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Abstract

Temporal planning methods usually focus on the objective
of minimizing makespan. Unfortunately, this misses a large
class of planning problems where it is important to consider
a wider variety of temporal and non-temporal preferences,
making makespan a lower-order concern. In this paper we
consider modeling and reasoning with plan quality metrics
that are not directly correlated with plan makespan, building
on the planner POPF. We begin with the preferences defined
in PDDL3, and present a mixed integer programming encod-
ing to manage the the interaction between the hard tempo-
ral constraints for plan steps, and soft temporal constraints
for preferences. To widen the support of metrics that can be
expressed directly in PDDL, we then discuss an extension to
soft-deadlines with continuous cost functions, avoiding the
need to approximate these with several PDDL3 discrete-cost
preferences. We demonstrate the success of our new planner
on the benchmark temporal planning problems with prefer-
ences, showing that it is the state-of-the-art for such prob-
lems. We then analyze the benefits of reasoning with contin-
uous (versus discretized) models of domains with continuous
cost functions, showing the improvement in solution qual-
ity afforded through making the continuous cost function di-
rectly available to the planner.

1 Introduction

For years, much of the research in temporal planning has
worked toward finding plans with the shortest makespan,
making the assumption that the utility of a plan corresponds
with the time at which it ends. In many problems, however,
this does not align well with the true objective. Though
it is often critical that goals are achieved in a timely man-
ner, it does not always follow that the shortest plan will be
the best in terms of achievement time for individual goals.
These objectives can occur, for example, when planning for
crew activity, elevator operations, consignment delivery, or
manufacturing. A few temporal planners (c.f., Gerevini et
al. 2006; Coles et al. 2010) are capable of reasoning
over similar problems by, for instance, defining hard dead-
lines. But ranking plans in terms of temporal preferences on
plan trajectory or soft deadlines (i.e., those deadlines that
can be exceeded, but at a cost) has been less widely ex-
plored (Edelkamp, Jabbar, and Nazih 2006).
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The first challenge we face in considering these prob-
lems is how best to define them. PDDL3, introduced dur-
ing the 5" International Planning Competition (IPC-2006),
provides an attractive solution to this. This language intro-
duced a method for modeling soft deadlines and other tem-
poral preferences, where if a deadline or preference is bro-
ken, an associated discrete penalty cost is incurred. Dis-
crete models like this have their downsides, however. With
deadlines, for instance, when goal achievement occurs af-
ter the deadline point, even by a small amount, the full cost
must be paid. This fits some situations—for example, arriv-
ing at a ferry terminal after the ferry has left. But it mis-
matches others, such as being one second late in deliver-
ing retail goods. In those cases, once the ideal time for an
activity has passed, it is still desirable to achieve the goal
at some point, though preferably sooner. The cost is con-
tinuous and time-dependent: zero for a certain amount of
time, then progressively increasing. Since both discrete and
continuous models of cost have their place, we look toward
handling both temporal preferences definable in PDDL3 and
time-dependent, monotonically increasing cost functions.

In dealing with these types of problems, we present tech-
niques that build on POPF (Coles et al. 2010), a planner
particularly well-suited to handle temporal constraints such
as soft deadlines due to its rich temporal reasoning en-
gine. First, we consider PDDL3 preferences. Linear-time
scheduling (used by existing approaches) cannot always find
a preference-cost-optimal schedule for a given plan, so we
use a mixed integer program (MIP) for this. Second, we
present an encoding of time-dependent cost in PDDL+ (Fox
and Long 2006), and show how the planner can be adapted to
support it. In the evaluation we show that the resulting plan-
ner, OPTIC (Optimizing Preferences and TIme-dependent
Costs), has state-of-the-art performance on temporal PDDL3
benchmark domains; and show the direct specification of
a continuous cost function is not just elegant, but also of-
fers better performance (with search pruning) than if simply
compiled to a single sequence of discrete-cost deadlines.

2 Related Work and Background

While temporal planning has long held the interest of the
planning community (c.f., Zeno (Penberthy and Weld 1994),
TGP (Smith and Weld 1999), TLPlan (Bacchus and Kabanza
2000), Sapa (Do and Kambhampati 2003), LPG (Gerevini



et al. 2006), CRIKEY (Coles et al. 2008), TFD (Eyerich
et. al.)), strong interest in preference-based and partial satis-
faction planning (e.g., net-benefit planning) is relatively re-
cent (c.f., orienteering planner (Smith 2004), Sapa”® (Ben-
ton et. al. 2009), GAMER (Edelkamp and Kissmann 2008),
soft goal compilation (Keyder and Geffner 2009)). These
two areas may appear somewhat disparate in the context of
contemporary research, but this is far from the case. Indeed,
as more complex temporal problems come within reach of
solvability, it becomes less likely that plan duration (i.e.,
makespan), the usual quality measure for a temporal plan,
will continue to be judged an adequate measure of quality.

