre-
processing step would be prohibitively time-consuming.
Our results show that: (a) B1SS’s accuracy equals or ex-
ceeds SCP’s in the smaller versions of the domains; (b)
BiSS scales up much better than SCP and produces accu-
rate predictions for the large versions of the domains; (c)
BiSS is more accurate than the heuristics used to build its
type system; (d) BiSS is considerably faster than solving
the least-cost path problem; and (e) BiSS produces accurate
predictions for state spaces too large to be solved optimally.
As stated in the introduction, while not designed to,
heuristic functions themselves can be used as predictors of
the optimal solution cost if they are applied to the start state.
They are typically faster but less accurate than predictors

159

designed exclusively to predict the optimal solution cost. To
show this we also compare the accuracy of BiSS’s predic-
tions with the accuracy of two heuristic functions. First, it
is natural to compare BiSS to the heuristic used to define
its type system. In all our experiments, this heuristic was ad-
missible. However, admissible heuristic functions are known
as poor estimators of the optimal solution cost compared
to inadmissible heuristics (Lelis et al. 2011). For exam-
ples of inadmissible heuristics see, e.g., Bonet and Geffner
(2001), Hoffmann and Nebel (2001), and Richter, Helmert,
and Westphal (2008). We chose the Bootstrap heuristic (Jab-
bari Arfaee, Zilles, and Holte 2011) to represent the class of
inadmissible heuristics for two reasons. First, IDA* with the
Bootstrap heuristic was found to produce near-optimal solu-
tions while expanding relatively few nodes, which suggests
the heuristic is providing accurate estimates of the optimal
solution cost. Second, the Bootstrap heuristic was shown to
be superior to some of the inadmissible heuristics mentioned
above on the Blocks World (Jabbari Arfaee et al. 2011).

Solution cost predictions are compared using relative ab-
solute error (Lelis et al. 2011) for a set of optimal solution
costs. For all start states with optimal solution cost X one
computes the absolute difference of the predicted solution
cost and X, adds these up, divides by the number of start
states with optimal solution cost X and then divides by X.
A system that makes perfect predictions will have a relative
absolute error of 0.00.

We use the following type systems in our experiments.

T.(s) = (h(s),c(s,0),...,c(s,H)), where h(s) is the
heuristic value of node s, ¢(s,k) is how many of s’s
children have heuristic value k, and H is the maximum
heuristic value a node can assume;

Tye(s) = (Te(s), 9c(s,0), . .., ge(s, H)), where ge(s, k)
is how many of s’s grandchildren have heuristic value k.

Two nodes have the same type according to 7 if they
have the same heuristic value and, for each k, they both
have the same number of children with heuristic value k.
T, additionally requires the same heuristic distribution for
the grandchildren.

We run BiSS with the same set of input parameters for all
the experiments. In particular, we use 2 probes and v = 0.5.
As K also depends on the number of steps m (see Definition
2), BiSS is able to make accurate predictions in domains
with different average solution costs while using the same
v-value. SCP was run with the same input parameter values
Lelis et al. (2011) used. For BiSS the type system and the
set of input parameters (p and) were chosen so that BiSS
would make predictions quickly. For instance, B1SS’s pre-
dictions are more accurate using the larger T, type system.
However, using Ty, in domains with large branching factor
could result in very large type systems, which would result
in slow prediction computations. Thus, 7. will be preferred
in that case. Besides 7. and T} one could also create type
systems “in between” those two by evaluating only a subset
of the children or a subset of the grandchildren of a node
while calculating its type. The type system used in each ex-
periment is specified below. When using a type system 7" for

Cost Relative Absolute Error Percentage Correct
BiSsS SCP BS h BiSS scp BS
16 0.00 006 044 0.06 | 100 0 0
17 0.00 004 033 0.18 | 100 40 0
18 0.02 003 028 0.19 75 43 0
19 0.01 007 022 024 73 2 0
20 0.01 009 020 0.26 77 1 0
21 0.02 0.12 0.15 030 70 0 0
22 002 0.14 0.12 033 70 0 1
23 0.01 0.17 0.08 0.36 74 0 18
24 0.01 0.18 0.06 0.39 81 0 11
25 0.01 020 0.04 041 78 0 10
26 001 022 0.02 043 84 0 70
27 0.00 021 0.03 045 100 0 30
28 0.00 020 0.05 048 | 100 0 0

Table 1: 15 Blocks World

BiSS we used the same 1" for SCP, but with the heuristic
value of the parent node added, as required by SCP.