A few examples of cross-over between the areas have
emerged over the years. To our knowledge, the earliest
work in this direction is by Haddawy & Hanks (1992), in
their planner PYRRHUS, which allows a decision-theoretic
notion of deadline goals, such that late goal achievement
grants diminishing rewards. For several years after, the
topic of handling costs and preferences in temporal plan-
ning received little attention. As mentioned earlier, in 2006,
PDDL3 (Gerevini et al. 2009) introduced a subset of linear
temporal logic (LTL) constraints and preferences into a tem-
poral planning framework. PDDL3 provides a quantitative
preference language that allowed the definition of tempo-
ral preferences within the already temporally expressive lan-
guage of PDDL 2.1 (Fox and Long 2003). However, few tem-
poral planners have been built to support the temporal pref-
erences available (c.f., MIPS-XXL (Edelkamp et. al. 2006),
SGPLANS (Hsu et al. 2006)), and none that are suitable for
temporally expressive domains (Cushing et al. 2007). Other
recent work uses the notion of time-dependent costs/rewards
in continual planning frameworks (c.f., (Lemons et al. 2010;
Burns et al. 2012)).

In helping to remedy this situation, we support both the
discrete models of PDDL3 and continuous models in the uni-
fying framework of POPF, a planner capable of solving tem-
porally expressive domains. In this rest of this section, we
summarize PDDL3, the continuous cost functions we use,
and the planner POPF.

2.1 Preferences in PDDL3

In PDDL2.1 (Fox and Long 2003), a plan quality metric can
be specified, with terms comprising the values of task vari-
ables (at the end of the plan), and the variable total-time
denoting makespan. The ability to characterize quality was
extended in PDDL3 (Gerevini et al. 2009) with the introduc-
tion of preferences. These can be split into two broad cate-
gories. First, ‘simple’ preferences correspond to soft goals
or soft preconditions on actions. Second, ‘complex’ prefer-
ences, written using operators such as (sometime-after f g),
that each correspond to a limited fragment of LTL. In both
cases, the extent to which violating the preference affects
plan cost is captured in the metric, through the use of a vari-
able (is-violated p), which for a precondition preferences
counts the number of violations, and for other preferences,
takes the value 1 if it has been violated, or O otherwise.

A range of planners support PDDL3 preferences, to a
lesser or greater extent (Hsu et al. 2006; Edelkamp, Jab-
bar, and Nazih 2006; Coles and Coles 2011; Baier, Bac-

f& g —~RPG(g)

CHCERC

. 8
Figure 1: Automaton for (sometime-after f g)

chus, and Mcllraith 2007; Benton, Do, and Kambhampati
2009). Key to many of these is the representation of pref-
erences as automata, with the position of each preference
automaton stored in the state alongside the facts and nu-
meric variable values, a methodology that we also adopt.
The update of these is synchronized with the application of
actions to states: if a new state meets the condition on a
transition out of an automaton’s current position, the tran-
sition fires, i.e., its position in the state is updated. As an
example, an automaton for (sometime-after f g) is shown
in Figure 1. If the preference is Sat, and a state .S is reached
where S F (f A—g), then it moves to being Unsat, i.e., it has
been violated. Subsequently, meeting g returns it to Sat; or,
if g is provably unreachable, the preference can be marked
as eternally violated, denoted E-Vio.

2.2 Time-Dependent Goal Achievement Cost

While PDDL3 preferences can capture the metrics in many
temporal planning problems, they cannot cleanly represent
continuous increases on cost, despite the ubiquity of real-
world problems with this property. As an example, consider
a simple logistics problem where blueberries, oranges and
apples must be delivered to locations, B, O and A respec-
tively. Each fruit has a different shelf-life. From the time
they are harvested, apples last 20 days, oranges 15 days and
blueberries 10 days. The truck has a long way to travel, driv-
ing with the perishable goods from an origin point P. Let us
assume equal profit for the length of time each item is on a
shelf. The time to drive between P and B is 6 days, between
P and A is 7 days, between B and O is 3 days, and between
A and B is 5 days. To make all deliveries, the shortest plan
has a duration of 15 days; that is, drive to points A, B, then
O in that order. If we were to deliver the goods in this or-
der, the blueberries and oranges will rot before they reach
their destinations, and the total time-on-shelf for the apples
would be 13 days. Instead, we need a plan gets the best over-
all value. A plan that drives to point B, O, then A achieves
this, though it does so in 17 days. In this case, summing the
total time-on-shelf across all fruits gives us 15 days.

To handle these cases, we support two types of time-
dependent goal achievement costs: those with deadlines that
must be exactly on time, as defined with PDDL3; and those
with costs that increase gradually over time. Specifically, in
our test problems, we use linearly increasing costs, with a
soft deadline after which cost begins to increase, and a sec-
ond deadline where the full cost is paid. If a goal is achieved
between these time points, the cost is determined pro rata.

2.3 Partial Order Planning Forwards

In this work we build on the planner POPF (Coles et al.
2010). The key distinction between POPF and other forward-
chaining temporal planners is that rather than enforcing a
strict total-order on all steps added to the plan, it builds a



partial-order based on the facts and variables referred to by
each step. To support this, each fact p and variable v is anno-
tated with information relating it to the plan steps. Briefly:

e FT(p) (F~(p)) is the index of the plan step that most
recently added (deleted) p;

° FP+(p) is a set of pairs, each (4, d), used to record steps
with a precondition p. ¢ denotes the index of a plan step,
and d € {0,¢}. If d=0, then p can be deleted at or after
step ¢: this corresponds to the end of a PDDL over all
condition. If d=e¢, then p can only be deleted ¢ after i.

e F'P™ (p), similarly, records negative preconditions on p.

o Ve (v) gives the index of the step in the plan that most
recently had an effect upon variable v;

e VP(v) is a set containing the indices of steps in the plan
that have referred to the variable v since the last effect on
v. A step depends on v if it either has a precondition on
v; an effect needing an input value of v; or is the start of
an action with a duration depending on v.