The results will be presented in tables like Table 1. The
first column shows the optimal solution cost, followed by the
relative absolute error of different predictors. We compare
BiSS with SCP, Bootstrap (BS), and the heuristic, h, used
to define the type system for BiSS and SCP. We also show
the percentage of problem instances for which a predictor
makes perfect predictions (¢* = ¢*). The best value in each
row is in bold.

Blocks World

We ran experiments on small problems with 15 blocks and
larger ones with 20 blocks, using 1,000 uniformly random
instances to measure the accuracy of the predictors. Optimal
solutions were obtained with Slaney and Thiebaux’s (2001)
solver. In both cases, for ease of comparison to SCP and
Bootstrap, the goal state is fixed and has all blocks in a single
stack. The type system used is 7, built with the very weak
“Out of Place” heuristic, which counts the number of blocks
not in their goal position, cf. Jabbari Arfaee et al. (2011).
SCP was run with the type system 7, sampling 10 million
states in its preprocessing step, and using 10 uniformly ran-
dom instances to calculate the required e-values.

Our results on 15 blocks are shown in Table 1. BiSS is
very accurate for this domain; its predictions are nearly per-
fect. Bootstrap and SCP’s errors vary considerably with the
optimal solution cost of the problem instances and are much
higher than BiSS’s error. For 20 blocks (Table 2), again
B1isSS makes nearly perfect predictions and is far more accu-
rate than the Bootstrap heuristic. Bi SS’s predictions are also
substantially more accurate than the values of the heuristic
used to build the type system. For example, for problem in-
stances with optimal solution cost of 37 B1 SS makes perfect
predictions, while the heuristic has an error of 47%.

Sliding-Tile Puzzle

The smaller size of the sliding-tile puzzle we experimented
with was the 4x4 puzzle (15-puzzle), which has 16!/2 reach-
able states from the goal state. Accuracy was measured over
1,000 uniformly random instances. We used T}, with Man-

160

Cost | Relative Absolute Error | Percentage Correct
BiSS BS h BiSS BS
22 0.00 050 0.09 100 0
24 002 029 0.19 50 0
25 0.02 026 022 50 0
26 003 026 025 38 0
27 0.01 022 027 72 0
28 002 0.18 029 59 0
29 001 015 032 66 0
30 002 0.13 034 57 0
31 001 0.10 036 63 0
32 001 0.08 038 68 6
33 001 0.06 040 68 7
34 001 0.04 042 70 12
35 001 0.03 043 79 11
36 0.01 0.00 045 80 95
37 0.00 0.03 047 100 28
38 0.00 0.04 049 100 0
Table 2: 20 Blocks World
Cost Relative Absolute Error Percentage Correct
BiSS SCP BS h BiSs scp BS
48 0.08 0.06 0.09 029 13 15 5
49 0.07 0.05 0.08 030 17 20 11
50 0.07 0.04 0.08 029 14 21 2
51 0.07 0.03 0.07 029 8 43 7
52 0.07 0.03 0.07 030 23 42 6
53 0.07 0.03 0.06 031 19 32 4
54 0.07 0.03 0.07 030 6 37 9
55 0.06 0.03 0.08 029 10 35 4
56 0.07 0.04 0.07 030 9 23 6
57 0.06 004 0.06 030 10 23 13
58 0.08 0.04 0.07 029 2 23 6
59 0.05 0.04 0.08 027 7 10 0
60 0.06 006 0.07 028 8 16 8
61 005 006 0.08 028 23 11 0
62 006 006 0.09 028 0 7 3
63 004 006 0.08 027 17 5 0

Table 3: 15-puzzle

hattan Distance (MD) as the type system. Table 3 shows the
results. MD underestimates the actual solution cost by about
30%. The Bootstrap heuristic, SCP and BiSS with our de-
fault set of parameters (2 probes and v = 0.5) are all very
accurate for this domain. SCP is slightly more accurate than
BiSS with small costs but the trend shifts for larger costs.
However, in results not shown, if the number of probes and
the y-value are increased, B1SS and SCP make predictions
of similar accuracy for the small costs too. Both predictors
are more accurate than the Bootstrap heuristic.