The application of actions to states then updates these an-
notations and, based on their values, produces ordering con-
straints. Steps adding p are ordered after F'~ (p); those delet-
ing p, after F*(p). Hence, there is a total-ordering on the ef-
fects applied to each fact. Preconditions are fixed within this
ordering: applying a step with a precondition p orders it after
F*(p); and recording it in FP T (p) ensures the next deletor
of p will, ultimately, be ordered after it. Similarly, negative
preconditions are ordered after some F~(p) and before the
next F'*(p). Finally, steps modifying v are totally ordered,
and steps referring to v are fixed within this order (due to
effects on v being ordered after the pre-existing VP (v)).

An important difference between partially and totally or-
dered approaches is that the preconditions to support an
action are only forced to be true simultaneously if it is
added to the plan. Consider a precondition formula F' that

refers to multiple facts/variables. We say that SEF if the
facts/variable values in S support F'. If we apply an ac-
tion with precondition F' we add ordering constraints as dis-
cussed above, as otherwise, we could not guarantee the req-
uisite fact/variable values for F' are met simultaneously.

For example, consider F'=(a A —b). In a state where SEF'
it is possible that another action, BT, adding b can be ap-
plied after its last deletor, F'~(b). Since the last adder of a,
F*(a), is not necessarily ordered w.r.t. either /'~ (b) or BT
the plan may be scheduled such B* is before F'*(a), and
thus a A—b is not necessarily true at any point. The key point
here is that visiting a state .S; where S;FF" is not sufficient
to guarantee F' will be satisfied during the plan. We will see
the importance of this when we discuss preferences.

3 Encoding Trajectory Preferences in a
Forward-Chaining Partial Order

The objective function in temporal planning is often as-
sumed to be makespan. In the presence of trajectory prefer-
ences, however, this is not enough; we must schedule actions
based on the costs incurred due to violating these. To do this,
we take inspiration from previous work on handling PDDL3
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Figure 2: A Dummy Preference Step leading to an Invalid STP

preferences capturing their semantics by building finite-state
automata. Using these, we build a mixed integer program
(MIP) model to aid in scheduling the plan to minimize cost.

Preferences can be embedded within planning search by
augmenting the states with a record of the current position of
the corresponding automata. Each time an action is applied,
the positions of the automata are updated to reflect the state
reached. For instance, if an automaton p has a transition
i — 7 conditioned on some logical formula ¢, and a state
is reached that satisfies ¢ and in which p=i, the automaton’s
position is moved to j. This is somewhat similar to adding
a dummy step to the plan, with precondition ¢ and its effect
being to update the automaton’s position, an approach used
directly by MIPS-XXL (Edelkamp et. al. 2000).

In the sequential non-temporal case, this encoding works
well; all the separation constraints between the steps in
the plan (and the dummy preference steps) are of the form
(t(i) < t(j),i < j). Thus, the temporal constraints im-
plied by the need to support preferences are trivial, and can
never render a plan invalid. In the temporal case, how-
ever, actions’ duration constraints impose maximum sep-
aration constraints: for an action A, its start A cannot
precede its end A4 by any more than the maximum dura-
tion of A. In Figure 2, for instance, we have applied Ai
which, in adding P, allowed us to apply B, B to obtain
Q. This allows us to satisfy the the condition of a preference
(sometime (and (P) (Q))), shown as the dummy-step node
pref. This node is ordered after the achievers of P and @,
and a record made of this. In the terminology of POPF:

F*(P)=Ar, FPT(P) = {(Bw,¢), (pref,€)}
FH(Q)=B+, FPT(Q) = {(pref.e)}

To complete the plan, we must apply A4, and without the
preference, this would not be an issue: A deletes P, so
would be ordered € after B-. Even if B was longer than
A, we do not insist that its execution is wholly within A —
only its start. With the preference, however, in forcing there
to be a point at which both P and @ are true, we would
order A after pref. If the duration of B exceeds that of A,
the resulting plan would be temporally invalid: the Simple
Temporal Problem (STP) has a negative cycle from A back
to itself, via pref and B.

The situation of Figure 2 could be resolved by backtrack-
ing, applying A4 before B, and thus never trying to satisfy
the preference. However, to do so would be undesirable: we
would rather unsatisfiable preferences did not impact search
in this way. Thus, we embed the STP within a MIP, allow-
ing temporal constraints on dummy steps to be relaxed in
some (but not all) circumstances, meaning we do not always
have to backtrack. We will now explain how we encode soft
constraints in an MIP framework, and each constraint’s re-
lationship to dummy-step preconditions. Later we explore



how to use these constraints to determine the status of pref-
erences given the ordering constraints maintained by POPF.

3.1 Encoding Soft Constraints for Preconditions

The ordering of a dummy step ¢ with precondition referenc-
ing fact f, with respect to actions with an effect on f is fixed:
it is ordered between a and d, an adder and deletor of f. To
indicate when this ordering has been broken, we create a bi-
nary variable f? that takes the value 1 iff ¢ precedes a; and
similarly, a variable f¢ that is 1 iff d precedes 7. A variable
fi is then defined to be 1 iff either of these two variables hold
the value 1, i.e., if one of the orderings due to f was broken.
This collection of variables and constraints can be stated as
follows, where N is some large constant:

step; — € > step, — N.f

N.f# > step; — € — step,

step; + € < stepg + N. f;

N.f& > step, — € — step,
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To define —f;, a variable that is 1 iff the constraints to sup-
port — f are broken, step a is the deletor before ¢, and step d
the adder after ¢. For v;, that is 1 iff the constraints to support
the value of some variable v are broken, a is the step with
an effect on v prior to ¢, and d the step with an effect on v
after 7. From here on we refer to such variables as f;, —f; or
v;, and assume constraints of this form have been included
in the MIP if necessary. These variables denote whether or-
derings to support facts/variable values were satisfied.

We must also include the precondition of each dummy
step, in the MIP, as a function of these variables. Any
PDDL precondition can be written in Negation Normal Form
(NNF), through grounding existential quantification and ap-
plying De Morgan’s laws. For a precondition formula F', we
introduce a variable F; that holds the value 1 iff the satisfac-
tion of temporal constraints at ¢ was not sufficient to guar-
antee the truth value of F'. Constraints on F; are derived
from recursively instantiating MIP encodings of \V and A, as
appropriate, with reference to the necessary f;, = f; and v;.

One final remark here is that though F;=0 guarantees that
F is true, F;=1 does not guarantee that F' is false: it may
be that the step ¢ has been scheduled at some point where
there are appropriate supporters for its preconditions, just
not those chosen during plan expansion.

3.2 Dummy Steps and Encoding Preferences

Having defined F; for the condition on each dummy step
i, we can define when dummy steps are added to the plan,
during plan construction, and how these are used to encode
preference information in the MIP. Within the MIP we cre-
ate a binary variable P for each preference P that is 1 iff
the preference is violated. The dummy plan steps and MIP
constraints added are determined on a per-preference basis,
First, consider preferences defined by a single desirable for-
mula F'. We say a plan step affects formula F' if it has at
least one effect on facts/variables in F'.

1) If P is (always F), a dummy step with condition F' is
added after each plan step that affects F'. P=1 iff F;=1 for
some dummy step ¢ added due to P.

2) If P is (sometime F), a dummy step with condition F'
is added after each plan step that affects F'. P=0 iff F;=0 for
some dummy step ¢ added due to P.

3) If P is (within d F), a similar encoding is used, with
an additional auxiliary variable D; that is 0 iff step; < d.
Then, P=0 if F;=0 A D;=0 for a dummy step ¢ due to P.

4) If step 4’ of the plan has a precondition preference P
with formula F', then a dummy step ¢ with condition F' is
added prior to ', constrained such that step;, = step,,. P is
the sum of all such F; variables in the plan.

In all four cases, we are being pessimistic: as noted ear-
lier, F;=1 does not mean F' is necessarily false at time step,.
Thus, search may have to backtrack to circumvent this lim-
itation. Next, consider preferences comprising a desirable
formula F, but also an undesirable formula F”:

5)If Pis (sometime-after F’' F), we add a dummy step ¢
with condition F after all steps affecting F. Then, each F”-
affecting-step in the plan (leading to state S,,) is followed

by a dummy step j. If S,,FF”, j has condition F” and we
enforce F]’ = 0 in the MIP (i.e. enforce support for F");
otherwise it has condition =F" and we enforce ~F; = 0. In
the MIP we now require:
(3F} st. Aist. F;=0 A step; < step;) < P=1

6) If Pis (sometime-before F’ F), we have an issue. Sup-
pose, as in the previous case, we added dummy steps ¢ and
j for F and F’. Ordering an 7 before j does not guarantee
that F is actually true before F”: if time passes between the
actions supporting preconditions of 7, and j itself, F’ may
actually have been true much sooner, and indeed before 7.
Thus, we limit the sometime-before preferences we support:
[’ can only contain a single term (one fact, one negated fact,
or one precondition on a single numeric variable). Then, if
F’ becomes true after step j, we know step j was responsible
for this: it has added/deleted the relevant fact, or appropri-
ately changed the relevant variable. Adding dummy steps,
each i, for I, as before, we then constrain the MIP as:

(P=1) < (3j s.t. Ais.t Fi=0A step; > step; + ¢)

7) If P is (always-within d F’ F), we add a dummy step
1 with condition F after all steps affecting F", and restrict F’
to a single term. For each step j that made F” true:

(P=1) < (37 s.t. Aist. F;=0A0 < step, — step; < d)

8) Encoding a preference PP (at-most-once F'), in a MIP
is a challenge. This is the one preference for which we en-
tirely compromise our ideal of having soft constraints. Each
F’-affecting-step in the plan (leading to state S,,) is followed
by a dummy step j. If S,,EF”’, j has condition F’ and we en-
force I} = 0 in the MIP (i.e. enforce support for F”); other-
wise it has condition =F" and we enforce —F" = 0. Further,
each j is ordered to be no earlier than the last dummy step
due to P. Insisting on this could make the STP portion of
the MIP be unsolvable, as in Figure 2. In the benchmark do-
mains, however, this is not an issue: the ordering constraints
due to the dummy steps are subsumed by those introduced
due to the relationships between the other steps in the plan.

For (hold-during a b F) and (hold-after d F), we use
the timed-initial literal compilation (Gerevini et al. 2009).
This reduces them to preferences handled above: respec-
tively, (always (imply (AB) F)) (2B is true in the interval
[a, b]), and (sometime (and D F)) (D becomes true at time d).