The larger puzzle version used, the 5x5 puzzle (24-
puzzle), has 25!/2 states reachable from the goal. Here accu-
racy was measured over 433 uniformly random start states,
which were solved optimally using Korf and Felner’s (2002)
6-6-6-6 disjoint pattern database with reflection along the
main diagonal. We used 7T, with MD as the type system.
Table 4 shows the results. BiSS is significantly more accu-
rate than Bootstrap. For example, for instances with optimal
solution cost of 100, B1SS’s predictions are only 3 moves

Cost | Relative Absolute Error | Percentage Correct
BiSS BS h BiSS BS
82 0.05 0.14 024 0 0
84 004 0.09 025 0 0
86 004 0.07 026 0 11
88 006 0.09 025 12 0
90 005 0.07 028 0 0
92 005 0.07 025 19 3
94 004 0.07 026 18 0
96 005 0.08 025 13 2
98 003 0.07 026 20 5
100 | 0.03 0.08 0.26 26 2
102 | 0.04 0.08 0.25 11 0
104 | 003 0.08 0.25 25 0
106 | 0.04 0.08 0.25 10 0
108 | 0.03 0.08 024 37 5
110 | 0.03 0.09 024 17 0
112 | 004 0.07 025 0 0
114 | 003 0.08 024 0 0
116 | 0.04 0.10 020 12 0
118 | 0.02 0.10 023 33 0
120 | 004 0.09 0.21 0 0

(0.03 * 100) different than the true optimal solution cost, on
average, whereas Bootstrap’s are 8 moves different.

Pancake Puzzle

Table 4: 24-puzzle

Cost Relative Absolute Error Percentage Correct
BiSS SCP GaP h BisSS SCP GaP
7 0.04 0.12 0.08 0.18 73 25 53
8 002 005 0.07 021 84 60 48
9 0.05 0.04 0.07 023 58 67 46
10 0.06 0.07 0.06 025 49 34 46
Table 5: 10-pancake
Cost Relative Absolute Error Percentage Correct
BisSS BS GaP h Biss BS GaP
29 0.03 0.03 004 021 50 33 16
30 003 0.05 0.03 0.18 36 18 18
31 002 0.04 003 0.19 36 27 23
32 001 0.03 002 0.19 62 30 23
33 002 0.03 0.02 0.19 38 33 34
34 0.02 0.03 0.02 0.19 39 32 37
35 0.02 0.02 0.02 0.19 34 42 36
36 002 0.01 003 0.19 33 52 0

Table 6: 35-pancake

For the pancake puzzle we also compare to the “GaP”
heuristic (Helmert 2010), a highly accurate hand-crafted ad-
missible heuristic for this domain.

The smaller size of the pancake puzzle we used was the
10-pancake puzzle, which has 10! states reachable from the
goal state. We used 5,000 uniformily random instances to
compute the accuracy of the estimators. The heuristic used
to construct the type systems was the maximum of the reg-
ular and the dual lookups (Zahavi et al. 2008) of a pattern

161

Domain min max mean
20 Blocks World 26s 57s 41s
24 Sliding-Tile Puzzle | 18s 48s 30s
35 Pancake Puzzle 19s 30s 24s

Table 7: BiSS runtime for p = 2.

database built by keeping the identity of the four smallest
pancakes and turning the other pancakes into “don’t cares”.
Here the type system used is 7. Table 5 shows that even
GaP is not as accurate as BiSS for the 10-pancake.

The larger size of the pancake puzzle we used was the 35-
pancake, which has 35! states reachable from the goal state.
We used 1,000 uniformly random instances to measure accu-
racy and solved them optimally using the GaP heuristic. The
heuristic used in the experiment was the 5-5-5-5-5-5-5 addi-
tive pattern database heuristic (Yang et al. 2008), which we
used to construct a “coarser” version of the 7, type system
and to provide features for the Bootstrap heuristic (Jabbari
Arfaee et al. 2011). Even though very accurate, B1SS’s pre-
diction computations were slow when using the 7. type sys-
tem. In order to speed up the predictions, we reduced the size
of the type system by accounting for the heuristic value of
only three of the children of a node, instead of taking into ac-
count the heuristic values of all the children. Table 6 shows
the results. For an optimal solution cost larger than 32, the
results for BiSS, Bootstrap, and GaP are very similar. Here
we observe that all three predictors are very accurate in this
domain, and BiSS was never worse than any other tested
predictor. Moreover, BiSS tends to have a higher percent-
age of problem instances predicted perfectly. Note that as
the Pancake puzzle gets larger the relative absolute error of
the GaP heuristic gets smaller.

Runtime

B1iSS’s runtime is polynomial in the size of the type system,
the predicted solution cost, the number of probes, and the
branching factor. Table 7 shows how this time complexity
translates into actual runtime by showing the fastest (min),
slowest (max), and the average (mean) prediction runtimes
for the set of problem instances used in the accuracy ex-
periment above. Table 7 shows the runtime for p = 2 and
~v = 0.5 (using an Intel Xeon CPU X5650, 2.67GHz).

BiSS is thus considerably faster than solving the prob-
lem suboptimally; the mean times for Bootstrap (also using a
2.67GHz machine) to suboptimally solve one single instance
were 3h 49 mins, 14 mins 5 s, and 2 h 29 mins, respectively,
for the three domains in Table 7 (Jabbari Arfaee et al. 2011).
The advantage becomes even more evident when compar-
ing to optimal solving time. For instance, Korf ef al. (2001)
predicted it would take 51,454 years to solve one 24-puzzle
instance of average solution cost with IDA* guided by Man-
hattan Distance. BiSS takes about 30 seconds on average to
make very accurate predictions of the optimal solution cost
when using Manhattan Distance to build its type system.

Predictions for Very Large State Spaces

We also used BiSS (again using p = 2, v = 0.5, and the
Ty type system with MD) to predict the optimal solution
cost of problem instances for the n? Sliding-Tile puzzle with
n € {6,7,8}, i.e., state spaces much too large to be solved
optimally by any known technique in a reasonable time. The
number of instances for which predictions were made and
the average time (in minutes) taken by BiSS to compute
one prediction are shown in the first two rows of Table 8.
We have no way to verify the accuracy of the individual pre-
dictions directly, but we did devise a way to evaluate the
accuracy of the average predicted optimal solution cost on
these sets of instances; the average predictions are shown in
the third row of Table 8.

Parberry (1995) proved lower and upper bounds for the
average solution cost of the n2-puzzle to be cubic in n.
Thus one way to estimate the average solution cost for the
Sliding-Tile puzzle is to fit a third-order polynomial to the
known average solution costs and then infer the unknown
average solution costs. The average solution cost for the
(2x2), (3x3), and (4x4) puzzles are roughly 3, 22, and 53,
respectively. The average solution cost obtained from solv-
ing more than 400 instances of the (5x5) puzzle is approxi-
mately 101. The third-order polynomial fit for these data is
0.8333 - n3 — 1.5 - n? + 10.6667 - n — 19. The results for
the polynomial fit, shown in the final row of Table 8, are very
close to BiSS’s average predictions, suggesting that B1SS’s
individual predictions are also accurate.

Configuration
6x6 7x7 8x8
instances 1,000 650 50

BiSS time (mins) 6 18 80
B1iSS avg predicted cost 172 280 423
Polynomial predicted cost | 171 268 397

Table 8: Predicted average optimal solution cost for very
large Sliding-Tile Puzzles.

Parameter Selection

In our experiments we fixed the number of probes p to 2
and the confidence parameter v to 0.5. How would BiSS’s
accuracy be affected by different settings of these parame-
ters? We use the relative signed error to better understand
the impact of different p and v on BiSS’s predictions. The
relative signed error is calculated by summing the difference
between the predicted cost with the actual optimal solution
cost for each problem instance. This sum is then divided by
the sum of the actual costs. A system that always underes-
timates the actual optimal solution cost will have a negative
relative signed error.