3.3 Calculating Plan Cost

Given the MIP contains variables denoting whether prefer-
ences are satisfied, we can set its objective to minimize the
cost of the current plan. The MIP will seek to optimise the
assignments of timestamps to steps, given the costs of pref-
erences and other terms in the metric, subject to the order-
ing constraints. The objective needed to do this comprises a
constant offset C' and a weighted sum of several terms:

1. For each at-end F preference P, if F'is false in the current
state, increment C' by its metric cost cost(P);

2. For each at-most-once F preference P, if the preference is
eternally violated (E-Vio) in the current state (i.e., F' has
become true, false, then true), increment C' by cost(P);

3. For each other class of preference P, with cost cost(P):
a) if P has a MIP variable, include the term cost(P).P;

b) otherwise, if P is unsatisfied by default (sometine,
within), increment C' by cost(P);

4. If the metric contains (x w (total-time)), create a
dummy MIP variable M, constrained such that each step,
in the plan cannot exceed M. Then include the term w. M .

5. For any other metric term m.v, increment C' by m multi-
plied by the value of v in the current state.

If plan cost is monotonically worsening, we can also use
the MIP to calculate reachable cost, with two small modifi-
cations to the objective: exclude from point 3(a) terms added
due to sometime-after and always-within preferences; and
do not increment C' at step 3(b). The cost found reflects that
reachable assuming all sometime, within, sometime-after and
always-within preferences become satisfied in the future.

3.4 The Remaining Modifications to POPF

So far, we have described how a combination of dummy plan
steps and a MIP can be used to monitor and optimize pref-
erences as a plan is expanded forwards in POPF. To guide
search effectively, we need a preference-aware heuristic. To
this end, we apply the RPG modifications from LPRPG-
P (Coles and Coles 2011) to the temporal RPG heuristic of
POPF!. A summary of these modifications follows.

RPG heuristics comprise alternate time-stamped fact and
action layers. In the non-temporal setting, time stamps
are natural numbers. In POPF’s TRPG, they are related to
the durations of actions: if an action A cannot start un-
til action layer t, its end cannot appear until action layer
t+ dur pmin (A), where dur i, (A) is an admissible estimate
of the duration of A. In both cases the fundamental structure
and the process of graph expansion is the same. Thus, the
five key changes to the RPG described by Coles and Coles
for LPRPG-P (2011) can also be applied to a TRPG:

1) Each fact layer records the ‘best’ reachable position of
each automaton by that point, transitions to better positions
fire automatically as and when their preconditions are met.
For instance, referring to Figure 1, if fact layer ¢ satisfies g
and the preference is Unsat, the preference becomes Sat at
the following layer. For the temporal case we add that the

'Those familiar with LPRPG-P should note that this does not in-
clude the LP component of this heuristic; just the general-purpose
RPG modifications for the propositional and numeric case.

condition F'in (within d F) can only be true at RPG layers
before d.

2) Each action/fact is associated with a preference vi-
olation set, recording the preferences violated in apply-
ing/achieving it. An action violates a preference if it is a
‘certain trigger’ of a transition from the preference’s current
optimistic position, to a position in which it is violated.

3) If the automaton position of a preference P moves to
a better position, due to the condition g on a transition be-
ing met, actions that were previously violated then re-appear
with the extra precondition g. If chosen during solution ex-
traction, this then ensures the condition that allowed them to
be applied without violating P is met.

4) Graph expansion continues while there are still pref-
erences that are not satisfied (or until two identical layers
are produced). Any preference that could not be satisfied is
marked as E-Vio, i.e. unreachable, in the state being evalu-
ated: it cannot possibly be satisfied in any future state.

5) As well as choosing actions to satisfy goals, solution
extraction chooses actions to satisfy (reachable) preferences
that are unsatisfied in the state being evaluated.

4 Planning with Continuous Cost Functions

PDDL3 preferences cannot directly model continuously
changing time-dependent costs on goals. Further, represent-
ing such costs using automata may be insufficient and ineffi-
cient. In considering problems with continuously changing
cost on goals, we therefore face two key challenges:

1. How to best represent planning problems where the value
of a plan rests with the time individual goals are achieved.
2. Given a representation, how to solve these problems.

In addressing the first point, we explore using PDDL3 to rep-
resent discretizations of the cost function, and representing
cost functions directly using a combination of PDDL+ and
cost evaluation actions. The semantics of PDDL3 offer an
all-or-nothing approach to cost, requiring the generation of a
set of deadlines (and internally automata) for the same goal,
giving a piece-wise representation of the original cost func-
tion. This may be sufficient (or even accurate) for many
problems. For example, the London Underground system
operates on a fixed schedule, where making a stop 5 minutes
late may be no worse than being 3 minutes late: either way
the train will depart at the same time. But in other problems,
it leaves open questions on the granularity of cost deadlines.
For the fruit shelf-life example in Section 2, given a fruit
type f and a self-life, sl (in days), we can create a set of
deadlines such that the cost increases by 1/sl each day.
An unfortunate disadvantage of this approach is that it
may improperly represent costs; for the example, missing
the deadline by only a few moments would immediately
place the cost in the next day “bracket”, an overly strict re-
quirement for this problem. In this case, a more direct ap-
proach to representing cost is desirable. Therefore, we also
consider cost represented by a continuous, monotonically
increasing function, comprising arbitrary piecewise mono-
tones expressible in PDDL. In our examples, cost is zero un-
til time point ¢4, then increases continuously until it reaches
a cost ¢ at a time point £44 5. Our approach removes issues



(raction collect-goal-gl :parameters (?pl ?p2 - obj)
:precondition (and (goal-gl ?pl ?p2) (gl ?pl ?p2))
reffect (and (collected-gl ?pl ?p2)
(not (goal-gl ?pl ?p2))
(not (gl ?pl ?p2)) =
(when (> (current-time) (final-deadline-gl ?pl ?p2))
(increase (total-cost) (full-penalty ?pl ?p2)))
(when (and (> (current-time) (deadline-one-gl ?pl ?p2))
(<= (current-time) (final-deadline-gl ?pl ?p2))))
(increase (total-cost)
(x (full-penalty ?pl ?p2)
(/ (= (current-time) (deadline-one ?pl ?p2))
(- (final-deadline ?p2 ?p2) (deadline-one-gl ?p2 ?p2))
)))))
Figure 3: Structure of a Cost-Collection Action for

Time-Dependent Cost. (* See note in text)

of granularity for the domain modeler when they are not re-
quired.

4.1 Continuous Cost Functions in PDDL+

We can model continuous cost functions using PDDL+ (Fox
and Long 2006) without reference to the preference lan-
guage introduced in PDDL3. First, in order to track the
time elapsed throughout the plan we introduce a variable
(current-time), assigned the value O in the initial state. This
is updated continuously by a process with no conditions
and the effect (increase (current-time) (+ #t 1)), increas-
ing the value of current-time by one per time-unit. As pro-
cesses execute whenever their conditions are met, and in this
case the condition is tautologous, we can now write actions
whose effects are dependent on the time at which they are
executed.

For each goal fact g; upon which we want to enforce
a time-dependent cost, we add a fact goal-g; to the initial
state, and replace the goal with a fact collected-g;. Then
we create an action following the template in Figure 3; the
action can have arbitrary parameters, as required by the
goal, and the cost function can differ for different goals.The
line marked with * is optional, depending on the semantics
required: for goals that we wish to persist after the cost
has been collected, the line is present; otherwise, it is not.
The conditional effects of our example increase the vari-
able total-cost by a linear formula if current-time is after
deadline-one-g; (i.e., t4) but before final-deadline-g; and
by a fixed amount of current-time is after final-deadline-g;
(i.e., tg+s). With additional conditional effects (i.e., inter-
mediate deadlines), the cost function can consist of an arbi-
trary number of stages, each taking the form of any math-
ematical function expressible in PDDL. If we restrict our
attention to cost functions that monotonically increase (i.e.,
problems where doing things earlier is always better) we can
see that any reasonable planner using this model will apply
such actions sooner rather than later to achieve minimal cost.

Note that the actions of Figure 3 can also be modeled as
PDDL+ events. Then, as soon as g; occurred, they would
happen. By ensuring there is no gap allowed between g; and
collecting its cost, an event-based encoding would also be a
useful part of a mechanism for capturing costs that are not
monotonically worsening (as well as eliminating the search
step of adding a collect action to the plan).

4.2 Comparison to PDDL 3

The cost functions above (omitting the asterisked effect)
have a PDDL3 analog. We can, in theory, obtain the same ex-
pressive power by creating a sequence of several within pref-
erences, with the spacing between them equal to the greatest
common divisor (GCD) of action durations, and each with
an appropriate fraction of the cost. In other words, we can
define a step function approximation of the cost function us-
ing the GCD to define cost intervals. In many problems this
could give a substantial blow-up in the size of the problem.
A more coarse discretization with within preferences that
are spaced further apart than the GCD may be more practi-
cal. However, a planner using such a model may also fail
to reach optimal solutions: it may be possible to achieve a
goal earlier but not sufficiently early to achieve the earlier
within preference, so the planner will not recognize this as
an improved plan.

4.3 Solving the Problem

OPTIC handles these problems by extending the POPF sched-
uler, heuristic and the search strategy. In addition we make
a small extension to handle the very basic type of PDDL+
process needed to support the current-time ticker. Specifi-
cally, processes with static preconditions and linear effects
on a variable defined in the initial state (but not subsequently
changed by the effect of any other actions). Supporting these
requires very little reasoning in the planner.

Scheduling: The compilation (in the absence of support for
events) requires that all cost functions be monotonically in-
creasing. Given this (and the absence of preferences and
continuous numeric change, other than the ticker) an STN
scheduler suffices; we know that the lowest cost for a given
plan can be achieved by scheduling all actions at their ear-
liest possible time. The earliest time for each action can be
found by performing a single-source shortest path (SSSP)
algorithm on the temporal constraints of a plan (this is al-
ready done in POPF to check that plans are temporally con-
sistent). When a collect-g; action is first added to the plan
we increase the recorded plan cost according to its cost func-
tion evaluated at its allotted timestamp. Subsequently, if the
schedule of a plan moves collect-g; to a later timestamp,
the cost of the plan is increased to reflect any consequential
increase in the cost function of the action.