According to Lemma 1 for v < 1.0 BiSS will have a
zero or negative relative signed error in the limit of large p,
and we have observed this trend in experiments that space
limits prevent us from describing in detail. Hence, for any
setting of « other than 1.0, increasing p beyond a certain
value will cause signed error, and therefore also absolute er-
ror, to increase. With sufficiently small values of v BiSS

162

will almost always underestimate the optimal solution cost,
so it will have a negative signed error even when p = 1,
which will only get worse as p is increased. For larger val-
ues of v BiSS will overestimate the optimal solution cost
when p = 1 so its signed error will be positive. Increasing p
will drive the signed error towards 0, i.e., increase the accu-
racy of the predictions, until p is large enough that the signed
error becomes negative. At this point further increases of p
will cause accuracy to get worse. This gives some guidance
as to how these two parameters might be set automatically:
find a value of ~ that is small (so that prediction is fast) but
sufficiently large that BiSS with p = 1 overestimates, and
then increase p until BiSS begins to underestimate.

Limitations of BiSS

B1iSS requires there to be a single goal state and is therefore
not suitable for domains in which a set of goal conditions is
given instead of an actual goal state. Another limitation of
our method is that it assumes the inverse of the operators to
be available, as it is assumed by any bidirectional search al-
gorithm. In cases where the inverse operators are not known,
SCP is still the state-of-the-art solution cost predictor. Even
though the current version of BiSS does not handle non-
unit edge costs, we believe it could be extended to do so. For
this purpose, B1SS would have to sample the uniform-cost
search trees. Implementing and experimenting in domains
with non-unit edge costs is also a subject of future work.

Conclusion

Optimal planning and heuristic search systems solve state-
space search problems by finding a least-cost path from start
to goal. As a byproduct of having an optimal path they also
determine the optimal solution cost. However, there are sit-
uations in which the optimal path is not needed — one is in-
terested only in the optimal solution cost. In this paper we
presented BiSS, an efficient algorithm that accurately pre-
dicts the optimal solution cost without finding a least-cost
path from start to goal. B1SS is based on ideas of bidirec-
tional search and stratified sampling.

BiSS does not require preprocessing and is guaranteed to
return the optimal solution cost in the limit as the number
of its probes goes to infinity. It is much faster than actually
solving the least-cost path problem. We showed empirically
that B1iSS makes very accurate predictions in several do-
mains. BiSS’s predictions, with an appropriate setting of
its parameters, were never worse than SCP’s in our experi-
ments and were sometimes much better. B1SS scales much
better than SCP. Finally, we showed it could be applied to
state spaces much larger than can be solved optimally in a
reasonable time.

Acknowledgements

We thank Rong Zhou for providing the optimal solution cost
for the instances of the 24-puzzle used in our experiments.
This work was supported by the Laboratory for Computa-
tional Discovery at the University of Regina, Alberta Inno-
vates - Technology Futures, the Alberta Ingenuity Centre for
Machine Learning, and Canada’s NSERC.

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5-33.

Chen, P-C. 1992. Heuristic sampling: A method for pre-
dicting the performance of tree searching programs. SIAM
Journal on Computing 21:295-315.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cyber-
netics 4:100-107.

Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Felner, A., and Sturtevant, N. R., eds., Pro-
ceedings of the Third Annual Symposium on Combinatorial
Search, 109-110. AAAI Press.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

Holte, R. C. 2010. Common misconceptions concerning
heuristic search. In Proceedings of the Third Annual Sym-
posium on Combinatorial Search, 46-51.

Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence 175(16-17):2075-2098.

Knuth, D. E. 1975. Estimating the efficiency of backtrack
programs. Mathematics of Computation 29:121-136.

Korf, R., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134.

Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial Intelligence
129:199-218.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible treesearch. Artificial Intelligence 27:97—-109.
Lelis, L.; Stern, R.; and Jabbari Arfaee, S. 2011. Predicting
optimal solution costs with conditional probabilities. In Pro-
ceedings of the Fourth Annual Symposium on Combinatorial
Search, 100-107.

Parberry, I. 1995. A real-time algorithm for the (n’-1)-
puzzle. Information Processing Letters 56(1):23-28.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C. P., eds., AAAI
975-982. AAAI Press.

Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119-153.

Yang, F.; Culberson, J. C.; Holte, R.; Zahavi, U.; and Felner,
A. 2008. A general theory of additive state space abstrac-
tions. Journal of Artificial Intelligence Research 32:631—
662.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172(4-5):514-540.

Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010.
Predicting the performance of IDA* using conditional dis-

tributions. Journal of Artificial Intelligence Research 37:41—
83.

163