Admissible Heuristic: Now that we can compute the cost of
solutions, we need a heuristic to guide search toward finding
high-quality solutions; and ideally, an admissible heuristic
that we can use for pruning. In satisficing planning, relaxed
plan length has been a very effective heuristic, and OPTIC
uses this to guide search. We continue to use this for suc-
cessor selection, but use a second, admissible, heuristic for
pruning. Each reachable collect-cost action yet to be ap-
plied will appear in the TRPG. In OPTIC’s TRPG we can
obtain an admissible estimate of each collect-g;’s achieve-
ment time by using its cost at the action layer in which it
appears. Since costs are monotonically worsening, this cost
is an admissible estimate of the cost of collecting the associ-
ated goal. Since collect-g; actions achieve a goal which is
never present as a precondition of an action, and they have



Problem 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20
OpTIC |36.4 142.5 92.8 40.3 48 71.2 121.7 75 342 946 - 703 - 415 0
Pipes- MipsXXL | 0 78.7 222 152 238 - - - - - - - - - -
world SGPLAN |36.4 105.1 86 35 48 63.8 958 459 342 - 759 305 92 88.7 203
SGPLAN-W|36.4 105.1 86 282 344 638 171.7 67 214 69.8 538 333 92 712 12.1
OPTIC 0 0 0 0 0 0 0 6 4 15 13 0 6 21 0 36 54 45 19 73
Trucks MipsXXL | 0 0 - - - - - - - - - - - - - - - - - -
SGPLAN 4 0 2 2 2 1 6 4 4 24 8 6 12 11 8 23 50 29 32 46
OPTIC 0 1 2 13 127 208 397 477 737 914 1334 1472 2063 2366 3206 3383 - - - -
Storage MipsXXL | 3 4 38 81 - - - - - - - - - - - - - - - -
SGPLAN | 18 37 86 113 227 322 505 591 887 1082 1532 1670 2248 2622 3290 3571 4556 4813 6332 6378
SGPLAN-W| 13 - - - - - - - - - - - - - - - - - - -
TPP OPTIC 0 0 0 0 5 0 14 22 - - - 26 - - - - - - - -
SGPLAN 1 1 0 2 1 8 16 7 29 42 41 40 50 48 36 55 70 65 87 79
OPTIC 30 136 10 18 23442 20 273 33 29 339 31 39.1 40.1 40.3 363 529 39.7 46.1 543 48
Pathways- | MIpPSXXL | 2 82 11 16.6 25 21 283 34 30 349 33 - 42,1 423 373 - - - - -
debugged SGPLAN | 6.0 129 - - - - - - - - - - - - - - - - - -
SGPLAN-W| 6.0 129 - - - - - - - - - - - - - - - - - -
Problem 21 22 23 24 25 26 27 28 29 30
Pathways 20+ opTIC |59.2 509 584 628 674 67.1 67.1 73.8 65.6 58.1

Table 1: Quality of plans produced on IPC-2006 Benchmarks (limited to 30 minutes and 4GB RAM). Smaller is better in all domains
except Pipesworld. Absence of a planner in a given domain indicates that it solved no problems.

numeric effects only on cost, they fit the model of direct-
achievement costs used in the heuristic of POPF (Coles et al.
2011). Thus, the sum of the costs of the outstanding collect
actions, at their earliest respective layers, is an admissible
estimate of the cost of reaching the remaining goals.

Tiered Search: While searching for a solution, we can use
our admissible estimate h, for pruning. In general, we can
prune a state s, reached by incurring cost g(s) (as computed
by the scheduler), with admissible heuristic cost h,(s), if
g(s) + ha(s) > ¢, where c is an upper-bound on cost (e.g.,
the cost of the best solution so far). If the granularity of
cost is N, then states are kept if g(s) + ha(s) < ¢— N. In
the case of PDDL3, where exceeding deadlines incurs a dis-
crete cost, N is the cost of the cheapest preference. When
searching with continuous time-dependent costs, though, N
is arbitrarily small, so the number of such states is large,
Hence, compared to the discrete-cost case, we are at greater
risk of exhausting the available memory. If we inflated N
we would prune more states, though forfeit optimality, ef-
fectively returning to the discretized case.

As a compromise, we use a tiered search strategy.
Specifically, we invoke WA* a number of times in se-
quence, starting with a larger value of N and finishing
with N=e (some small number). The principle is similar
to IDA* (Korf 1985), and a reminiscent of iterative refine-
ment in IPP (Koehler 1998), but applied to pruning on plan
quality. That is, introduce an aggressive bound on cost, i.e.,
assume there exists a considerably better solution than that
already found; if this does not appear to be the case, grad-
ually relax the bound. The difference from IDA* comes
in the heuristic value used for search: we still use relaxed
plan length to guide search, using the admissible cost-based
heuristic and cut-off value only for pruning.

5 Results

In our evaluation we first focus on the performance of OP-
TIC on temporal problems with preferences. We then go on
to analyze the difference between the continuous and dis-
cretized modeling of continuous time-dependent cost. We
focus in our evaluation only on temporal domains. In non-

temporal domains, neither our MIP nor our changes to the
heuristic beyond LPRPG-P are required. We refer the reader
to Coles and Coles (2011) for an evaluation in this setting.

We consider all temporal domains with preferences from
IPC-20062, and compare to the only other two planners sup-
porting such domains: MIPS-XXL and SGPLAN. We include
two versions of SGPLAN: SGPLAN 5.21; and SGPLAN-W,
the same planner, inside a wrapper that adds a dummy action
that can never be grounded, but marginally alters the textual
properties of domain (Coles and Coles 2011).

Table 1 shows the best quality metric found within 30
minutes (4GB memory limit) by each of the planners, ac-
cording to the metric given in the problem files. OPTIC
produces the best solution on most problems, bettering even
standard SGPLAN, and shows good scalability. Coverage
is worse in TPP due to difficulties in finding the first solu-
tion plan with OPTIC, regardless of quality. This happens
in the larger problems of Pipesworld, too; though if found,
the first plan has a good makespan, and hence reasonable
quality. In Storage, in the larger storage, grounding pref-
erences exhausted available memory. MIPS-XXL performs
admirably on many domains but does not scale as well or
produce solutions of as high quality. We note that the per-
formance of SGPLAN-W is significantly worse than that of
SGPLAN, solving no problems at all in TPP or Trucks. The
only domain in which the performance was equal is Path-
ways. The debugged domain contains an extra action, and
though inapplicable until problem 7, its presence disrupted
SGPLAN on all problems, compared to the original domain.

No benchmarks with continuous cost functions exist so
we created some based on existing problems; namely, Ele-
vators, Crew Planning and Openstacks, from IPC-2008. In
Elevators, deadlines were generated based on greedy, inde-
pendent solutions for each passenger, thereby generating a
“reasonable” wait time for the soft deadline and a partially
randomized “priority” time for when full cost is incurred
(with the idea that some people are either more important

*Pathways was debugged: self-association reactions no longer
have two effects on the same variable, which is illegal in PDDL.
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Figure 4: IPC-2008 scores per problem, validated against the continuous cost domain

or more impatient than others.) For each of problems 4-14
from the original problem set (solvable by POPF), we gen-
erated three problems. In Crew Planning, for each prob-
lem solvable by POPF (1-20) we generated soft deadlines on
each crew member finishing sleep, and random deadlines for
payloads each day. In Openstacks, each original problem is
augmented by soft deadlines based on production durations.

The critical question that we must answer is whether sup-
porting continuous costs is better than using a discretization
comprising a series of incremental PDDL3 within pref-
erences. Thus, for each continuous model, we made dis-
cretized problems, with each continuous cost function ap-
proximated by either 3, 5 or 10 preferences (10 being the
closest approximation). With these we use OPTIC, as the
best performing planner above to solve the discrete-cost
problems. This is compared to OPTIC with the continuous
model, and either normal search (only pruning states that
cannot improve on the best solution found), or the tiered
search described in Section 4.3. In the latter, the value of NV
was based on the cost () of the first solution found. The tiers
used were [Q/2,Q/4,Q/8,Q /16, €]. Each tier had at most
a fifth of the 30 minutes allocated. The results are shown in
Figure 4, the graphs show scores calculated as in IPC-2008;
i.e. the score on a given problem for a given configuration is
the cost of the best solution found (by any configuration) on
that problem, divided by the cost of its solution.

First we observe that the solid line, denoting tiered
search, has consistently good performance. Compare this to
continuous-cost search without tiers; it is worse sometimes
in Elevators, often in Crew Planning, and most noticeably
in Openstacks. These domains, in left-to-right order, have
a progressively greater tendency for search to reach states
that could potentially be marginally better than the incum-
bent solution; risking exhausting memory before reaching a
state that is much better. This is consistent with the perfor-
mance of the most aggressive split configuration: ‘Split into
3’. In Elevators, and some Crew Planning problems, its ag-
gressive pruning makes it impossible for it (or the other split
configurations) to find the best solutions. But, as we move
from left-to-right, the memory-saving benefits of this prun-
ing become increasing important, and by Openstacks, it is
finding better plans. Here, too, the split configurations with
weaker pruning (5 and 10) suffer the same fate as non-tiered
continuous search, memory use limits performance.

From these data, it is clear that the benefit of tiered-

search is that it is effectively performing dynamic discretiza-
tion. Because we have modeled continuous-costs in the
domain, rather than compiling them away, the ‘improve-
ment requirement’ between successive solutions becomes
a search-control decision, rather than an artifact of the ap-
proximation used. In earlier tiers, search prunes heavily, and
makes big steps in solution quality. In later tiers, pruning is
less zealous, allowing smaller steps in solution quality, over-
coming the barrier caused by coarse pruning. This is vital to
close the gap between a solution that is optimal according to
some granularity, but not globally optimal. A fixed granular-
ity due to a compilation fundamentally prevents search from
finding the good solutions it can find with a tiered approach.
We finally revisit our initial observations—that plan
makespan is not always a good analog for plan cost. In Ele-
vators, it appears to be reasonable (likewise in the PDDL3 en-
coding of the Pipesworld domain earlier in the evaluation).
In Crew Planning and Openstacks, though, we see that mini-
mizing makespan produces poor quality solutions; indeed in
Openstacks, low makespan solutions are specifically bad.

6 Conclusion

In this paper we have considered temporal planning prob-
lems where the cost function is not directly linked to plan
makespan. We have introduced new methods for handling
PDDL3 preferences in temporal domains and shown that a
planner using these can outperform the state-of-the-art in
temporal planning with preferences. Further, we have ex-
plored temporal problems with continuous cost functions
that more appropriately model certain classes of real-world
problems and gone on to show the advantages of reasoning
with a continuous model of such problems versus a compi-
lation to PDDL3 via discretization. Our final system, OPTIC
is capable of handling both of these problems. In future,
we intend explore ways of integrating PDDL3 and continu-
ous cost models, and supporting other continuous-cost mea-
sures, such as a continuous-cost analog to always-within.
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